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ABSTRACT 

Itô’s semimartingale driven by a Brownian motion is typically used in modeling the asset prices, interest rates and ex-
change rates, and so on. However, the assumption of Brownian motion as a driving force of the underlying asset price 
processes is rarely contested in practice. This naturally raises the question of whether this assumption is really appropri-
ate. In the paper we propose a statistical test to answer the above question using high frequency data. The test can be 
used to validate the assumption of semimartingale framework and test for the existence of the long run dependence cap-
tured by the fractional Brownian motion in a parsimonious way. Asymptotic properties of the test statistics are investi-
gated. Simulations justify the performance of the test. Real data sets are also analyzed. 
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1. Introduction 

There has been extensive literature in using Itô's semi- 
martingale driven by a Brownian motion to model the 
asset prices, interest rates and exchange rates, since the 
seminal work by [1-3]. Statistical inference of Itô's 
semimartingales is also investigated by many authors, 
including [4-7] among others. 

However, the assumption of Brownian motion as a 
driving force of the underlying asset price processes is 
rarely contested statistically. This naturally raises the 
question of whether this assumption is really appropriate. 
If not, what alternative can one use in place of Brownian 
motion? In this paper, we will focus on the use of more 
general fractional Brownian motion as a driving force if 
the usual Brownian motion is not appropriate. 

The failure of models based on (conditional) un- 
correlated increments to describe certain financial data 
sets has been observed since [8] and [9]. In their works, 
significant long run dependence was found. To take the 
long run dependence into account in modeling financial 
data, [10] proposed to replace Brownian motion with 
fractional Brownian motion. Using Wavelet method, [11] 
studied the fractal dimension of the S&P 500 data 

sampled every minute. They found empirically that the 
Hurst parameter of the S&P 500 data was significantly 
above the efficient market value 1 2H   and began to 
approach that level around 1997. They attributed the 
trend to the increase in internet trading. [12] investigated 
the theoretical variational properties of continuous-time 
processes driven by a fractional Brownian motion using 
high frequency data. 

Before moving on, we define a fractional Brownian 
motion with Hurst parameter , which is given 
by  
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for , where W  is a standard Brownian motion 
with 0
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Note that HB  reduces to a standard Brownian motion 
when 1 2H  , and otherwise 

HB  becomes a self-simi- 
lar process with (long run) dependence when 1 2H  ; *Corresponding author. 
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the latter property is very attractive in financial models. 
The purpose of this paper is to develop some tests to 

see whether the driving force is a Brownian motion or a 
true fractional Brownian motion. In terms of the Hurst 
parameter, this can be formulated as  

0 : 1 2 . . : 1 2H H v s H H 1 .    (2) 

We introduce a method to test (2) based on the 
asymptotic normality of the ratio of two realized power 
variations with different sampling frequencies. 

If a test rejects 0H , then a fractional Brownian 
motion will be used in modeling. One problem of using 
the integral process driven by a fractional Brownian 
motion is the admission of arbitrage when the integral is 
defined in a pathwise Stieltjes way, in [13]. The theory of 
modeling using fractional Brwonian motion was renewed 
after the work of [14] in which a new type of integration 
based on the Wick product was introduced. If the new 
Wick type integration is adopted, [15] proved that the 
fractional Black-Scholes market has no arbitrage op- 
portunities. However, it is hard to give economic 
interpretations to trading strategies using the Wick type 
integration, in [11]. In [11,] the pathwise Stieltjes inte- 
gration was suggested although arbitrage opportunities of 
[13]’s type exist. They argued that strategies to make 
gains with no risk involve exploiting the very fine-scale 
properties of the process’ trajectories. The ability of a 
trader to implement this type of strategy is likely to be 
hindered by market frictions, such as transaction costs 
and minimum amount of time between two consecutive 
transactions. Indeed [16] showed that by introducing a 
minimal amount of time between two consecutive 
transactions, arbitrage opportunities are ruled out from a 
geometrical fractional Brownian motion. 

In this paper, we will implement the pathwise Stieltjes 
integration that has good interpretations in defining a 
self-financing strategy. Using high frequency data, our 
test could give insight into 1) whether the underlying 
dynamic shows long run dependence; 2) whether the 
underlying dynamic is a semimartingale; and 3) how 
rough is the underlying dynamics in terms of its Hurst 
parameter, e.g., is it 1 2 ? 

The paper is organized as follows. In Section 2, we 
give some preliminaries and assumptions. Test statistic is 
given in Section 3. Main results are also presented in 
Section 3. Simulations are run in Section 4. Section 5 is 
devoted to real data analysis. Section 6 discusses some 
future problems. Technical proofs are postponed to the 
Appendices. 

