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Abstract 
In this paper, we have fitted two heavy tailed distributions viz the Weibull distribution and the 
Burr XII distribution to a set of Motor insurance claim data. As it is known, the probability of ruin 
is obtained as a solution to an integro differential equation, general solution of which leads to 
what is known as the Pollaczek-Khinchin Formula for the probability of ultimate ruin. In case, the 
claim severity is distributed as the above two mentioned distributions, and Pollaczek-Khinchin 
formula cannot be used to evaluate the probability of ruin through inversion of their Laplace 
transform since the Laplace Transforms themselves don’t have closed form expression. However, 
an approximation to the probability of ultimate ruin in such cases can be obtained by the Pollac-
zek-Khinchin formula through simulation and one crucial step in this simulation is to simulate 
from the corresponding Equilibrium distribution of the claim severity distribution. The paper lays 
down methodologies to simulate from the Equilibrium distribution of Burr XII distribution and 
Weibull distribution and has used them to obtain an approximation to the probability of ultimate 
ruin through Pollaczek-Khinchin formula by Monte Carlo simulation. An attempt has also been 
made to obtain numerical values to the probability function for the number of claims until ruin in 
case of zero initial surplus under these claim severity distributions and this in turn necessitates 
the computation of the convolutions of these distributions. The paper makes a preliminary effort 
to address this issue. All the computations are done under the assumption of the Classical Risk 
Model. 
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1. Introduction 
Modeling of the uncertainty prevalent in the domain of insurance in terms of the number of claims arriving in a 
particular period and the size of the claim severity has been a major research goal in Actuarial science since 
decades. In this paper, we are concerned with the modeling of the claim severity by the use of two heavy tailed 
distributions and subsequently for these distributions, we have evaluated the probability of ultimate ruin through 
Monte Carlo simulation by the use of the Pollachez-Khinchin formula.  

In a general insurance portfolio, two quantities of interest characterizing the uncertainty involved in the un-
derlying Risk scenario are modeled in terms of random variables, specifically, a counting distribution is used to 
model the claim arrival pattern whereas a continuous distribution is used to model the claim severity. This is the 
basic essence of loss modeling in the domain of general insurance, which constitutes an important ingredient of 
Risk modeling in this aspect. The proper modeling of these two components determine the base for the compu-
tation of the some of the other related actuarial quantities of interest like the probability of ultimate ruin, pure 
premiums, reserves to be maintained etc.  

The distribution fitting which is synonymous to loss modeling in insurance implies choosing an appropriate 
model to describe the claim arrival pattern and the claim severity. Indispensable to the theme of distribution fit-
ting is the task of estimating the unknown parameters involved in the model and then testing the goodness of fit 
of the fitted model in describing the observed trend. Some good references for the subject of fitting distributions 
to losses are [1] and [2]. One of the typical characteristics of the data (claim amounts) arising in general insur-
ance is the existence of positive skewness which renders models with high degree of skewness such as Lognor-
mal, Pareto, Gamma, Weibull and Burr potentiality as suitable models for loss modeling. However, there is still 
no check point that validates the appropriateness of these models as specific to different portfolios of claims [3]. 

The data used in this paper is extracted from a motor insurance portfolio where existence of a high positive 
skewness is a typical characteristic [4] and this renders some justifications to the use of these heavy tailed dis-
tributions namely Weibul and Burr XII for modeling this data. 

The three-parameter Burr XII distribution was originally used in the analysis of lifetime data and is becoming 
increasingly useful in the context of actuarial science [5] whereas Weibull distribution is a potential model in 
Survival Analysis and Reliability Engineering and has a vast domain of other applications [6] [7]. The evidence 
for the use of Weibull distribution in Actuarial statistics is found in [1] [8]. In [8], the Weibull distribution was 
fitted to a small data set of hurricane losses whereas [9] have used it for modeling two illustrious set of pub-
lished data namely the Danish Fire Insurance data and Property claim services data. Although, there can be other 
suitable models for loss modeling in General Insurance, we are primarily concerned with the Burr XII and Wei-
bull distributions as loss models for our claim data and have concentrated on the computation of actuarial quan-
tities like the probability of ultimate ruin through simulation and the probability function for the number of 
claims until ruin. Literature [2] [10] [11] reveals that no closed form expression is available for the determina-
tion of these quantities in case of Burr XII or Weibull distributed claim amounts and hence, we resort to simula-
tion or other numerical techniques to compute them.  

In applying the Pollazek-Khinchin formula for the computation of the probability of ultimate ruin, when the 
claim severity is distributed as the Burr XII or Weibull, we need to generate random observations from their 
equilibrium distributions and hence, we have derived methodologies to simulate observations from the equili-
brium distributions of the Weibull and Burr XII. We have also tried assessing the consistency of these simula-
tion schemes by comparison of the results generated by them with some standard results. The importance of the 
probability function of the number of claims until ruin is justified from the fact that it renders some insight into 
the potentiality of a claim to cause ruin. The computation of this function necessitates the convolution of these 
distributions. Hence, we have found some of the lower order convolution of the Burr XII and the Weibull dis-
tributions and have used them as input in computing the probability function of the number of claims until ruin 
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for these distributions. 
Much of the literature on ruin theory is concentrated on the Classical Risk Theory. Classical Risk model is 

one of the models to study the evolution of the Surplus process of an insurance company continuously over time. 
Classical Risk model provides the basic frame work in which the probability of ultimate ruin is defined and so 
also, constitutes the assumption under which, an expression for the probability function for the number of claims 
until ruin is derived.  

Briefly our objectives for this paper are: 
1) To fit the Burr XII distribution to a set of insurance data through an algorithm mentioned in [12] including 

the fit of a Weibull distribution as an intermediate step of the algorithm and to assess the goodness of fit of these 
distributions through some statistics based on the empirical distribution functions (EDF statistics). 

2) To simulate from the Equilibrium distributions of the Burr XII and Weibull distributions and to use them in 
obtaining an approximation to the probability of ultimate ruin from the Pollaczek Khinchin formula through si-
mulation. 

3) To obtain the convolution of Burr XII distribution and the Weibull distribution up to the fourth order and to 
use them in obtaining the probability function for the number of claims until ruin. 

The first part of the paper deals with the Watkins (1999) algorithm for obtaining the MLE for the parameters 
of the Burr XII distribution, which also leads to the estimation of the parameters of the Weibull distribution. 
This is followed by testing the goodness of fit of these distributions through some statistics based on the empiri-
cal distribution function (EDF). The second part deals with the simulation from the equilibrium distributions of 
Burr XII and Weibull distribution and with the evaluation of the probability of ultimate ruin through Pollac-
zek-Khinchin formula. This is being followed by the section on the convolution of the Burr XII distribution and 
Weibull distribution and their application in the evaluation of the probability function for the number of claims 
until ruin. The concluding section deals with results and discussions. 

