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Abstract 
The main result of this paper is the construction of a strictly positive extension of any no-arbitrage 
price system defined on an incomplete market of any dimension and for any (finite) number of 
states of the world. This is proved by using the component functionals of the positive basis of the 
2-dimensional lattice-subspace, which is spanned by the riskless asset and any of the state-dis- 
criminating payoffs, which are generically existent in the span of the primitive, non-redundant 
assets of the incomplete market, whose time-period 1 payoffs are x1, x2,···, xn, respectively. This 
result is also valid in the case where the market is complete. Both of these results lead to a new 
statement of both of the Fundamental Theorems of Asset Pricing in the finite-state case. 
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1. Introduction 
The First Fundamental Theorem of Asset Pricing states that the absence of arbitrage for a stochastic process X is 
equivalent to the existence of an equivalent martingale measure for X. The Second Fundamental Theorem of 
Asset Pricing states that the completeness of the market is equivalent to the uniqueness of this equivalent mar-
tingale measure. In the case of finite markets, this is the famous Harrison-Pliska Theorem, proved in [1], mainly 
using the notion of stopping time. This theorem is related to the viability of a market model developed exten-
sively in [2], about the relation between viability and existence of equivalent martingale measures, see [3]. 
These results are generalized in [4], under the same general frame of investors’ preferences, while they require 
certain integrability conditions for the price process. However, the least restrictive assumptions for the FTAP in 
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finite markets are contained in [5], where the origin of the ideas for its proof is the (non-) boundedness of the 
support of a probability measure in d

 . A first Hilbert space proof of this Theorem was given in [6]. It was 
shown in [7] that for a locally bounded d

 -valued semi-martingale X the condition of No Free Lunch with 
Vanishing Risk is equivalent to the existence of an equivalent local martingale measure for the process X. It 
was proved in [8] that the local boundedness assumption on X may be dropped under the notion of equivalent 
σ -martingale measure. The work [2], also discussed in [9], is still essential in this topic and actually this 
work’s results rely on what Kreps established as viable market model consisted by an incomplete market and a 
linear price system on it. Recently, in [10], a Fundamental Theorem of Asset Pricing and a Super-Replication 
Theorem in a model-independent framework are both proposed. However, these theorems are proved in the set-
ting of finite, discrete time and a market consisting of a risky asset S, as well as options written on this risky as-
set. This work makes clear the relation between the span generated by options written on a risky asset and the 
Fundamental Theorems of Asset Pricing, which is exactly the topic of the present paper. The aim of this paper is 
to revisit the classical finite-state finance theory, in order to extract the Fundamental Theorems of Asset Pricing 
by using 2-dimensional lattice-subspaces. More specifically, a basis of such a lattice-subspace is consisted by 
the riskless asset and one of the famous state-discriminating payoffs, which were mentioned in the seminal ar-
ticle [11]. The point of the main result of this paper is that combining the prices of the call and put options on 
this portfolio in order to pick a price-system for all the states is not so simple. It definitely needs to know the 
span of the call and put options written on a market of primitive securities X, which is actually equal to the sub-
lattice ( )S X  generated by X, see [12]. This sublattice is generically equal to S

  in the sense of Lebesgue 
measure of Sn

  and X also generically contains state-discriminating portfolios, under the same sense, too. 
This leads to the construction of a strictly positive extension of any no-arbitrage price system defined on an in-
complete market of any dimension and for any (finite) number of states of the world. This is proved by using the 
component functionals of the positive basis of the 2-dimensional lattice-subspace, which is spanned by the risk-
less asset and any of the state-discriminating payoffs, which are generically existent in the span of the primitive, 
non-redundant assets of the incomplete market. These time-period 1 payoffs are denoted by 1 2, , , nx x x , re-
spectively. This result is also valid in the case where the market is complete. Both of these results lead to a new 
statement of both of the Fundamental Theorems of Asset Pricing in the finite-state case. 

