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Abstract 
In this paper, we propose an implementation method for a new concept of stochastic duration 
which can be used to measure the sensitivity of complex bond portfolios with respect to the fluc-
tuations of the yield surface. Our approach relies on a first order approximation of a chaos expan-
sion in the direction of the yield surface, whose dynamics is described by the Musiela equation. 
Using the latter technique, we obtain an infinite-dimensional generalization of the classical Ma-
caulay duration, which can be interpreted as the derivative of a first order approximation of a 
Taylor series on locally convex spaces. 
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1. Introduction 
Asset and liability management (ALM) is the financial risk management of insurance companies, banks and any 
financial institution. The latter comprises risk assessment in all directions, e.g. policy setting, structuring of the 
bank’s or insurance’s repricing and maturity schedules, selecting financial hedge positions, capital budgeting, 
and internal measurements of profitability. Further, it pertains to contingency planning in the sense that the 
financial institution has to analyze the impact of unexpected changes (e.g. interest rates, competitive conditions, 
economic growth or liquidity) and how it will react to those changes. 

Portfolios managed e.g. by pension funds are usually of high complexity and stochastically depend on the 
entire term structure of interest rates ( ),R t x  or yield surface, dynamically in time. Therefore an accurate risk 
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management of interest rates necessitates the study of stochastic models for interest rates ( ),R t x  in time t and 
space x (“time-to-maturity”), that is the avarage rate at (future) time t with respect to the time period [ ],t t x+ , 
to analyze the interest rate risk and sensitivity of bond portfolios. 

One way to model the stochastic fluctuations of the yield surface ( ) ( ), ,t x R t x
 is based on the so-called 

Musiela equation, which is a special type of a stochastic partial differential equation (SPDE). In this model (see 
e.g. [1]), it is assumed that 

( ) ( )
0

1, d ,
x

tR t x f s s
x

= ∫  

where the forward (interest rate) curves , 0tf t T≤ ≤  satisfy the Musiela equation, and the , 0tf t T≤ ≤  is the 
mild solution to the SPDE 

( ) ( ) 0
dd , d , d , ,
dt t t t tf f t f t t f W f f

x
α σ= + + =                       (1.1) 

where [ ]: 0,T H Hα × → , [ ] ( )2: 0, ,T H L H Hσ × →  are Borel measurable functions and tW  is a cylind- 
rical Wiener process in H on a filtered probability space  

{ }( )0
, , , .t t T

µ
≤ ≤

Ω                                   (1.2) 

Here the filtration { }0t t T≤ ≤
  is µ-completed and generated by W. Further, ( )2 ,L H H  denotes the space of 

Hilbert-Schmidt operators from H into itself. 
A crucial aspect of asset liability management is the measurement of the sensitivity and risk analysis of bond 

portfolios with respect to the stochastic fluctuation of the yield surface. A widely spread method in banks and 
insurances to measure changes of bond portfolio values with respect to the stochastic fluctuation of the yield 
surface is the concept of modified duration which was introduced by Macaulay in 1938 [2]. The definition of 
this concept however is based on the first order Taylor expansion approximation of bond values and requires the 
unrealistic assumption of parallel shifts of (piecewise) flat interest rates dynamically in time. The latter approach, 
but also other techniques based on fair prices of interest rate derivatives (see e.g. [3]), are therefore not suitable 
for complex hedging portfolios of bonds, since the portfolio weights with respect to the hedged positions usually 
depend on the whole term structure of interest rates and hence are time-dependent functionals of the (stochastic) 
yield surface. In order to overcome this problem, one could use the concept of stochastic duration in [4] to 
measure the yield surface sensitivity of bond portfolios. Here the stochastic duration, which can be considered a 
generalization of the classical duration of Macaulay, is defined as a Malliavin derivative in the direction of the 
(centered) forward curve , 0tf t T≤ ≤  in the Musiela Equation (1) under a certain change of measure and con-  
ditions on the filtration { }0t t T≤ ≤

 . 

Since the concept of stochastic duration, which enables a more accurate interest rate management and which 
could be e.g. used to devise new premium calculation principles for life insurance policies with “stochastic” 
technical interest rates, it is necessary to develop numerical methods or approximation schemes for its estimation. 