However, it needs to be mentioned that in case of the Burr XII distribution, in computing the interested actu-
arial quantities like the probability of ultimate ruin and the probability function for the number of claims until 
ruin, instead of the fitted Burr XII distribution, use has been made of an illustrative Burr XII distribution since 
the fitted Burr XII distribution led to some complexities in determining these quantities. The illustrative Burr 
XII distribution that is being used is the one which was fitted to the Property Claim Services (PCS) dataset cov-
ering losses resulting from natural catastrophic events in USA that occurred between 1990 and 1999 [9]. 

2. Methodology 
2.1. Fitting of the Weibull Distribution 
The cumulative distribution function for the two parameter Weibull distribution is given by  

( ); , 1 expw
xF x

β

β θ
θ

  = − −     
                           (2.1.1) 

in which the positive parameters ,β θ  are respectively the shape and the scale parameters. 
And the corresponding probability density function is given by 

( )
1

exp , 0, 0, 0
xxf x x

ββ
θβ β θ

θ θ

 − − 
  = ≥ > > 

 
.                    (2.1.2) 

If we consider a sample of “m” items 1 2, , , md d d  from the Weibull distribution whose pdf is given by 
(2.1.2), the log likelihood function is given by  

( ) ( )0log log 1w el m m S Sββ β θ β θ β−= − + − −                     (2.1.3) 

where 
1
log

m

e r
r

S d
=

= ∑
 

( )0
1

.
m

r
r

S d ββ
=

= ∑  
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We have used the Multi Parameter Newton Raphson Method for estimating the parameters of the Weibull 
distribution. In the appendix: (1) of [13] we have given a very brief introduction to the Multi Parameter Newton 
Raphson method and have obtained the gradient and hessian matrices for the Weibull distribution which are re-
quired in executing the Multi Parameter Newton Raphson method for estimating the parameters of this distribu-
tion. 

2.2. Fitting of the Burr Distribution 
The pdf of the three parameter Burr XII distribution is given 

by ( ) ( )

1

1 , 0, 0, 0

1

y

f y y
y

τ

ατ

φατ α φ
φ

φ

−

+

 
 
 = ≥ > >

   +  
   

.                                         (2.2.1) 

The algorithm for finding the maximum likelihood estimators (MLE) for the parameters of the Burr XII dis-
tribution is taken from [12] and this algorithm exploits the link between the three parameter Burr XII distribu-
tion and the two parameter Weibull distribution with the latter emerging as the limiting case of the former 

The basic two parameter Burr XII distribution with shape parameters α  and τ  has the cumulative distri-
bution function 

( )1 1 , 0x x
ατ −

− + ≥ .                                (2.2.2) 

An scale parameter φ  is introduced into (2.2.2) by substituting , 0y xφ φ= > , thereby giving the cdf of y as  

( ); , , 1 1 , 0B
yF y y

ατ

α τ φ
φ

−
   = − + ≥  

   
.                       (2.2.3) 

Letting φ →∞  with τα φ  remaining finite, and comparing with the cdf of Weibull given in Equation 
(2.1.1), it is seen that the Burr XII distribution emerges as the limiting distribution for the Weibull distribution  

with shape parameter τ  and scale parameter 1 .τ

φ
α

 

For a sample of “m” items 1 2, , , md d d  from the Burr XII distribution, the log likelihood is given by 

( ) ( ) ( ) ( )*log log 1 1 ,d
B el m m S tατ τ φ τ α τ φ= + + − − +                 (2.2.4) 

where 
1
log

m

e r
r

S d
=

= ∑  and ( )*
1

, log 1 .
m

d r

r

dt
τ

τ φ
φ=

   = +  
   

∑  

The main steps of the algorithm are:  
Step 1: First, we find the maximum likelihood of the parameters ,β θ  appearing in (2.1.2) using the Multi 

parameter Newton Raphson Iterative method yielding the two values β  and θ . In our case, in estimating the 
MLE for the parameters of the Weibull in the former section, they have already been obtained. 

Step 2 Then, we rescale the original data by θ  so that in implementing the Newton Raphson for determining  

the MLEs of the parameters of the Burr XII distribution, the utilized values are the rescaled values .id
θ

 

The argument in [12] leads us to conclude that rescaling the data introduces a large amount of stability into 
the algorithm. After the parameter estimates have been obtained, the MLE for the Burr XII distribution for the 
original observations are obtained by undoing the effect of scaling on the estimated values of the parameters. 

In the appendix: (1) of [13], we have obtained the Gradient and the Hessian Matrices for estimating the para-
meters of the Burr XII distribution through the algorithm stated in [12]. 

2.3. Classical Risk Model 

Let ( ){ } 0t
U t

≥
 denote the surplus process of an insurer as 



D. C. Nath, J. Das 
 

 
382 

( ) ( )U t u ct S t= + −                                  (2.3.1) 

where 0u ≥  is the initial surplus, c is the rate of premium income per unit time and ( ){ } 0t
S t

≥
 is the aggregate  

claim process and we have ( ) ( )
1

M t
iiS t X

=
= ∑  where ( ){ } 0t

M t
≥

 is a homogeneous Poisson process with para-

meter λ , iX  denotes the amount of the ith claim and { } 1i i
X ∞

=
 is a sequence of iid random variables with dis-

tribution function F such that ( )0 0F =  and probability density function f. We denote ( )1
kE X  by kp . Also 

we have ( ) 11c pθ λ= + , where θ  is the security loading factor. 
Let uT  denote the time to ruin from initial surplus u so that 

( ){ }inf : 0uT t U t= <  and define ( ) { } ( )Pr 1uu T uχΨ = < ∞ = −  and ( ) ( ), Pr uu t T tΨ = ≤ . ( )uΨ  is 
known as the ultimate ruin probability whereas ( ),u tΨ  is the finite time ruin probability. For a detailed dis-
cussion on the Classical Risk model and the probability of ruin refer to [2] [10] [14] [15]. 

Classical Risk model, despite the fact that it is considered to be the basis of many models in insurance ma-
thematics involves many simplication criterions which make it deviate from the real life situations. For example, 
the assumptions like the independence between the claim severity and the claim number distributions, the inten-
sity parameter λ  being independent of time etc are not very consistent with the real scenario observed in the 
insurance companies. Ruin, in some sense corresponds to the insolvency of an insurance company and hence, 
the probability of ruin is a very useful tool in long range planning for the use of the insurer’s funds. 