2. Preliminaries 
2.1. Finite-Dimensional Ordered Linear Spaces 
Let E  be a Euclidean space. A set C E⊆  satisfying C C C+ ⊆  and C Cλ ⊆  for any λ +∈  is called 
wedge. A wedge for which ( ) { }0C C∩ − =  is called cone. If ≥ is a binary relation on E satisfying the following 
properties: 

1) x x≥  for any x E∈  (reflexive); 
2) If x y≥  and y z≥  then x z≥ , where , ,x y z E∈  (transitive); 
3) If x y≥  then x yλ λ≥  for any λ +∈  and x z y z+ ≥ +  for any z E∈ , where ,x y E∈  (compati-

ble with the linear structure of E), then the pair ( ),E ≥  is called partially ordered linear space. If 

( ){ }0, 1,2, ,m mE x x i i m+= = ∈ ≥ =    

then this set is a cone of E and the binary relation ( ) ( ) ,  1, 2, ,x y x i y i i m≥ ⇔ ≥ =   is called component- 
wise partial ordering or usual partial ordering of m

 . ( ),m
+ ≥  is a partially ordered linear space. The set 

{ }0P x E x= ∈ ≥  is called (positive) wedge of the partial ordering ≥ of E. Given a wedge C in E, the binary 
relation C≥  defined as follows: 

,Cx y x y C≥ ⇔ − ∈  

is a partial ordering on E, called partial ordering induced by C on E. If the partial ordering ≥ of the space E is 
antisymmetric, namely if x y≥  and y x≥  implies x y= , where ,x y E∈ , then P is a cone. The usual partial 
ordering of m

+  is antisymmetric, its positive cone is m
+  and the partial ordering induced by m

+  on m
  

is actually the usual partial ordering. In m
  the topological and the algebraic dual coincide. The partially or- 

dered vector space ( ),m ≥  is a vector lattice under the usual partial ordering ≥, namely for any , mx y +∈ , 
both the supremum and the infimum of { },x y  with respect to this partial ordering, exist in m

 . If F is a sub- 
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space of a vector lattice m
+  and the partial ordering induced on F by the cone F F E+ += ∩  makes F a vector 

lattice, then F is called lattice-subspace. Then for any ,x y F∈ , { } { }, ,  ,sup inf FF FF x y x y x y x y= ∨ = ∧  
exist in F. Their relation to equivalent ,  x y x y E∨ ∧ ∈  is the following: 

.F Fx y x y x y x y∧ ≤ ∧ ≤ ∨ ≤ ∨  

If D is a subspace of m
  having a basis ( ) 1,2, ,i i k

b
= 

, this basis is called positive basis if and only if 

1
0, 1, 2, , .

k
m

i i i
i

D D x b i kλ λ+
=

 
= ∩ = = ≥ = 

 
∑   

Choquet-Kendall Theorem [13] refers to the connection between finite-dimensional vector lattices and positive 
bases: A finite-dimensional ordered vector space E with a closed and generating cone E+  is a vector lattice if 
and only if has a positive basis. Also in I.A. Polyrakis [13], the determination of such a positive basis in the case 
of a finite-dimensional lattice-subspace of ( )C Ω , where Ω  is some compact and Hausdorff topological 
space, is provided. Hence, Theorem [13] is also applicable on m

 . A vector mf ∈  is a positive functional of 
a cone C in m

  if and only if ( ) 0,  f x x C≥ ∈ , while it is a strictly positive functional of C if and only if 
( ) { }> 0,  \ 0f x x C∈ . If D is a subspace of m

  and mg ∈  is a strictly positive functional of D C∩ , or 
else a strictly positive functional of X with respect to the partial ordering induced by C on D, we say that 

mf ∈  is a strictly positive extension of g if and only if f  is a strictly positive functional of C and 
( ) ( ) ,  g x f x x D= ∈ . A positive projection of m

  being partially ordered by a cone C on the sub-space D 
being partially ordered by the cone D C∩  is a projection : mP D→ , for which ( )P x D C∈ ∩  for any 
x C∈ . A strictly positive projection is a positive projection which has the additional property: ( ) 0,P x =  
 0x C x∈ ⇔ = . As I.A. Polyrakis proved in [13], the finite-dimensional lattice-subspaces in ( )C Ω  having 
positive bases with nodes, where Ω  is some compact and Hausdorff topological space, are examples of ranges 
of positive projections. Hence, Theorem [13] is also applicable on m