In this paper we aim at proposing a numerical approach to estimate the stochastic duration in [4] in the more 
general setting of mild solutions to (1.1) by using a first order chaos expansion approximation of bond portfolio 
values as functionals of the forward curve , 0tf t T≤ ≤ . This idea is in line with the classical Macaulay 
definition of duration and corresponds to a first order Taylor series approximation on locally convex spaces in 
infinite dimensions (see e.g. [5]). This approximation may be also compared to the approach of Jamshidian [6] 
with respect to the stochastic modeling of large multi-currency portfolios by means of a Gaussian distribution as 
an application of the central limit theorem. In this context it is worth mentioning that the second order chaos 
expansion approximation of the bond portfolio value, which gives a more realistic portfolio modeling and which 
we don’t consider in this paper, actually corresponds to the application of a non-central limit theorem (see [7]). 

Furthermore, using the above techniques we want to generalize the concept of immunization strategies for 
bond portfolios as introduced in [8] to the case of non-flat stochastic interest rates. 

The paper is organized as follows: 
In Section 2 we pass in review some basic facts from infinite dimensional interest rate modeling and 

Malliavin calculus for Gaussian fields. Moreover, adopting the ideas in [4] we introduce the concept of sto- 
chastic duration in the setting of mild solutions to (1.1). 

Finally, in Section 3 we want to discuss an implemention method for the estimation of stochastic duration and 
the concept of portfolio immunization strategies. 
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2. Framework 
We recall in this section some mathematical preliminaries. 

Consider the SPDE 

( )( ) ( )d , d , d ,t t t t tf Af t f t t f Wα σ= + +                           (2.1) 

where A is the generator of a strongly continuous semigroup , 0tS t ≥  on H, [ ]: 0,T H Hα × → ,  
[ ] ( )2: 0, ,T H L H Hσ × →  are Borel measurable functions, , 0tW t T≤ ≤  is a cylindrical Wiener process in H  

on a filtered probability space { }( )0
, , ,t t T

µ
≤ ≤

Ω   . We need the following concept of solution to (2.1). 

Definition 2.1. (Mild solutions) An t -adapted process tf  on { }( )0
, , ,t t T

µ
≤ ≤

Ω    is said to be a mild 
solution to (2.1) if (see [9]): 

1) ( )0
d 1,

T
t Hf tµ < ∞ =∫   

2) ( ) ( ) ( )( )( )2

2

,0
, , d 1

T
t tH L H H

t f t f tµ α σ+ < ∞ =∫ , and  

3) for all t T≤ , µ-a.s.,  

( ) ( )0 0 0
, d , d .

t t
t t t s s t s s sf S f S s f s S s f Wα σ− −= + +∫ ∫                      (2.2) 

Remark 2.2. If the coefficients α  and σ  in (2.1) satisfy the Lipschitz condition  

( ) ( ) ( ) ( ) ( )2 ,
, , , , , ,HH L H H

t x t y t x t y K x y x y Hα α σ σ− + + ≤ − ∈  

for a constant K < ∞ , then there exists a unique mild solution , 0tf t T≤ ≤  to (2.1). Moreover, for all 2p >  
we have that 

[ ]
( )0

0,
sup 1p p

t pH H
t T

E X C X
∈

 
< + 

 
 

for a constant pC < ∞ . 
In the sequel, we choose H to be the following weighted Sobolev space wH  (see [1]). 
Definition 2.3. Let [ ) ( ): 0, 0,w ∞ → ∞  be an increasing function such that 

( )
2

0
d .x x

w x
∞

< ∞∫  

Then the space wH  defined as 

[ ) ( ) ( )
2

0

d: 0, | absolutely continuous and d
dwH f f f x w x x
x

∞  = ∞ → < ∞ 
  

∫  

is a Hilbert space with the inner product 

( ) ( ) ( ) ( )
0

d d, 0 0 d .
d dwHf g f g f x g x x

x x
∞

= + ∫  

The space wH H=  exhibits the following important properties which we want to use throughout the paper: 
1) The evaluation functional 

( ): ;x H f f xδ →   

is a continuous linear functional. 
2) The integration functional 

( )
0

: ; d
x

xI H f f s s→ ∫  

is a continuous linear functional. 