2.4. Pollaczek-Khinchin Formula for the Probability of Ultimate Ruin 
As given in [16], the probability of ultimate ruin satisfies the following integro differential equation 

( ) ( ) ( ) ( ) ( ){ }
0

d 1 , 0
u

u u u x F x F u u
c c c
λ λ λψ ψ ψ′ = − − − − ≥∫ .                 (2.4.1) 

If L is the maximal aggregate loss random variable, then it can be shown that  

1 2 KL Y Y Y= + + +                                    (2.4.2) 

where , 1, 2, ,jY j K=   is the amount of the thj  drop of the Surplus process and because the Surplus Process 
has stationary and independent increments , { }1 2, ,Y Y   is a sequence of independent and identically distributed 
random variables each with density 

( ) ( )
1

1
e

F y
f y

p
−

= .                                   (2.4.3) 

And the number of drops K is geometrically distributed with the parameter ( ) 10
1

ψ
θ

=
+

 (refer to [1] [11]  

[17]). 
It is evident that ruin never occurs or that the company survives if starting with an initial surplus of u, the 

maximal aggregate loss random variable L never exceeds u i.e. the probability of ultimate survival is:  
( ) ( ) ( )1 , 0.u u P L u uϕ ψ= − = ≤ ≥  

Let ( )0 0, if 0
1, if 0e

y
F y

y
∗ <

=  ≥
 and ( ) { }*

1 2
k

e KF y P Y Y Y y= + + + ≤  is the cumulative distribution function  

of the K-fold convolution of the distribution of Y with itself.  
Then the general solution to Equation (2.4.1) is given by (see [1]) 

( ) ( )*

1

1 , 0
1 1

K
K

e
K

u S u uθψ
θ θ

∞

=

 = ≥ + + 
∑ , where ( ) ( )* *1K K

e eS y F y= − .             (2.4.4) 

Equation (2.4.4) is known as the Pollaczek-Khinchin formula for the Probability of ultimate ruin. 
An explicit expression for the probability of ultimate ruin can be derived through the use of the Pollac-

zek-Khinchin formula for those claim amount distributions whose Laplace transforms have closed form expres-
sions [18] [19]. However, in case of heavy tailed distributions like Weibull, Burr, Log Normal etc, their Laplace 
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transform don’t have a closed form expression and hence, this procedure of obtaining an explicit expression for 
the probability of ultimate ruin through inversion of the Laplace transform is not applicable. For such cases, the 
use of the Pollaczek Khinchin formula to obtain an approximation to the Probability of ultimate ruin can be 
made through Monte Carlo Simulation. 

In the subsequent section, we give a brief description to the computation of the approximation to the probabil-
ity of ultimate ruin from the Pollaczek-Khinchin formula through Monte Carlo simulation. However, one of the 
main objectives of this paper is to lay down a methodology to simulate observations from the Equilibrium dis-
tributions of Burr XII and Weibull and to use these observations to obtain an approximation to the Probability of 
Ultimate Ruin from the Pollaczek-Khinchin formula. In fact, the simulation from the Equilibrium distribution in 
case the claim severity is heavy tailed, constitutes one of the main challenges in the application of the above si-
mulation procedure to obtain an approximation to the Probability of ultimate ruin. 

In [20], three methods to simulate the Probability of Ultimate ruin are presented and their asymptotic efficien-
cies being investigated. What they referred to as Algorithm I, is a crude Monte Carlo method and we shall use 
this algorithm to obtain ( )uψ  through simulation. To simulate from the equilibrium distribution, they have 
used a conditional Monte Carlo method, which as indicated by them is not asymptotically efficient in the sense 
of a criterion mentioned in [21]. Further modifications to this algorithm is suggested in [20] but we restrain from 
elaborately discussing it and have concentrated on the rejection method to simulate observations from the Equi-
librium distributions of Burr XII and Weibull and thereafter, have used these simulated observations to obtained 
an approximation to ( )uψ  through algorithm I as mentioned in [20]. It needs to be mentioned that the basis of 
algorithm I is the Pollaczek-Khinchin formula discussed above. 

2.4.1. The Algorithm for Obtaining ψ(u) from Pollaczek-Khinchin Formula through Monte Carlo 
Simulation (Algorithm I of [20]) 

Step 1: Generate iK -Geometric 1 .
1

ρ
θ

 = + 
 

Step 2: Generate 1 2, , ,
i

i i i
KY Y Y  from the density ( )ef y  and let 

1 2 .
i i

i i i
K KS Y Y Y= + + +  

Step 3: If 
iKS u> , then set 1iz =  otherwise 0.iz =  

Step 4: Repeat steps 1 to 3n (the number of times the simulations is to be carried out) times. 
Step 5: Estimate E(z) by 

1

1ˆ .
n

i
i

z z
n =

= ∑  

An approximation to ( )uψ  is given by ˆ.z  

2.4.2. Rejection Method for Generating Observations from the Equilibrium Distributions of Burr  
XII and Weibull Distributions 

We have used the rejection method for generating random observations from the equilibrium distributions of 
Burr XII and Weibull distributions. As outlined in [22], the Rejection method is used when we have a known 
method to generate from a random variable having density ( )g x  and we need to generate from an another 
density ( )h x  such that the known method for ( )g x  can be manipulated to generate from the density ( )h x . 

The algorithm for generating observations from ( )h x  using the rejection method is as follows 
Step 1 Generate Y having density g. 
Step 2: Generate a random number U. 

Step 3: If ( )
( )

h Y
U

cg Y
≤ , set X Y= , otherwise return to step 1, 

where c is a constant such that  
( )
( )

h Y
c

g Y
≤  for all Y. 

Here X can be considered to be a random observation generated from the density ( ). .h  
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2.4.3. Equilibrium Distribution 
If ( )F x  is the cumulative distribution function of the claim severity distribution, then the Equilibrium distri-
bution associated with the claim severity has the probability density function given by 

( ) ( ){ }
1

1 1ef y F y
p

= − . As it can be seen from Equation (2.4.3), it is the density function of the thj  drop  

( 1, 2, ,j K=  ) and hence is a vital requirement for the evaluation of the probability of ruin through the Pollac-
zek-Khinchin formula ([23] and [24]). 

2.4.4. Generating from the Equilibrium Distribution of Burr XII 
The density of the Equilibrium distribution of Burr XII is given by 

( )

1

1 , 0, 0, 0 and

1

B
ef y y

yp
ατ

τ α φ

φ

= > > > > 0
   +  

   

                   (2.4.5) 

where 1
1 1, .p φ β α

τ τ τ
 = − 
 

 

The inverse transform algorithm (see [22]) can be used to generate observations from the Burr XII distribu-
tion. Hence, ( )g x  can be the density of the original Burr XII distribution. 

Therefore,  

( )

1

1 , 0, 0, 0 and 0

1

y

g y y
y

τ

ατ

φατ α τ φ
φ

φ

−

+

 
 
 = > > > >

   +  
   

.                   (2.4.6) 

Our goal is to generate observations from ( )B
ef y  and for this, we first need to generate observations from 

the Burr XII distribution and for generating random observations from Burr XII, we shall use the inverse trans-
form algorithm as described below. 

Let U be a random number lying between 0 and 1 and the cumulative distribution function of the Burr XII is 
given by 

( ) 11 .

1

F y
y

ατ

φ

= −
   +  

   

 

Hence the transform equation is  
11

1

U
y

ατ

φ

= −
   +  

   

.                               (2.4.7)

 
Solving for y gives  

1
1

1 1
1

y
U

τ
α

φ
 
  = −  −   

.                               (2.4.8) 

Now, we need to find c such that  

( )
( )

, 0
B

ef y
c y

g y
≤ ∀ >  i.e. ( )

( )
max .