 . The cone C is called generating if and 
only if E C C= − . If C has interior points then C is generating for m

 . Also, m
+  as a lattice  

cone, is generating for m
 . If E is partially ordered by C, then any set of the form [ ] { }, C Cx y r E y r x= ∈ ≥ ≥   

where ,x y C∈  is called order-interval of E. If E is partially ordered by C and for some e E∈ , e  is called 
order-unit of E if and only if [ ]1 ,nE ne ne∞

== ∪ −  holds. If E is a normed linear space, then if every interior point 
of C is an order-unit of E. If E is moreover a Banach space and C is closed, then every order-unit of E  is an 
interior point of C. If mE =  , partially ordered by m

+ , then every me +∈ , such that 1,2, ,min 0i m ie= >


 is an 
order unit. For more about ordered linear spaces, see [14]. 

2.2. Finite-State Finance 
Suppose that there are two periods of economic activity and S states of the world. At time-period 0t =  there is 
uncertainty about the true state of the world, while at time-period 1t =  this state is revealed. Suppose that there 
are n primitive assets in the market which are non-redundant, namely their payoff vectors 1 2, , , S

nx x x ∈   at 
time period 1t = , are linearly independent. A portfolio in this market is a vector ( )1 2, , , nθ θ θ θ=   of n

  in 
which ,  1, 2, ,i i nθ =   denotes the units invested to the asset i . If 0iθ ≥ , then the investment to iθ  units of 
the asset i  denotes a long position on these units. If 0iθ < , then the investment to iθ  units of the asset i  
denotes a short position on iθ−  units of the asset i . The payoff of a portfolio θ , if the payoff vectors 

1 2, , , S
nx x x ∈   are expressed in terms of the numeraire as well, is the vector ( ) 1

n
i iiT xθ θ

=
= ∑ . The range of 

the operator : n ST →   is called asset span of the market, derived by 1 2, , , nx x x . In this article we suppose 
that n S< , hence the market of 1 2, , , nx x x  is incomplete. A contingent claim is any liability Sc∈ , while a 
derivative is a contingent claim whose payoff is connected through a functional form to some portfolio payoff 
for the asset span of 1 2, , , nx x x . If for some contingent claim c  there is some portfolio θ  such that 
( )T cθ = , then the contingent claim c  is called replicated or hedged (by the portfolio θ ). Any portfolio 

nθ ∈  such that ( )T cθ =  is called replicating portfolio or hedging portfolio of c . Classical examples of 
derivatives are (European) options, which include the corresponding call options and put options. Call and put 
options written on some asset c  under some risky strike vector u . different from 1. If we denote such a vector 
by u , In this case, the call option written on c  with strike price a  with respect to u  is the contingent claim 
whose payoff vector is ( )c au +− . In the same way, the corresponding put option is ( )au c +− . The last call 
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option is denoted by ( ),uc c a , while the put option is denoted by ( ),up c a . The call option ( ),uc c a  and put 
option ( ),up c a  are called non-trivial if ( ) ( ), 0,  , 0u uc c a p c a> > , respectively. This definition implies that 
for both of these vectors all of their components are positive and at least one of them is non-zero. 

It is well-known that the completion by options ( )1F X  of the asset span [ ]1 2, , , nX x x x=   with respect to 
1 is the vector subspace of S

  which contains all the derivatives written on the elements of the asset span X, 
see [12]. It is also well-known (see [12]) that the completion ( )1F X  of X by options is the sublattice ( )S Y  
generated by { }1Y X= ∪   . 

Since ( )1F X  is a sublattice and hence a lattice-subspace, it has a positive basis 

{ } ( )11,2, ,
,  dim .i i

b F X
µ

µ
=

=


 

This positive basis is a partition of the unit (see [12]). Its elements are binary vectors, (see also [12] [15]). The 
determination of this positive basis relies on [16]. 