We assume that the observations are  

 ;0
it
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For simplicity, we further assume that  
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are equally spaced, that is,  

1:n i it t T n    . 

We denote the ith one-step increment by  
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   . 

Mathematically, high frequency data set means that 
 for fixed . Although in theory we will 

consider the limiting case where , in practice 
n  T

0n  n  
is strictly positive but close to 0. 

2. Preliminaries and Assumptions 

2.1. Properties of Fractional Brownian Motion 

Throughout this paper, we define  as the natural 
filtration of W  for , and T . The 

tF
F0t  F HB  

given in (1) has the following useful properties:  
 It is a semimartingale only if 1 2H  . 
 It is a zero-mean Gaussian process with  
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nHB  is  H   -Hölder continuous for any 0 . 
Hence HB  has finite  1 H   th-variation where the 
qth-variation of a process Z  is defined as  
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where the supremum is taken over all partition   of 
 ,s t . 

Let   be a positive process adapted to t , the 
integral process, 

0

F
d

t H
s sB  be defined as the pathwise 

Riemann-Stieltjes integral. By Young's inequality, c.f. 
[12], the discretization error of the integral process could 
be controlled by  

       ,d , , , , , .
t H H

u s u a b a bs
B c v s t v B s t a s    . (3) 

where 

 1 1
, 1

a b
a b n
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  . 

So to make the right side of (3) finite, 1 1a H  , 
, i.e.   could at most have finite 1 1 H th power 

variation. 

2.2. Model Assumptions 

As studied in [12], [17] and the references therein, we 
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assume that the model is a simple continuous process of 
the following integral form 

0 0
d

t
,H

t s sX X    B           (4) 

where 0X  is the initial value. We make the following 
assumptions on the diffusive coefficients. 

Assumption 1:   is a locally bounded càdlàg proc- 
esses. 

Assumption 2:   is an  -Hölder continuous proc- 
ess with 1 H   .  

3. Test Statistics 

Our test is based on power variational property of X :  
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Under Assumptions 1-2, it can be shown  

 1

0
, d

T ppH P
n n p sV p m s    ,       (5) 

where pm  is some constant depending only on . 
Since the right side of (5) is unknown, one could use the 
two-time scale technique as used in [18] to define the test 
statistic as follows,  
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It is worthy of noticing that [4] proposed a test statistic 

of the same form as (6) in the context of testing for the 
presence of jumps within the semi-martingale frame- 
work. 

Now we state our main results.  
Theorem 1: Under Assumptions 1-2, we have  
1) ,   1P pHU p k 
2) if 1 2   and 3 4H  ,  

  1 2 1 , stablpH
n U p k G    y  

where  is a centered Gaussian random variable con- 
ditional on  with the conditional variance  
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with  x  be the Gamma function, and   is a 
constant dependent on 

2
cor

H . 
Remark 1 

 Under 0H , the condition 1 2   could be weak- 
ened, actually,   could be semimartingales driven 
by Brownian motion where paths of   are  

1

2
 
 

  -Hölder 

continuous, c.f. [19]. 
 From Part 1 of Theorem 1, an estimator of H  can 

be given by  

 logˆ 1
log

U p
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The behavior of  U p  depends on H , and so can 
be used as a test statistic. From the above theorem, 
 U p  is asymptotically normal with unknown con- 

ditional variance  under 2
Tu 0 . By (5), a 

consistent estimator of  under 
: 1H H 

0

2
2
Tu H  is  

   
  

2
2

ˆ 2
ˆ ,

ˆ
T

T p

T

A p
u M k

A p
  

where  

   1 2ˆ ,l
n nT lA l V l   m . 

From Theorem 1, we reject 0H  if  

  2 1
2 ˆ ,p

n TU p k z u
    

where 2z  satisfies  

  20,1 2P z   . 

By Theorem 1 and (5), we have  
Theorem 2: Under the assumptions in Part 2 of 

Theorem 1, we have  

 0 0Reject ,P H H   

and 

 0 1Reject 1P H H  . 

Therefore, our test is of asymptotic size   with 
asymptotic power one. 
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4. Simulation Studies 

4.1. Assessment of the Size 

In assessing the performance of the size of the test, we 
draw 5000 samples of size  from the following sto- 
chastic volatility process driven by a Brownian motion  

n

d dt t tX W  

with 

 1 2 1 2, d d d ,t t t t t tv v v t v B        

and  d d dt tE W B t . We take 1 16  , 0.5  , 
, 5 0.5     . Set the time horizon to be 1T   

(day) consisting of 6.5 trading hours. 
We use two different sample sizes, . 