B
ef y

c
g y

=  
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Let ( )
( ) ( )

B
ef y

w y
g y

=  (say). 

To maximize, ( )w y , we proceed as follows 

( )

( )

1

1

2

1

1

1 .

1 1

y

w y p
y

y y

w y p
y y

τ

τ

τ τ

τ τ

φατ
φ

φ

τ
φ φ φατ τ

φ φ

φ φ

−

−

 
 
 =

   +  
   

 
        −    ′⇒ = − 

          + +       
           

                    (2.4.9) 

Therefore, ( ) 0w y′ =  

⇒ Either 

2

0

1

y

y

τ

τ

φ

φ

−
 
 
  =

   +  
   

 or 1 0.

1

y

y

τ

τ

τ
φ φτ

φ

φ

 
    −  − = 

    +   
     

 

Now 

2

0

1

y

y

τ

τ

φ

φ

−
 
 
  =

   +  
   

 implies 0y =  which is not possible. 

Hence, 1 10
11

y y

yy

τ τ

ττ

τ
φ φ φτ τ

φ τ

φφ

 
        − −    − = ⇒ = 

       ++            

 

which gives 

1
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τ

τφ

τ

 − 
=  

  
 

.                                                            (2.4.10) 

It can be shown that for this value of y, ( ) 0.w y′′ <  

Therefore, ( )
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.                             (2.4.11) 

Therefore, 
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     

.                              (2.4.12) 
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Hence the algorithm for generating random observations from the Equilibrium distribution of Burr XII is 

Step 1: Generate a random number 1U  and set 

1
1

1

1 1 .
1

y
U

τ
α

φ
 
  = −  −   

 

Step 2: Generate a random number 2.U  

Step 3: If 2U M< , where 
( )
( )

1

1

1

1

B
e

k y
f y

M
cg y k y

τ τ

τ τ

φ φ

φ φ

−

−

     +    
     = =
     +    

     

, (k is given by Equation (2.4.11)) then set  

y x= , otherwise return to step 1. 
Here, x can be considered to be a random observation generated from the Equilibrium distribution of Burr 

XII. 
Repeat the above steps as many times as the number of random observations required from the Equilibrium 

distribution of the Burr XII distribution. 

2.4.5. Generating from the Equilibrium Distribution of Weibull 
The density of the Equilibrium distribution of Weibull is given by  

( )
1

1 e ,

0, 0, 0

y
W

ef y
p

y

β

θ

θ β

 − 
 =

> > >

                              (2.4.13) 

Here 1
11 .p θ
β

= +  

Here unlike the situation in Burr XII distribution, ( )g y  cannot be the density of the original Weibull distri-  

bution because in that case ( ) ( )
( )

W
ef y

w y
g y

=  cannot be maximized. Instead, we choose to take ( )g y  as the 

density of the exponential distribution with parameter 1
θ

. It may be noted that if in the pdf of the Weibull dis-  

tribution given in Equation (2.1.2), we choose the shape parameter β  as 1β = , we get the pdf of the expo-  

nential distribution with parameter 1
θ

 i.e. Weibull with 1β =  is exponential with parameter 1
θ

 (see [25]). 

If U is a random number, using inverse transform algorithm it can be shown that an observation generated  

from the exponential distribution with parameter 1
θ

 is given by 

( )log 1 .X Uθ= − −  

Next, we need to find c such that  

( )
( )

, 0
W

ef y
c y

g y
≤ ∀ >  

i.e. ( )
( )

max
W

ef y
c

g y
=  

let ( ) ( )
( )

1 e
y yW

ef y pw y
g y

β

θ θ

θ

   − +   
   = =  
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( )
1

1
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y yp yw y
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θ θ β
θθ

    −− +   
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.                       (2.4.14) 

Therefore, ( )
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0 1 0yw y
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−
 ′ = ⇒ − = 
 

, since 1
2 e 0
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θ θ
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   − +   
    ≠  

1
1y βθβ

 
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It can be shown that for this value of y, ( ) 0.w y′′ <  

Therefore, 
( )
( )

1
1 11max e

W
ef y pc
g y

β
β ββ β

θ

   
− −   

− −   − + = =  
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                                         (2.4.16)
 

and 

( )
( )

e
y yW K

ef y
cg y

β

θ θ
   − + −   
   = .                                              (2.4.17)

 
And  

1
1 1 .K

β
β ββ β

   
− −   − −   = − +

 Hence the algorithm for generating random observations from the Equilibrium distribution of Weibull is: 
Step 1: Generate a random number 1U  and set ( )1log 1 .Y Uθ= − −  

Step 2: Generate a random number 2U  and if 2 e
Y Y K

U
β

θ θ
   − + −   
   <  where K is given by Equation (2.4.17), set  

X Y= , Otherwise return to step 1. 
Here X can be considered as a random observation generated from the equilibrium distribution of Weibull and 

the process is repeated as many times as the number of random observations required to be generated from the 
equilibrium distribution. 

2.4.6. Assessing the Efficiencies of the Simulation Schemes 
In assessing the efficiency of our simulation scheme, we have adopted the following procedure. 

As given is Equation (2.4.2), 
If L is the maximal aggregate loss random variable, then it can be shown that  

1 2 KL Y Y Y= + + +  

where , 1, 2, ,jY j K=   is the amount of the thj  drop of the Surplus process and because the Surplus Process 
has stationary and independent increments, { }1 2, ,Y Y   is a sequence of independent and identically distributed 
random variables each with density 

( ) ( )
1

1
e

F y
f y

p
−

=  

And the number of drops K is geometrically distributed with the parameter ( ) 10 .
1

ψ
θ

=
+  

Also as shown in [16], 

( ) 2

12
pE L

pθ
= .                                 (2.4.18)

 
Using our simulation schemes, we have simulated 20 values of L for each of the cases, when the claim sever-

ity is Burr XII and when the claim severity is Weibull. The mean of L obtained through simulation is compared 
with ( )E L  to get an idea on the efficiency of the simulation scheme. 
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2.5. Convolution of the Burr XII Distribution and the Weibull Distributions 
In this section, we have attempted to carry out the convolution of the Burr XII distribution with itself and the 
convolution of the Weibull distribution with itself and illustrated their applications in computing the Probability 
function of the number of claims until ruin in case of zero initial surpluses. The convolution of the Burr XII dis-
tribution and the Weibull distribution can be carried out only numerically. It can be noted that evaluation of the 

thm  convolution would require ( )1 thm −  convolution as input, for example evaluation of the third convolution 
would require second convolution as input and the evaluation of the fourth convolution would require the third 
convolution as input and so on, resulting in a very complex situation, where one has to deal with a number of 
nested integrals.  

Here we have obtained the convolution of the Burr XII distribution and Weibull up to the fourth order in the 
form of integrals which were evaluated numerically using R program. 