According to [12], a vector ( )ue F X∈  is an ( )uF X -efficient fund if ( )uF X  is the linear subspace of S
  

which is generated by the set of nontrivial call options and the set of non-trivial put options of e . 
We also remind of the statements of [12], respectively: 
Suppose that { }1 2, , ,b b bµ  is a positive basis of ( )uF X , 1 i iiu bµ λ

=
= ∑ , and 0iλ >  for each i . Then the 

vector 1 i iie bµ κ
=

= ∑  of ( )uF X  is an ( )uF X -efficient fund if and only if ji

i j
κκ

λ λ
≠  for each i j≠ . 

Each non-efficient subspace of ( )uF X  is a proper sublattice of ( )uF X . 
Suppose that { }1 2, , ,b b bµ  is a positive basis of ( )uF X  and that 1 i iiu bµ λ

=
= ∑  with 0iλ >  for each i. 

Then: 
1) the nonempty set ( )\ i I iD Y Y Z∈= ∪ ∩ , where { }iZ i I∈  is the set of non-efficient subspaces of 
( )uF X , is the set of ( )uF X -efficient funds of Y  and the Lebesgue measure of Y  is supported on D ; 

2) ( )uF X  is the subspace of S
  generated by the set of the call options ( ){ }, ,uc x a x Y a∈ ∈  written 

on the elements of Y . If ( ),  uu X F X∈  is the subspace 1X  of S
  generated by the set of call options 

( ){ }1 , ,uO c x a x X a= ∈ ∈  written on the elements of X. 
Lemma 2.1. There exists an efficient fund ,  0e X e+∈ >  with respect to the strike vector 1. 
Proof. Direct from [12]. 
We also have the following: 
Proposition 2.2. If we suppose that the vectors of the date-1 payoffs of the primitive assets 1 2, , , nx x x  are 

linearly independent and 1 X∈ , then ( )1
SF X =  , where [ ]1 2span , , , nX x x x=  , except a set of vectors  

1 2, , , nx x x  of Lebesgue measure zero in ( )nS
 . 

Proof. In the last part of [12], we gave a brief proof about the fact that resolving markets have the property 
( )1

SF X =  . It is also well-known that resolving matrices are in general position, namely the complement of 
the set of them is a null-set in the vector space of the matrices S n× , whose entries are real numbers. Hence the 
super-set of all the S n× -matrices (markets), such that [ ]1 21 span , , , nX x x x∈ =   where 1 2, , , nx x x  are li-
nearly independent and they have the property that ( )1

SF X =   are also in general position. 
If F is a subspace of a vector lattice E and the partial ordering induced on F by the cone F F E+ += ∩  makes 

F  a vector lattice, then F  is called lattice-subspace. Then for any ,x y F∈ , 

{ } { }, ,  ,sup inf FF FF x y x y x y x y= ∨ = ∧  

exist in F . Their relation to equivalent ,  x y x y E∨ ∧ ∈  is the following: 

,F Fx y x y x y x y∧ ≤ ∧ ≤ ∨ ≤ ∨  

in terms of the partial ordering of E . About lattice-subspaces and their influence in economics see [12] [13] 
[16] [17]. 

Theorem 2.3. The subspace [ ],1L e=  created by a “generically existent” e X +∈  and the riskless asset 1 is 
a lattice-subspace of S

 . 
Proof. According to the Choquet-Kendall Theorem, see [13] Theorem, we have to prove that SL L+ += ∩  is 

closed and generating. +L  is closed, since the component functionals of the basis { },1e  are continuous. L+  
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is generating, since S
+  is generating, becauce it contains the order unit 1, which is also an order unit for L  

under the induced ordering implied by L+ . Since L  is a closed subspace of S
  it is also a complete space 

under the induced topology, hence by Baire Category the order unit 1 is also an interior point of L+ , which 
implies that L+  is generating. 

Corollary 2.4. L  has a positive basis. 
Proof. Direct from [13], and 2.3. 