S. Duedahl 
 

 
404 

3) The differential operator d
d

A
x

=  is the generator of the strongly continuous semigroup given by the left  

shift operator :tS H H→  defined by 

( ) ( ) ( )tS f x f t x= +  

for , 0f H x∈ ≥ .  

In what follows, we assume that d
d

A
x

= . 

In order to rule out arbitrage opportunities, we shall also require that the drift coefficient α  in (2.1) satisfies 
the following generalized Heath-Jarrow-Morton (HJM) no-arbitrage condition (see [1]): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

1 1
, , , d , , , 0 ,l l l l

w
l l

t g t g t g u u t g t g t T g Hα σ σ σ λ
⋅

≥ ≥

= ⋅ + ⋅ ≤ ≤ ∈∑ ∑∫  

in ( )2 ; wL HΩ , where ( ) [ ]: 0, , 1l
wT H R lλ Ω× × → ≥  is a sequence of predictable (risk premium) processes  

and where ( ) ( ) ( ) ( ), ,l
lt g t g eσ σ=  for an orthonormal basis ( ) 1l l

e
≥

 of wH . 

Assuming that ( ),t xσ  is always invertible, we may rewrite (2.2) as 

( )0 0
ˆ, d ,

t
t t t s s sf S f S s f Wσ−= + ∫                              (2.3) 

where 

( ) ( )1

0
ˆ : , , d .

t
t t s sW W s f s f sσ α−= + ∫  

By the infinite-dimensional Girsanov theorem, which can be applied if e.g. the Novikov condition  

( ) ( )
21

0

1exp , , d
2 w

T
s s

H
E s f s f sσ α−   < ∞    

∫  holds, there exists a measure ν , equivalent to µ , under which  

ˆ
tW  is a cylindrical Wiener process. 
In the following, we shall also require that ( ) ( ),s f sσ σ=  for all , 0 .wf H s T∈ ≤ ≤  Thus, in this case the 

centered forward curve , 0tf t T≤ ≤  given by  

0t̂ t tf f S f= −  

becomes a centered Gaussian random field in time t and time-to-maturity X ⋅  under r. 
We shall also assume the following condition. There exists a unique strong solution , 0tX t T≤ ≤  to the SDE 

( ) 0d , d d , , 0 .t t t wX t X t W X x H t Tα= + = ∈ ≤ ≤  

The latter condition in connection with the properties of the left shift operator tS  and the diffusion 
coefficient σ  actually ascertains that the filtrations generated by W⋅  and f̂⋅  coincide. Using the above con- 
ditions, we can now introduce the concept of stochastic duration as a Malliavin derivative with respect to the 
centered forward curve t̂f . 

2.1. Malliavin Calculus for Gaussian Fields 
We now define the Skorohod integral and Malliavin derivative with respect to the Gaussian process tX , 
according to [10]. Let { }, 0tX t T≤ ≤  be a centered Gaussian process on ( ), ,µΩ  , let ( ),C t s  be the 
covariance function of X ⋅ , and let ( )K C  be the reproducing kernel Hilbert space (RKHS) of C. Moreover, let 

( )H X  be the closed linear subspace of ( )2 , ,L PΩ   spanned by { }, 0tX t T≤ ≤ . If ( )h K C∈ , there is a 
unique element ( )hY H X∈  such that 

( ) [ ].t hh t E X Y=  

Definition 2.4. (First-order stochastic integral) ( )1 .hI h Y=   
1I  is an isometry of ( )K C  into ( )2 , ,L µΩ  , and is called the stochastic integral of order one. In order to 

define higher-order integrals, let { }|e Jα α ∈  be an orthonormal basis in ( )K C . Because of isometry it is 
sufficient to define 1pI +  for functions of the form 
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( ) ( ) ( )1 11 1 1 1, , , .
pp p ph t t t e t e tα α ++ +=   

Definition 2.5. (Higher-order stochastic integral) Let 1, , nu u  be the 1n p≤ +  distinct elements of  