2.5.1. Convolution of the Burr XII Distribution 
First convolution of the Burr distribution is its pdf itself. 

1) Second Convolution of the Burr Distribution 
The second convolution of the Burr XII distribution is the distribution of 

1 2Z Y Y= + , where 1Y  and 2Y  are both independent and each distributed as Burr XII. 
The pdf of Z is given by 

( ) ( ) ( ) ( )*2

0
1 1

2

1 1
0

d

d .

1 1

z
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z

f z f z f y f z y y

y z y

y
y z y

τ τ

α ατ τ

φ φατ
φ

φ φ

− −

+ +

= = −

   −
        =  

        −   + +      
         

∫

∫
                    (2.5.1) 

It is not possible to find an explicit expression for it and it has to be computed only numerically. 
2) Third Convolution of the Burr distribution 
The third convolution of the Burr XII distribution is the pdf of  

1 1 2 3Z Y Y Y= + + , where 1 2,Y Y  and 3Y  are all independent and each distributed as Burr XII 
The pdf of 1Z  is given by  

( ) ( ) ( ) ( ) ( ) ( )
1

*3 *2

0 0

d d
Z Z

Z Zf z f z f y f z y y f y f z y y= = − = −∫ ∫ .               (2.5.2) 

Similarly, the nth convolution of the Burr XII distribution is given by 

( ) ( ) ( ) ( )* 1*

0

d , 2,3,
Z

nnf z f y f z y y n−= − =∫  .                        (2.5.3) 

It is to be noted that in determining the thn  convolution, the ( )1 thn −  convolution is taken as input. 

2.5.2. Convolution of the Weibull Distribution 
First convolution of the Weibull is its pdf itself. 

1) Second Convolution of Weibull 
The second convolution of Weibull is the distribution of 

1 2Z Y Y= + , where 1Y  and 2Y  are both independent and each distributed as Weibull. 
The pdf of Z is given by 

( ) ( ) ( ) ( )*2

0

d
z

Zf z f z f y f z y y= = −∫ , where ( )f y  is the pdf of the Weibull distribution. 

2 1 1
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−   − − − −   
   −     =      

     ∫ .                         (2.5.4) 
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As in the case of Burr XII, this also can only be evaluated numerically. 
Likewise, the third and the higher order convolutions of Weibull can be defined and as in the case of Burr XII, 

they can be evaluated only numerically and as stated earlier, the thn  convolution would take the ( )1 thn −  
convolution as one of its inputs. 

Probability function for the number of claims until ruin 
The distribution of the number of claims until ruin has been studied by a number of authors over the year. 

Reference [26] derives the Laplace transformation of the probability function of the number of claims until ruin 
in the classical risk model. Reference [27] uses probabilistic arguments to find an expression for the density of 
the time to ruin in the classical Risk model and this approach is further adopted to obtain an expression for the 
joint density of the time to ruin and the number of claims until ruin in [28] He derived the marginal distribution 
of the number of claims until ruin from this joint density.  

In this paper, we have used the results derived in [28] to find the probability function of the number of claims 
until ruin in case of Burr XII distribution and Weibull distribution considering zero initial surplus for just 

2m = , 3m =  and 4m =  (i.e. the probability function for 2, 3 and 4 number of claims until ruin are com-
puted) ,our main intention being to illustrate the complexity involved in obtaining the convolution of these dis-
tributions. 

We state the results from [28] which are used to determine the probability of the number of claims until ruin. 
Probability function for the number of claims until ruin for zero initial surplus is given by 

( ) ( )1
0

0 e dtP F ct tλλ
∞

−= ∫  and                         (2.5.5) 

for 2,3, 4,m =   

( ) ( )
( ) ( ) ( )
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0 e d d
1 !

ctm m
mt

m
t yP f ct y F y y t

m ct
λ λ∞ −

−−= −
−∫ ∫                 (2.5.6) 

where ( )0mP  denotes the probability that m number of claims occurs until ruin when the initial surplus is zero. 
Here, we note that in obtaining ( )0mP , we require the convolution of the ( )1 thm −  order of the underlying 

claim severity distribution. 
Inserting 2,3m =  and 4, in Equation (2.5.6) 

we have ( ) ( ) ( )2 *
2

0 0

0 e d d
ct

t yP t f ct y F y y t
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λ λ
∞

−= −∫ ∫                                           (2.5.7) 

( ) ( ) ( )
3 2
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0 e d d
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t t yP f ct y F y y t

ct
λ λ∞

−= −∫ ∫                     (2.5.8) 

and 

( ) ( ) ( )
4 3

3*
4

0 0

0 e d d
3!

ct
t t yP f ct y F y y t

ct
λ λ∞

−= −∫ ∫ .                    (2.5.9)
 

λ  in the above calculations was assumed to have an illustrative value of 32.78. All of the computations and 
the Programming have been done using the R Software [29]. 

3. Results and Discussions 
Data: Our data is a set of 160,000 claim amounts spread over a period of 6 months i.e. April, 2013 to September, 
2013 from a General Insurance company from its motor insurance portfolio covering all its branches in India. 
No adjustment was made for inflation for the time horizon is narrow. It needs to be mentioned that the data is 
utilized more for the illustration of the various methodologies rather than for the extraction of any concrete 
meaningful conclusion.  

Summary statistics of the data as shown in Table 1 reveal the existence of high coefficient of skewness which 
suggests that a highly skewed right tailed distribution such as the Burr XII or Weibull can be a probable candi-
date for modeling this data. The histogram of the data plotted in Figure 1 and the empirical probability density 
function plotted in Figure 2 show the same trend. These figures too indicate a high degree of skewness towards  
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Table 1. Summary statistics for the insurance claim data.                                                                    

Sample 
size Mean Standard 

deviation Min 25% 
Quantile Median 75% 

Quantile Max Skewness Kurtosis 

160,000 1.78834e+04 22,805.81 523 6043.00 10,583.0 19,374.2 188,209 3.576628 18.94972 

 

 
Figure 1. Histogram of the observed claim data on motor insurance.                                               
 

 
Figure 2. Estimate of the probability density function for the claim data on motor insurance.                                               
 
the right, which in a way, justifies the use of these heavy tailed distributions for modeling our data. 

For finding the maximum likelihood estimators for the parameters of the Weibull distribution, the use has 
been made of the Multi parameter Newton Raphson method. Table 2 shows the estimates of the parameters thus 
obtained for the Weibull distribution. The assessment of the fit of the Weibull distribution was done through 
some graphical displays and then through the computation of some EDF statistics namely the Anderson Darling 
Statistics and the Cramer Von Mises Statistics [30]. The histogram for a set of data simulated from the Weibull 
distribution with the values of the parameters, as those of the estimated values (Figure 3) reveals that the Wei-
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bull distribution can be a potential model for our data and the same conclusion is validated from the QQ plot for 
the Weibull distribution (Figure 4) with the less than extreme deviation of the QQ plot from the straight line 
passing through the origin. However, the EDF statistics indicate the lack of fit since the values of these statistics 
for our data were found to be significantly high and their p-values computed through Monte Carlo simulation 
[22] were considerably low. In finding the MLE for the parameters of the Burr XII distribution, the use of the 
algorithm mentioned in [12] has been made. The log likelihood got maximized at the 30th iteration thereby giv-
ing the estimated values of the parameters as shown in Table 3. In case of the assessment for Burr XII fit, initial 
assessment was done through some graphical displays. Figure 5 shows the histogram for a set of data simulated 
from the Burr XII distribution with the values of the parameters as estimated using the algorithm. This histo-
gram has some resemblance with the histogram for the observed data as shown in Figure 1. The QQ plot forth 
Burr XII distribution displayed in Figure 6 indicates moderate deviation from the straight line passing through 
the origin. Table 3 shows the values of the Anderson Darling and the Cramer Von statistics for testing the 
goodness of fit for the Burr XII distribution along with their p-values obtained through the Monte-Carlo simula-
tion based on 100 iterations [22]. 