3. Re-Statement of the Fundamental Theorems of Asset Pricing 
Following standard definitions, (see in [17]), an arbitrage-free price on the space X of marketed securities is a 
strictly positive functional on X. Namely, if f is such a price, it is a linear functional :f X →   such that 
( ) 0f x >  for any { }\ 0x X +∈ , where SX X+ += ∩  is the cone of the induced partial ordering of X (the 

positive cone of the ordering relation which is induced on X by the usual, component-wise partial ordering on 
S

 ). Since X is finite-dimensional and X is identified to the space of portfolios through T , mentioned above, f 
may be defined through a portfolio price nq∈  as follows: ( ) ( )( )x xf x f T qθ θ= = ⋅ , where xθ  is a 
replicating portfolio of x. 

Theorem 3.1. (1st FTAP) If for the incomplete market X, such that 1 X∈  we may find a portfolio e X +∈ , 
which separates the states of the world, then every no-arbitrage price f of the market generated by ,1e  is 
extended to a no-arbitrage price in the complete market S

 . Moreover, if we suppose that the probabilities for 
the states of the world are given by the vector: 

( )1 2, , , ,   0,  1, 2, , ,S s s Sµ µ µ µ µ= > =   

a vector of µ -continuous risk-neutral probabilities exists. 
Proof. Since by Theorem 2.3. [ ],1L e=  is a lattice-subspace, we may define the strictly positive projection  

operator ( ) ( ) ( )( )1 1 2 2
1
2

P x x x b x x b= +  where { }1 2,b b  is the normalized positive basis of L and ( ) ,  1, 2ix x i =   

are the component functionals of it. The extension of f is ( ) ( )( ) ,  Sx f P x xπ = ∈ . The relevant vector of risk-  
neutral probabilities is exactly equal to [ ]1 2

1
2

Q x xπ = + . The relevant Radon-Nikodym derivative vector is 

( ) ( ) ( )( )1 2
d 1 , 1,2, , .
d 2
Q

x s x s s S
s

π

µ µ
 

= + =  
 

  

Theorem 3.2. (2nd FTAP) If the market X is complete and 1 X∈  and also we may find a portfolio e X +∈ , 
which separates the states of the world, then the no-arbitrage price f in the market which is generated by ,1e  is 
extended to a unique no-arbitrage price in the complete market SX =  . Moreover, if we suppose that the pro- 
babilities for the states of the world are given by the vector ( )1 2, , , Sµ µ µ µ=  , the vector of risk-neutral 
probabilities is unique. 

Proof. Appropriate linear combinations between the time-period 0 price of the portfolio e and the time-period 
0 price of the riskless asset (set to be equal to 1), provide the prices of the marketed assets 1 2, , , Se e e  which 
denote the Arrow securities (since the market X is complete). These prices are the same for different state-dis- 
criminating portfolios, since otherwise arbitrage opportunities would exist. Moreover, there prices are positive 
for the same reason. Hence we may suppose that the unique price vector for the Arrow securities is given from 

( )1 2, , , Sπ π π π∗ ∗ ∗ ∗=  . If this vector is normalized (divided by its 
1. -norm) then the unique risk-neutral  

probability vector 
1

Qπ
π
π

=  arises. The relevant Radon-Nikodym derivative vector is 

( )
( )1

d 1 , 1,2, , .
d

sQ
s S

s
π π
µ π µ

 
= ⋅ =  
 

  

4. Conclusion 
This paper presents a proof of the First and the Second Fundamental Theorem of Asset Pricing in the two-date, 
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finite-state model of financial markets. We first assume incomplete markets that contain the riskless asset. Our 
proof relies on the fact that for almost all of the incomplete markets the span of the call and the put options 
written on the payoffs of their asset span is equal to the complete market. Also, for almost all of these markets 
state-discriminating payoffs lying in the asset span exist. We prove that the span of each of these payoffs and the 
riskless asset is a lattice-subspace, which has a positive basis. By this positive basis we construct any of the 
equivalent martingale measures—even the unique one in the case of the complete markets. Hence we obtain the 
proof by the geometric properties of the asset span, and moreover in the sense of arbitrarily small perturbations 
which do not alter the results. 
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