{ }1 1
, ,

p
e eα α +
 . For 1 i n≤ ≤ , let ip  be the number of times the element iu  was repeated in the sequence, and  

define 

( ) ( )( )1 11 ,
i

n
p p iiI h H I u+ =

=∏  

where pH  is the pth Hermite polynomial.  
For every integer 0p ≥ , let pK  be the symmetric tensor product of p copies of K. 
Lemma 2.6. ( ) ( )2

0, , .p
ppL I Kµ ∞

=Ω =⊕    

Proof. This is Lemma 2.4 in [10].  
Theorem 2.7. (Chaos decomposition) It follows that every random variable V in this 2L -space may be 

expressed as an infinite sum 

( )
0

,p p
p

V I g
∞

=

= ∑  

where p
pg K∈  . This representation is known as the chaos decomposition of V with respect to f.  

Now let V be a process in ( )2 ,L KΩ . For every p, let ( ),pg ⋅ ⋅  now be a function in ( )1pK⊗ + , such that for 
every t, ( ) ( ): , ,t p

p pg g t K⋅ = ⋅ ∈   and such that for all t ( pg  is symmetric in the first p variables), 

( )
0

.t
t p p

p
V I g

∞

=

= ∑  

Definition 2.8. (Skorohod integral) If ( ) ( )1 10 0p p p pp pI g I g∞ ∞
+ += =

=∑ ∑  converges in 2L , this sum is defined as  

the Skorohod integral of V with respect to the Gaussian process f and is denoted by ( )fI V .  
Lemma 2.9. ( ) ( )2fI V L∈ Ω  if and only if 

( ) 

( )1

2

1
1 ! ,

pp
Kp

p f
+

∞

=

+ < ∞∑


 

and in this case 

( ) 

( ) ( )
( )21

2 2

1
1 ! .

p
f

p LKp
p f I V

+

∞

Ω
=

+ =∑


 

Proof. This is Lemma 3.3 of [10].  
Definition 2.10. (Malliavin derivative) For an element ( )0 p ppG I g∞

=
= ∑  of ( )2L Ω , if 

2

0
! ,pp K

p
p p g

∞

=

⋅ < ∞∑


 

the process DG⋅  given by ( )( )10 ,t p ppD G pI g t∞
−=

= ⋅∑  is in ( )2 ,L KΩ  and we have (see [10]): 

( )( )
2

2
1

0 0
, ! .pp p p K

p pK

E pI g t p p g
∞ ∞

−
= =

⋅ = ⋅∑ ∑


 

In this case we say that G is Malliavin differentiable, and we call tD G  the Malliavin derivative of G, with 
respect to the Gaussian process , 0tX t T≤ ≤ . 

Definition 2.11. (Stochastic duration) Let G be a square integrable functional of the centered forward curve 
f̂  with respect to the risk-neutral measure ν . Assume that G is Malliavin differentiable with respect to f̂ . 

Then the stochastic duration of G is the random field GD  given by  

( )2 , , ,G
TDG L Kν⋅ ⋅= ∈ ΩD   
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Remark 2.12. The Malliavin derivative D can indeed be regarded as a sensitivity measure with respect to the 
stochastic fluctuations of the (centered) forward curve. The latter, however, is a consequence of the relationship  
between the Malliavin derivative and stochastic Gateaux K-derivative (see [10]): If ( ) ( )2ˆG G f L⋅= ∈ Ω  and if 

( ) ( )ˆ ˆG f G fκ⋅ ⋅+ ⋅ −


                                 (2.4) 

converges in ( )2L ν  as 0  for Kκ ∈ , then DG exists and the limit in (2.4) coincides with ( ), KDG κ⋅ . 
The probability measures µ  and ν  are equivalent. Therefore we may interpret DG for a portfolio value G at 
time T as a sensitivity measure with respect to the stochastic non-linear shifts of the (centered) yield surface.  