In making a comparative assessment of the fit as to judge which of the two distributions is providing a better 
fit to the data, values of the log-likelihood indicate that compared to Weibull, Burr XII is modeling the data in a 
better way since the log-likelihood for the sample in case of Burr XII is more than that for Weibull (Log-like- 
lihood for the sample under the fitted Weibull was found to be −1726599 and that for the fitted Burr XII was 
found to be −162475.8). 

Hence, we have little evidence to believe that either the Burr XII distribution or Weibull distribution ade-
quately describes the claim data. In the subsequent sections, we have used this fitted Weibull distribution mainly 
with the objective of depicting the computational methodologies associated with the Weibull distribution in ob-
taining some of the important Actuarial Quantities viz the Probability of ultimate ruin and probability function 
for the number of claims until ruin. However, the fitted Burr XII distribution was excluded from being used in 
the subsequent computational methodologies for the current limitations encountered in our computing schemes, 
with the occurrence of numerical error being indispensable, it leads to some absurd results which were difficult 
to interprete in the normal framework. Instead, an illustrative Burr XII distribution was used for displaying the 
complexity associated in determining these actuarial quantities in case of Burr XII claim severity distribution. 

One of the main objectives of this paper was to lay down methodologies to simulate from the equilibrium dis-
tributions of Weibull and Burr XII distributions and as indicated earlier, these simulations constitute a vital 
component for the evaluation of the probability of ultimate ruin through the Pollaczek-Khinchin formula. Table 
4 shows a sample of 5 observations and another sample of 10 observations drawn from the Equilibrium distribution  

 
Table 2. Parameter estimates for the Weibull distribution obtained through the multi parameter Newton Raphson and the 
value of the EDF statistics along with their p-values indicated in parentheses.                                               

Parameter Estimate 

θ̂  18,058.838357 

β̂  1.0196673 

Anderson Darling statistics 4123.742 (0.04) 

Cramer Von statistics 655.1592 (0.07) 

 
Table 3. Parameter estimates for the Burr XII distribution obtained through the Watkin algorithm and the value of the EDF 
statistics along with their p-values indicated in parentheses.                                                                                             

Parameter Estimate 

α̂  1.670876e+05 

τ̂  8.6572840e−01 

φ̂  1.047651e+06 

Anderson Darling statistics 5969.454 (0.002) 

Cramer Von statistics 933.8827 (0.006) 
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Table 4. Samples of random observations drawn from the equilibrium distribution corresponding to the illustrative Burr XII 
with 4.21652, 1.2746α τ= =  and 271225.2φ = .                                                                                             

Sample size Random observations generated 

5n =  31,678.10 43,124.48 120,051.29 224,368.08 41,248.71 

10n =  192,876.91 
78,806.61 

128,269.12 
112,627.39 

148,702.50 
128,295.76 

133,815.45 
37,733.32 

384.87 
61,205.60 

 

 

Figure 3. Histogram for a data set simulated from the Weibull distribution with ˆ 18058.838357θ =  and ˆ 1.0196673β = .                                               
 

 
Figure 4. QQ Plot between the empirical quantiles estimated from the motor insurance data and the theoretical quantiles for 
the Weibull distribution with ˆ 18058.838357θ =  and ˆ 1.0196673β = .                                               
 
of Weibull whereas Table 5 shows a sample of 5 observations and a sample of 10 observations drawn from the 
Equilibrium distribution of Burr XII. Sample standard deviation of the sample of size n = 10 drawn from the 
Equilibrium distributions of Burr XII was found to be 54,409.1 whereas that for the sample drawn from the 
equilibrium distribution of Weibull, it was found to be 7983.253. These values indicate a high degree of hetero-
geneity in the sample of random observations drawn from the corresponding equilibrium distributions. However,  
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Figure 5. Histogram for a data set simulated from the Burr XII distribution with ˆ ˆ1.670876 05, 8.6572840 01eα τ= + = −  

and ˆ 1.047651 06φ = + .                                                                                             
 

 
Figure 6. QQ Plot between the empirical quantiles estimated from the motor insurance data and the theoretical quantiles for 
the burr XII distribution with ˆ ˆ1.670876 05, 8.6572840 01eα τ= + = −  and ˆ 1.047651 06φ = + .                                               
 
Table 5. Samples of random observations drawn from the equilibrium distribution corresponding to the fitted Weibull with 
ˆ 18058.838357θ =  and ˆ 1.0196673β = .                                                                                             

Sample size Random observations generated 

5n =  12,482.550 3049.276 31,127.129 23,829.245 9455.99 

10n =  1491.491 
20,713.703 

3352.752 
24,037.673 

14,719.378 
5606.029 

14,056.884 
21,762.111 

4901.109 
6159.868 

 
to appraise the efficiencies of the simulation schemes, the direct expressions for the mean and variance (theoret-
ical) of these equilibrium distributions were not available and therefore, we have used an indirect way to assess 
the efficiencies of these schemes. 

The maximal aggregate loss random variable is related to the simulated observations by Equation (2.4.2) and 
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a direct expression for the mean of L is given by Equation (2.4.18). Hence a comparison of the mean of L ob-
tained through our simulation schemes with that of ( )E L  gives some idea on the efficiencies of these schemes. 
For the illustrative Burr XII distribution, Table 6 shows the 20 values of L. The mean of L computed on the ba-
sis of these 20 simulations was found to be 51,153.72 whereas the theoretical mean of L in case of the illustra-
tive Burr XII distribution, computed by Equation (2.4.18) was found to be 327,164.3 This lack of consistency 
between the simulated value and the theoretical value is attributed to the fact that simulation is always an ap-
proximation and can never be that close to the actual value. It needs noting that three simulation schemes are 
behind the calculation of the simulated mean of L and thereby, each leading to some inconsistency in the match 
with the theoretical value. Also, we carried out only twenty simulations and it can be expected that a larger 
number of simulations would have added some more efficiency to the simulated mean. However, it needs ex-
ploring to insert some modifications into the simulation scheme to improve its efficiency. Similarly in case of 
Weibull distribution, Table 7 shows the 20 simulations carried out to obtained the simulated mean of L and even 
in this case, there is inconsistency between the simulated and the theoretical mean of L for the theoretical mean 
of L in case of our fitted Weibull is found to be 58,576.9 whereas the simulated mean has come out to be 
10,225.57. The justification put forward for the lack of consistency in case of Burr XII is also applicable in ex-
plaining the lack of consistency between the theoretical mean and the simulated mean of the equilibrium distri-
bution corresponding to Weibull. 