Figure 1 shows the histograms of the test statistics under 
511, 1023n 

0 : 1H H  2 . The histograms imply that the normal 
approximation matches well the sampling distribution of 
the test statistics  under  2U 0H . 

Take the nominal level 5%  . The dot-dashed 
 

  

 

Figure 1. Histograms of the test statistics under : H0 n 511  

in the left panels;  in the right panels. n 1023

curve in Figure 2 gives the empirical sizes of the test 
based on  2U  against   when , from which 
we see that the type I error probabilities are well 
controlled. 

511n 

4.2. Assessment of the Power 

We simulate only the geometric fractional Brownian mo- 
tion for 5000 times, c.f. [20], i.e.,  

e e
H

t tX t B  ,  

where   and   are two constants. We take 0   
and   around 1 16  , in order to be comparable 
to the data generating process used in the assessment of 
the size. We set 511n  . The simulations when 

1023n   was also done but will not be listed here to 
save space. The conclusions are the same as those given 
below.  

Table 1 gives the averaged  over 5000 repe- 
titions. From the table, whatever the values of 

 2U
H  and 

 , they are very close to  and here 1pHk  2k  , 
2p  . Table 2 reports the empirical power of the test 

based on  2U . We make the following remarks. 
 The powers are insensitive to different values of  's. 
 The powers grow bigger as H  moves away from 

1 2 , and the test is very powerful especially when 
1 2 0.1H   . 

5. Real Data Analysis 

We now implement our test to some real data sets. The 
first three data sets are from the New York Stock Ex- 
change. Another two data sets, SZ000002 and SH000001, 
are from the Shenzhen Stock Exchange and Shanghai 
Stock Exchange of China, respectively. 

We use the stock price records of Microsoft (MSFT) in 
the trading days: Nov. 1, and Dec. 1., 2000, and that of 
Dell Company (DELL) in Dec. 1, 2011. All data sets are 
from the TAQ database. For prices recorded simul- 
taneously, we use the average. To weaken the po-ssi-ble 
effect from microstructure noise, we sparsely sample 
observations and the sample sizes for the aforementioned 
three trading days are 448, 568 and 528, respectively. If 
i.i.d. microstructure noises are assumed, then the micro- 
structure noise would drive  to  2U 1 2  as  n 
 

 

Figure 2. Empirical sizes of the test based on  U 2  against 

 . 
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Table 1. Averaged  U 2  over different  and H  . 

&H   0.1 0.2 0.25 0.3 0.4 0.5 2 12 H  

0.1 0.576 0.575 0.574 0.575 0.574 0.574 0.574 

0.2 0.660 0.660 0.660 0.659 0.659 0.659 0.660 

0.3 0.758 0.759 0.756 0.757 0.758 0.758 0.758 

0.4 0.869 0.869 0.870 0.869 0.870 0.868 0.871 

0.6 1.146 1.145 1.146 1.146 1.147 1.147 1.149 

0.7 1.314 1.315 1.314 1.315 1.315 1.313 1.320 

 
Table 2. Empirical powers of the test based on  U 2  over different  and H  . 

&H   0.1 0.2 0.25 0.3 0.4 0.5 

0.1 1.000 1.000 1.000 1.000 1.000 1.000 

0.2 1.000 1.000 1.000 1.000 1.000 1.000 

0.3 0.976 0.973 0.977 0.974 0.971 0.974 

0.4 0.558 0.562 0.554 0.555 0.552 0.572 

0.425 0.367 0.366 0.372 0.353 0.366 0.367 

0.45 0.208 0.203 0.197 0.199 0.191 0.195 

0.55 0.202 0.199 0.199 0.199 0.204 0.208 

0.575 0.406 0.408 0.400 0.409 0.414 0.400 

0.6 0.655 0.640 0.645 0.653 0.660 0.663 

0.7 0.997 0.998 0.998 0.998 0.998 0.999 

0.8 1.000 1.000 1.000 1.000 1.000 1.000 

0.9 1.000 1.000 1.000 1.000 1.000 1.000 

 
if . The results shown later demonstrate that the 
sparse sampling is effective since all estimated 

2k 
 2U  of 

all real data sets are away from 1 2 . Finally, we take 
logarithm of the sparsely sampled prices and use the log 
prices to calculate the test statistics. We set 1T   (day) 
consisting of 6.5 hours of trading time. 