We may also be interested to derive an estimate of the instantaneous movement of the portfolio value as a 
“directional derivative” given by the scalar product 

, .KDG η  

By substituting different curves for η  we may get an overview of the effects on the portfolio of the various 
possible outcomes of the short-term movements of interest rates at different parts of the maturity spectrum. This 
method exhibits a radically increased degree of flexibility as compared to the classical method of Hull and 
White, where one was restricted to the study of flat or piecewise-flat interest rates, and the dependence on 
time-to-maturity was not taken into account. In the next Section, we will describe a method of estimating the 
stochastic duration from market data, and then extend to our setting the method of Hull and White [8] of 
constructing immunization strategies, which facilitate the reduction of interest-rate related risk by dynamically 
rebalancing the portfolio with instruments which counteract the interest-rate sensitivity measured by duration. 

3. Computation of Stochastic Duration and Immunization Strategies 
3.1. Implementation Scheme for the Stochastic Duration 
Consider now a square integrable adapted (portfolio) process , 0G Tτ τ≤ ≤ . Then it follows from Theorem 2.7 
that 

( )
0

, 0.kG I f ττ κ
κ

κ
≥

= ≥∑                                 (3.1) 

In the next step, we aim at approximating the chaos decomposition in (3.1) by the first homogeneous chaos 
( )1 1I gτ , that is we assume that 

( ) ( )0 0 1 1 ,G I f I fτ τ
τ = +  

where ( )0 0I gτ  is a real number. On the other hand, it follows from the definition of stochastic integrals with 
respect to f̂⋅  and the properties of the left shift operator that 

( ) ( )1 1 0
ˆds s sI f g S s W

ττ τ
τ σ−= ∫    

for continuous linear functionals , 0sg sτ τ≤ ≤  on wH  with 

( ) ( ) ( )1 1 1
ˆ, ,f t x E I f f t xτ τ

ν
 = ⋅   

for all ,t x . Hence, using Girsanov’s theorem, we get that 

( ) ( ) ( )0 0 0 0
d ds s s s s sG I f g S s g S s W

τ ττ τ τ
τ τ τα σ− −= + +∫ ∫    

under the original probability measure µ . Denote by , 1ke k ≥  an orthonormal basis of wH . Then, we finally 
approximate 

( )
0 0

1
d d k

s s s s s s
k

g S W g S s W
τ ττ τ

τ τ σ− −
≥

= ∑∫ ∫  
 

by  

( ) 1
0

d ,s s sg S s W
τ τ

τ σ−∫    
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where kW⋅  denotes the k-the component of W. So our numerical estimation scheme will rely on the stochastic 
process 

( ) ( ) ( )0 0 0 0
d d ,s s s s s sZ I f g S s g S s B

τ ττ τ τ
τ τ τα σ− −= + +∫ ∫    

where , 0tB t T≤ ≤  is a one-dimensional Wiener process. 
On the other hand, by using the HJM-condition, we may similarly approximate the drift coefficient ( ),t gα  

by 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
1 1 10

d ,t e t e u u t e t gσ σ σ λ
⋅

⋅ + ⋅∫  

for 0 , wt T g H≤ ≤ ∈ . 
In the following, let us assume that ( ) ( ) ( ) ( )1

1eσ σ⋅ = ⋅  is the volatility function of the one-dimensional 
Vasicek model for short rates, that is 

( ) ( ) ( )1 e ,a xs e xσ σ − ⋅= ⋅  

where 0a ≥  is the mean reversion and 0σ >  the volatility. 
Applying the Malliavin operator to the approximating process ( )Z τ  yields a first-order approximation of 

the duration 

.ZGD D gτ τ
⋅≈ =  

The task is then to estimate the functional gτ . We take as input the observed portfolio values 1, , nξ ξ  at a 
series of time points 1, , nτ τ , which correspond to ( ) ( )1 , , nZ Zτ τ

 in our model. 
To allow numerical implementation, we shall assume that ( )0 0I gττ   is absolutely continuous. Further, we  

shall introduce a discretized version of the functional gτ : 

( ) ( ) ( )
1

,
m

s i i
i

g a b sτ τ
=

⋅ = ⋅∑                                 (3.2) 

where ( )ia ⋅  is absolutely continuous and ( ),ib ⋅ ⋅  is given by 

( ) ( ) ( )
1

,
j

K

i ij x
j

b s sβ δ
=

⋅ = ⋅∑  

for bounded and measurable functions ijβ . Recall that :x wHδ →   is the evaluation functional for 0x > . 
Furthermore, we approximate ijβ  and the weak derivative of ia  by step functions: 