 
Table 6. Simulation for obtaining the mean of the maximal aggregate loss random variable L for the illustrative Burr XII 
distribution with 4.21652, 1.2746α τ= =  and 271225.2φ = .                                                                                             

Serial No. 
Value of K simulated from the 

geometric  
distribution with ρ = 0.7692308 

K number of random observations generated 
from the equilibrium distribution Value of L 

1 0 ---- 0 

2 2 9498.68  91,875.943 101,374.6 

3 0 ---- 0 

4 1 139,696.3 139,696.3 

5 0 ---- 0 

6 0 ---- 0 

7 0 ---- 0 

8 1 144,745.2 144,745.2 

9 1 49,135.06 49,135.06 

10 0 --- 0 

11 0 --- 0 

12 0 --- 0 

13 0 --- 0 

14 2 40,129.82  104,107.86 144,237.7 

15 0 --- 0 

16 0 --- 0 

17 1 31,469.31 31,469.31 

18 0 --- 0 

19 4 77,518.48   48,798.00    
208,826.83   77,272.90 412,416.2 

20 0 --- 0 

Therefore, the simulated mean of L based on 20 simulations is (101,374.6 + 139,696.3 + ∙∙∙ +412,416.2)/20 = 51,153.72. 
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Table 7. Simulation for obtaining the mean of the maximal aggregate loss random variable L for the fitted Weibull distribu-
tion with ˆ 18058.838357θ =  and ˆ 1.0196673β = .                                                                                             

Serial No. 
Value of K simulated from the 

geometric distribution with  
ρ = 0.7692308 

K number of random observations generated from 
the equilibrium distribution Value of L 

1 1 54,042.1 54,042.1 

2 1 17,896.88 17,896.88 

3 1 13,860.43 13,860.43 

4 1 31,367.25 31,367.25 

5 0 --- 0 

6 0 --- 0 

7 0 --- 0 

8 1 15,205.51 15,205.51 

9 1 10,586.62 10,586.62 

10 1 4092.258 4092.258 

11 0 --- 0 

12 2 4334.18  28,415.49 32,749.67 

13 0 --- 0 

14 0 --- 0 

15 0 --- 0 

16 0 --- 0 

17 2 4068.676  20,641.919 24,710.59 

18 0 --- 0 

19 0 --- 0 

20 0 --- 0 

Therefore, the simulated mean of L based on 20 simulations is (54,042.1 + 17,896.88+ ∙∙∙ +24,710.59)/20 = 10,225.57. 
 
The algorithm for the evaluation of the probability of ultimate ruin through the Pollaczek Khinchin formula as 

described in section (2.4.1) shows how the simulated observations are to be used in evaluating the Probability of 
ultimate ruin in case of Weibull and Burr XII distributed claim severity. Table 8 shows the probability of ulti-
mate ruin obtained through the Pollaczek-Khinchin formula for the illustrative Burr distribution with a security 
loading of 0.3 whereas Table 9 shows the corresponding values for the fitted Weibull distribution. In both the 
cases, the Probability of ultimate ruin was found to be a decreasing function of the initial surpluses and this is 
expected, as larger initial surpluses should diminish the chance of ruin (if any) for the insurance company. The 
probability of ultimate ruin for the Burr XII distribution was computed through two numerical algorithms 
namely the stable recursive algorithm and the method of product integration in [13]. It is observed that there is 
deviation in the values obtained through these two algorithms and the Pollaczek-Khinchin formula. Although the 
lack of efficiency in the simulation schemes can be one of the causes for this deviation, yet there is no standard 
baseline method in terms of which the most efficient numerical computation method for the probability of ulti-
mate ruin in case of Burr XII claim severity can be established. 

Computation of the convolutions of a distribution with itself is very challenging, specially, when the distribu-
tion does not have a closed form expression for its Laplace transform (Moment generating function) and since 
neither Weibull nor Burr XII has closed form Laplace transform, their convolutions can be determined only  
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Table 8. Ultimate ruin probabilities for the burr XII distribution with                    
4.21652, 1.2746α τ= =  and 271225.2φ =  obtained through Pollaczek-Khinchin 

formula based on 10,000 simulations.                                               

Value of the initial surplus u (in Rs) ( )uψ  

10 

100 

1000 

2000 

10,000 

20,000 

30,000 

50,000 

100,000 

200,000 

0.2136 

0.2136 

0.2134 

0.2130 

0.2080 

0.1961 

0.1837 

0.1557 

0.1023 

0.0381 

 
Table 9. Ultimate ruin probabilities for the fitted Weibull distribution with                  
ˆ 18058.838357θ =  and ˆ 1.0196673β =  obtained through Pollaczek-Khinchin for-

mula based on 10,000 simulations.                                                                                             

Value of the initial surplus u (in Rs) ( )uψ  

10 

100 

1000 

2000 

10,000 

20,000 

30,000 

50,000 

100,000 

200,000 

0.2321 

0.2307 

0.2218 

0.2130 

0.1510 

0.0969 

0.0628 

0.0257 

0.0031 

0.0001 

 
numerically. Table 10 shows the convolution of our fitted Burr XII distribution upto the fourth order and Table 
11 shows the corresponding values for the fitted Weibull. These convolutions were evaluated at a number of 
points solely for the sake of illustration. It may be noted that in evaluating these convolutions, numerical inte-
grations were used and a number of nested integrals were evaluated to get the final output. Hence, this might led 
to the accumulation of a considerable error. Another issue associated with this convolution is the high execution 
time for example, in evaluating ( )*4f z , say, for Weibull, three nested integrals were to be computed simulta-
neously, one for ( )*2f z  and using this as an input, another numerical integral ( )*3f z  was computed. Again, 
since we are using the Simpson’s 1/3 rd rule for numerical integration, for computing ( )*4f z , ( )*3f z  needs 
to be computed at a considerable large number of points (for it appears in the integrand for ( )*4f z ) and if we 
require some extra accuracy by limiting the interval of discretization at 0.1h = ., the computational time threat-
ens to be very high. Moreover with this fixed level of discretization, number of intervals (hence the number of 
computations) increases largely with an increase in the value of z (the point where ( )*4 .f  is to be computed). 
This execution procedure takes hours, even at times, exceeding 6 hours unless we deliberately fixed the number 
of intervals at a lower level (say 100) for each of these numerical integrations, allowing variability in h, at the  
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Table 10. First four convolutions of the Burr XII distribution with ˆ ˆ1.670876 05, 8.6572840 01eα τ= + = −  and        
ˆ 1.047651 06φ = +  determined at some illustrative points.                                                                                             

Z (point at which the convolution is 
determined) 2nd Convolution 3rd Convolution 4th Convolution 

10 0.001825971 0.005829559 0.01329008 

100 2.411275e−24 8.967633e−24 3.153996e−23 

200 3.38285e−44 1.025027e−43 2.929347e−43 

1000 1.100867e−176 2.649168e−176 6.010733e−176 

10,000 0 0 …0… 

 
Table 11. First four convolutions of the fitted Weibull distribution with ˆ 18058.838357θ =  and ˆ 1.0196673β =  de-
termined at some illustrative points.                                                                                             

Z (point at which the convolution 
is determined) 2nd Convolution 3rd Convolution 4th Convolution 

10 4.200736e−09 4.123718e−13 2.691496e−17 

100 4.252141e−08 4.351768e−11 2.965936e−14 

200 8.529473e−08 1.752377e−10 2.397906e−13 

1000 4.288571e−07 4.428114e−09 2.872162e−11 

10,000 4.308908e−06 4.466750e−07 2.726931e−08 

 
cost of reducing some accuracy in the values obtained through these numerical integrations. 