The test statistics and an estimate of the Hurst 
parameter are provided in Table 3. U(2) is given in (3.5) 
with p = 2, its studentized form is given by t. Seen from 
the table, our test do not reject the use of Brownian 
motion as the driving force for all three data sets at the 
significance level of 5%. 

Next, we analyze the stock price records of SZ000002 
and SH000001. Prices are recorded from 9:25 am - 15:00 
pm in the trading day Jan. 1, 2004. Figure 3 displays the 
log prices against the time. An obvious dependence 
structure among returns is observed in both plots which 
demonstrates strong dependence between (log) returns. 

Test statistics and estimates of the Hurst parameters of 
the log price dynamics of these two stocks are given in 
Table 4. The sample sizes of SZ000002 and SH000001 
are respectively 356 and 394. Seen from Table 4, we 
have the following observations: 
 Although we do not reject 0H  for SZ000002, minor 

evidences of the departure of the driving force from 
the Brownian motion are seen. 

 Strong evidence against the Brownian motion as the 

driving force are shown for SH000001. 
 In contrast to Table 3, it looks that the dynamics of 

the two Chinese stocks deviate from semimartingales 
driven by the Brownian motion much while semi- 
martingales driven by the Brownian motion are still 
good approximation to the three U.S. stocks. This is 
in fact to be expected since the New York Stock Ex- 
change is a far more efficient market than the 
Shenzhen Stock Exchange and Shanghai Stock Ex- 
change. 

6. Discussions 

In this paper, we develop test to check whether the dri- 
ving force of continuous integral processes with drift is a 
Brownian motion or a fractional Brownian motion. There 
is little literature in this direction, and there are some 
interesting future research directions. Here are a couple 
of examples. 

1) It is commonly accepted that jumps exist in price 
processes, which has been well studied in the literature. 
So it is of interest to extend our results to process with 
jump components. Here, the truncated power variation as 
in [21], should prove useful, and the results in this paper 
may still hold true for appropriate choice of . p

2) The effect of the microstructure noise to the test 
statistics will also be investigated in the future work.  
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Figure 3. Plots of the Prices of SZ000002 (left panel) and 
SH000001 (right panel) against Time. 
 
Table 3. Test Statistics and Estimate of the Hurst Parame- 
ter. 

Date & Statistics  2U  t  Ĥ  

Nov. 1, 2000 (MSFT) 0.96 0.35 0.4678

Dec. 1, 2000 (MSFT) 0.96 0.36 0.4739

Dec. 1, 2011 (DELL) 0.95 0.60 0.4594

 
Table 4. Test Statistics and Estimate of the Hurst Parame- 
ter,  (SZ000002) and  (SH000001). = 356n = 394n

Date & Statistics  2U  t  Ĥ  

Jan. 2, 2004 (SZ000002) 1.13 0.91 0.58

Jan. 2, 2004 (SH000001) 1.30 3.79 0.69

 
Asymptotically, the microstructure noise would drive 

 to . Multi scale technique or pre-averaging 
method would serve as good ways to eliminate the effect 
of the microstructure noise first, c.f. [18] and [22]. Many 
theoretical works and practical analyses can be done 
along this line. 

)( pU k1/
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Appendix A: Proofs of Main Theorems 

By the standard localization method, it suffices to prove 
the main results under the following strengthened assum- 
ptions. 

Assumption 3:   is a bounded process. 
In the sequel,  will stand for a constant that may 

take different values at different appearance. 
C

Proof of Theorem 1 Let  

 1

0
, d

T ppH
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Then Theorem 1 is a straightforward consequence of 

Proposition 1 of which the proof is given later in  
Appendix B. 

Proposition 1: Under Assumptions 1-3, if 1 4  , 
1 2   and 3 4H  , then we have  

   1 2
1 2, , , ,H H
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stably, where  is a centered bivariate Gaussian 
random vector conditional on  with  
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Proof of Theorem 2 The first convergence is a 
consequence of Theorem 1. Now we prove the second 
convergence. Under 1H ,  

    1 2ˆ l H
P nT

A l O    

and  ˆ 1T Pu O . Therefore we further have  

  2 1 1 2 1p P pH pU p k k k      

and  2 ˆ 1n T Pz u o  . By the rejection rule, the 
second convergence is proved. 

Appendix B: Proof of Proposition 1  

To prove Proposition 1, we need the following lemma. 
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Now, for , we have  2
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Proof of Proposition 1: Recall that  
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Then the left side of (8) is equal to 
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where W is a Brownian motion independent f . 
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which completes the proof of (8). 
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