 ( ) ( ]( )
1,

2
,

l l

M

ij ijl t t
l

s sβ β
−

=

= ∑
 

( ) ( )
0

d ,
t

i ia t h s s= ∫  

 ( ) ( ]( )
1,

2
.

l l

M

i il t t
l

h s sγ
−

=

= ∑
 

Hence, using our assumptions, we see that 

( ) ( ) ( ) ( ) ( ) ( )1
1 1 1

e e ,j
m K m

axa
s s i ij i i

i j i
g S s e a s a sτ τ

τ σ σ τ β τ β−−
−

= = =

= ⋅ =∑ ∑ ∑ 


               (3.3) 

where  

( ) ( ): e a
i ia a ττ σ τ −= ⋅  

and 

( ) ( ) ( )
1

: e .j
K a s x

i ij
j

s sβ β −

=

= ∑  
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We now need to derive some quantity from the model process Z which takes scalar values and may be 
compared to observable market data. A natural candidate is the quadratic variation 

[ ], , 0 .Z Z T
τ

τ≤ ≤  

By applying integration by parts in connection with (3.3) to 

( ) ( ) ( ) ( )10 0
1

d d ,
m

s s s i i s
i

g S s e B a s s B
τ ττ

τ σ β−
=

= ∑∫ ∫ 
   

we get that 

( )
0

d ,sZ A b s B
τ

τ τ= + ∫  

where 

( ) ( ) ( )
1

:
m

i i
i

b s a s sβ
=

= ∑ 

  

and where , 0A Tτ τ≤ ≤  is a continuous adapted bounded variation process. So it follows that 

[ ] ( )2
0

, d .Z Z b s s
τ

τ
= ∫                                  (3.4) 

The observation Yτ  from market data, which corresponds to [ ],Z Z
τ , is approximately 

( )2
1

1

n

l l
l

Yτ ξ ξ −
=

= −∑  

for 1 2 nτ τ τ τ< < < ≤ . 
However, in practice observations of , 0Y Tτ τ≤ ≤  are noisy, i.e. we have 

[ ] ( ) ( )( )0
, , , d , 0 ,Y Y

ijl ilY Z Z B h s s B T
τ

τ τ ττ
γ β γ γ τ= + = + ≤ ≤∫                 (3.5) 

where , 0YB Tτ τ≤ ≤  is a one-dimensional Wiener process independent of , 0B Tτ⋅ ≤ ≤ , γ ∈  and 

( ) ( )( ) ( )2, , : .ijl ilh s b sβ γ =                               (3.6) 

In order to estimate the parameters ijlβ  and ilγ  from market data , 0Y Tτ τ≤ ≤ , we employ nonlinear 
filtering theory. See e.g: [11] and the references contained therein for more information on nonlinear filtering 
theory. 

In applying nonlinear filtering techniques, we assume that the observation process is given by (3.5) and the 
observation function by (3.6). Set 1γ =  for convenience. 

Further, suppose that the signal process , 0X Tτ τ≤ ≤  has components satisfies the SDE 

d 0 1, , , 1, , , 2, ,
d

d 0 1, , , 2, , .

ijl

il

X i m j K l M
X

X i m l M
τ

τ
τ

 = = = == 
= = =

  

 

 

where 0X  is independent of , YB B⋅ ⋅ . 
We may here for convenience assume that 0X  is a vector of i.i.d variables which are e.g. uniformly or 

normally distributed. In what follows we want to determine the optimal filter 

( ) | , 0 ,YE f X Tτ τ τ  ≤ ≤   

where { }
0

Y
t t T≤ ≤
  is the filtration generated by the observation process Y⋅ , and where : df →  ,  

( ) ( )1 1d m K M= ⋅ + ⋅ −  is a Borel measurable function. 
It follows from the Kallianpur-Striebel formula (see e.g. [11]) that 