The computation of the probability function of the number of claims until ruin requires the computation of the 
convolution of the underlying claim severity distribution, for example, the computation of the probability func-
tion for 3 number of claims until ruin would require second convolution as an input, 4 number of claims until 
ruin would require third convolution and so on. Table 12 shows the probability for 2, 3 and 4 number of claims 
until ruin for the illustrative Burr XII distribution whereas Table 13 shows the corresponding values for the 
Weibull distribution. It needs to be noted that though, Table 10 gives the convolution of the fitted Burr XII dis-
tribution, Table 12 was constructed for the illustrative Burr XII distribution whose convolutions were not dis-
played separately. Numerical error might have affected the results in a way that no proper interpretation within 
the practical frame work is possible. The result for the Burr XII distribution are somewhat consistent with reality 
for the values of these probabilities were marginally low and this is interpretable in the practical situation for the 
chance of ruin should be very low for such small number of claims. 

We give some insight into the numerical integration underlying the computation of ( )4 0P  and similar ex-
planation accounts for ( )2 0P  and ( )3 0P . The main difficulty lies in the fact that in their computations, we are 
handing double integrals and those too involving convolutions and furthermore, the outer integral needs to be 
evaluated at a range extending to infinity. 

From Equation (2.5.9), we have ( ) ( ) ( )
4 3

3*
4

0 0

0 e d d .
3!

ct
t t yP f ct y F y y t

ct
λ λ∞

−= −∫ ∫  

1) We have first evaluated ( ) ( )3*

0

d
ct y f ct y F y y

ct
−∫  as a function of t. Let this function be denoted as ( )1f t .  

Here we have used the function for 3rd convolution of Burr XII as required in ( )*3 .f ct y−  

2) Now consider the integrand ( ) ( )
4 3

3*

0

e d
3!

ctt t y f ct y F y y
ct

λ λ−

−∫  of ( )4 0P  which is to be integrated with  

respect to t in the interval [ ]0,∞  and this integrand can be denoted as an another function of t, say  

( ) ( )
4 3

2 1
e*

3!

t tf t f t
λ λ−

= . For the assumed values of the parameters of Burr XII, this function was computed in a  
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Table 12. Probability function for the number of claims until ruin for Burr XII distribution with 4.21652, 1.2746α τ= =  
and 271225.2φ =  and 0.3θ =  and 32.78λ = .                                                                                             

( )2 0P  ( )3 0P  ( )4 0P  

0.1029602 0.05060141 0.003102334 

 
Table 13. Probability function for the number of claims until ruin for the fitted Weibull distribution with ˆ 18058.838357θ =  
and ˆ 1.0196673β =  and 0.3θ =  and 32.78λ = .                                                                                             

( )2 0P  ( )3 0P  ( )4 0P  

0.4559831 0.4044081 0.7318781 

 
number of intervals of values for t and was found to have significant value only in the interval [1e−06, 22], its 
value being zero beyond it. The final value was obtained by numerical integration of ( )2f t  using Simpson’s 
1/3rd rule in the interval [1e−06, 22]. 

Interestingly, it may be noted from Equation (2.5.6), that to find the probability function of “m” number of 
claims until ruin (in case of zero initial surplus), it is required to use the ( )1 thm −  convolution of the underly-
ing claim severity distribution. Hence, it can be sensed that there is huge complexity involved in determining 
this function for 4m ≥ . As a practical consideration, it might be realized that this probability function is useful 
only when it can be determined for “m” very large because it is sensible to assume that ruin could occur only 
when “m” is very large. 

4. Limitations 
This paper has chance to provide themes for further exploration if means are devised to eliminate the following 
limitations. 

1) Neither of the distribution was found to qualify the goodness of fit tests, as judged, from the EDF statistics, 
though we proceeded with the use of the estimated values of the parameters of the fitted Weibull distribution as 
input for the computational methodologies, targeted at the evaluation of the actuarial quantities under considera-
tion. 

2) The fitted Burr XII distribution had to be excluded from being used as an input for the computational me-
thodologies for it led to some inconsistent results. It needs further scrutiny to identify the cause for these incon-
sistencies. 

3) The simulation schemes need to be further improved for the values of the probability of ultimate ruin for 
the Burr XII distribution, it yielded are inconsistent to the values computed earlier [13]. 

4) To avoid the complexity of having to evaluate a number of nested integrals numerically, we had to remain 
content with the evaluation of just the lower order convolution of these distributions, which, in turn, enabled us 
to compute the probability function for the number of claims until ruin, for a lower ranking whose significance 
to reality is not as important as the function, computed for a higher ranking of the order at which the claims ar-
rive. 

5. Conclusions and Further Extensions 
Modeling of the insurance data through these two heavy tailed distributions is quite a challenge in the realm of 
statistical computational theory and considering the fact, that highly skewed data which can be adequately mod-
eled only through heavy tailed distributions, occurs frequently in the domain of General insurance, our work 
might be useful for insurance practitioners concerned with statistical modeling in Risk analysis.  

Methodologies suggested for the simulation from the Equilibrium distributions of Burr XII and Weibull were 
reasonably efficient and when applied to the algorithms for the evaluation of the probability of ultimate ruin 
through simulation using the Pollaczek-Khinchin formula, they led to fairly good approximations to the proba-
bility of ultimate ruin and these approximations were also consistent with practical rationalism. However, fur-
ther exploration is needed to improve these simulation schemes, for example, by implementing conditional 
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Monte Carlo algorithms and by using some properties of the family of the sub-exponential distributions (of 
which Weibull and Burr XII are members) to improve the algorithms. 

The paper has made an attempt to address the complex issue of evaluating the convolution of the Weibull and 
the Burr XII distributions. Further investigation is needed to identify if any method other than numerical inte-
gration exists for the evaluation of the convolution of these heavy tailed distributions. Control of error in eva-
luating these numerical integrals, reduction in the execution time etc. can be the themes for further probe. Fur-
ther extension of this work can also be directed towards the evaluation of the convolutions of higher order for 
they owe much relevance to the assessment of the chances of ruin (insolvency) for the insurance company. 
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