( )
( ) |

| ,
|

Y
QY

Y
Q

E M f X
E f X

E M
τ τ τ

τ τ
τ τ

    =    





                          (3.7) 
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where 

( ) ( )2
0 0

1exp , d , d ,0 ,
2s s sM h s X Y h s X s T

τ τ
τ τ = − ≤ ≤ 

 ∫ ∫  

and where Y⋅  is a Wiener process independent of X ⋅  under a Girsanov transform Q. 
Since Y⋅  is independent of X ⋅  under Q we get the representation 

( ) ( )| a.e.,X
Y

Q P
E M f X E M f Xτ τ τ τ τ   =                           (3.8) 

where XP  denotes a probability measure with respect to X ⋅  on a separate sample space. 
The latter however enables us to use Monte Carlo techniques, i.e. the strong law of large numbers to 

approximate (3.8) by 

( )
1

1 R
r r

r
M f X

R τ τ
=
∑                                     (3.9) 

for “large” R, where , 1, ,rX r R⋅ = 
 are i.i.d. copies of X ⋅  and where 

( ) ( )2
0 0

1: exp , d , d ,0 .
2

r r r
s s sM h s X Y h s X s T

τ τ
τ τ = − ≤ ≤ 

 ∫ ∫  

By choosing projections for f in (3.9) in connection with (3.7) we finally obtain filter estimates for the 
parameters ,ijl ilβ γ . 

We implemented the method in MatLab and as an illustration we reproduce in Figure 1 a plot of the resulting 
duration surface from a simulation example with fictional market data and 0.01, 0.4aσ = = . 

3.2. Delta Hedge 
Using our implementation scheme for the stochastic duration, we finally want to discuss portfolio immunzation 
strategies against interest rate risk based on the so-called delta-hedge, which was studied in [8] in the case of 
piecewise flat interest rates. Our aim is to generalize the concept of a delta hedge for piecewise flat interest rates 
to the case of stochastic yield surfaces based on the above implementation scheme. To this end, consider a bond 
portfolio with value Gτ  at time point τ . We now want to hedge against the fluctuations of the yield surface 
by constructing a delta hedge by means of interest rate derivatives (e.g. swaps, caps, bond options, …) with values  

 

 
Figure 1. A plot of the duration as a function of , sτ  for 0.01, 0.4aσ = = .                            
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, 1, , .iH i mτ = 
 The delta hedge corresponds to the adapted stochastic process ( )1 , , , 0mb b b Tτ τ

τ τ= ≤ ≤  such 
that 

, ,
1

m

t x t x k k
k

D G D b Hτ τ

=

 =  
 
∑  

for all τ . 
For convenience, let us now assume that , 0b Tτ τ≤ ≤  is a deterministic process. Then we see that 

, ,
1

.
m

t x k t x k
k

D G b D Hτ τ

=

= ∑                                 (3.10) 

Since in general there is no strategy , 0b Tτ τ≤ ≤  satisfying (3.10), one may resort to the following minimization 
problem: 

1 , , 1
min .

m

m

k k
b b k K

E DG b DH
τ τ

τ τ
τ

=

 
− 

 
∑



 

Now, using our implementation scheme, we can regard , , 1, ,kDG DH k mτ
τ = 

 as deterministic functions 
and obtain the following optimization problem 

1 , , 1
min .

m

m

k k
b b k K

DG b DH
τ τ

τ τ
τ

=

−∑


 

Here one may choose the optimization constraint given by 

, ,
1

m

t x k t x k
k

D G b D Hτ τ
τ

=

− ≤ − ≤∑   

for all ,t x  and some 0> . 

4. Conclusion 
In the paper [4] where the concept of duration under discussion was originally introduced, the emphasis was on 
the theoretical construction which did not straightforwardly lead to numerical results. We have here adapted the 
model to yield a computationally tractable numerical algorithm. This shows that stochastic duration is a 
potentially useful tool in practical risk analysis. Moreover we indicate how the method can be employed to 
immunization of portfolios against interest rate risk, which lends further support to this conclusion. More work 
is needed on the implementation of the method on realistic market data, and it would be interesting to extend the 
method to incorporate the effects of higher-order terms in the chaos expansion, especially the second-order term 
which corresponds to the concept of convexity. 
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