
Journal of Information Security, 2018, 9, 265-298
http://www.scirp.org/journal/jis

ISSN Online: 2153-1242
ISSN Print: 2153-1234

DOI: 10.4236/jis.2018.94019 Oct. 11, 2018 265 Journal of Information Security

Generating Rule-Based Signatures for Detecting
Polymorphic Variants Using Data Mining and
Sequence Alignment Approaches

Vijay Naidu*, Jacqueline Whalley, Ajit Narayanan

School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand

Abstract
Antiviral software systems (AVSs) have problems in detecting polymorphic
variants of viruses without specific signatures for such variants. Previous
alignment-based approaches for automatic signature extraction have shown
how signatures can be generated from consensuses found in polymorphic va-
riant code. Such sequence alignment approaches required variable length vir-
al code to be extended through gap insertions into much longer equal length
code for signature extraction through data mining of consensuses. Non-nested
generalized exemplars (NNge) are used in this paper in an attempt to further
improve the automatic detection of polymorphic variants. The important
contribution of this paper is to compare a variable length data mining tech-
nique using viral source code to the previously used equal length data mining
technique obtained through sequence alignment. This comparison was achieved
by conducting three different experiments (i.e. Experiments I-III). Although
Experiments I and II generated unique and effective syntactic signatures, Ex-
periment III generated the most effective signatures with an average detection
rate of over 93%. The implications are that future, syntactic-based smart
AVSs may be able to generate effective signatures automatically from mal-
ware code by adopting data mining and alignment techniques to cover for
both known and unknown polymorphic variants and without the need for
semantic (run-time) analysis.

Keywords
NNge Classifier, Gap Penalties, JS.Cassandra Virus, Polymorphic Virus,
Automatic Signature Generation, Sequence Alignment, Syntactic Exploration

1. Introduction

Computer worms and viruses continue to grow despite improved intrusion de-

How to cite this paper: Naidu, V., Whal-
ley, J. and Narayanan, A. (2018) Generating
Rule-Based Signatures for Detecting Poly-
morphic Variants Using Data Mining and
Sequence Alignment Approaches. Journal
of Information Security, 9, 265-298.
https://doi.org/10.4236/jis.2018.94019

Received: August 30, 2018
Accepted: October 8, 2018
Published: October 11, 2018

Copyright © 2018 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jis
https://doi.org/10.4236/jis.2018.94019
http://www.scirp.org
https://doi.org/10.4236/jis.2018.94019
http://creativecommons.org/licenses/by/4.0/

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 266 Journal of Information Security

tection, firewall and antivirus software systems (AVSs). For a malware detection
system such as an AVS, the primary issue is to detect a worm or virus variant
that is not stored in its signature database. Modern detection methods are fre-
quently unable to detect new malware variants until they make an appearance
even when a signature of one variant of that particular malware is known [1] [2]
[3] [4], because of polymorphism. Such polymorphism usually leaves the payl-
oad instructions alone but changes the structure of the malware through mod-
ification in the encryption and decryption engines or through reordering of in-
structions [1] [5] [6] [7] [8] [9]. Polymorphism is typically built into the mal-
ware so that the same malware has both a structural (code sequence) and seman-
tic (execution path) difference when propagating. Even if a signature is found for
one variant of the malware through syntactic or semantic analysis, there is no
guarantee that the same signature will work for other variants of the same mal-
ware.

Current signature extraction is by manual assessment using semantic infor-
mation, by string-based syntactic approaches (see [10] [11] [12] [13] for more
detail), or by a learning system that is, as yet, unknown. It has been recom-
mended that learning sophisticated language classes, such as context-free or reg-
ular grammars, is not preferable from only positive inputs [14]. It is not known
what an optimal negative class of virus should be (e.g. viral code with the payl-
oad taken out, non-viral programs, arbitrary code, etc.). AVSs have just about
kept pace with new variants because of speedy and effective manual extraction of
signatures from execution traces. But polymorphic variants, so far, have exhi-
bited low levels of complexity, and growing sophistication of malware writers may
soon make this semantic and post-event approach infeasible [8] [9]. In the worst
possible case, a different signature may be required for every variant, leading to
constant updating of AVS signature libraries and increased time required to scan
incoming packets. For these reasons, a “smart” approach to automatic signature
generation based on a purely syntactic approach to learning (i.e. an approach
that does not require execution traces) is attractive.

A data mining algorithm (i.e. rule induction algorithm) is adopted in this pa-
per to search and extract meaningful and smart information from malware
source code in the form of rules which represent patterns (code sequence signa-
tures) in malware data. In particular, a nearest neighbor rule induction algo-
rithm such as NNge (details provided later) may work better in noisy domains
such as malware code where there may be obfuscation and deliberate introduc-
tion of redundancy. If it is possible to generate a rule-based signature automati-
cally from known polymorphic variants, it may also be possible to automatically
create signatures that can detect entirely new variants that have not previously
been encountered. If this is the case, future smart AVSs can be “pre-emptive” in
that they already know, to some extent, what future variants of a virus may look
like based on encountering known variants of that virus. The aim of this paper is
to explore this possibility in more detail.

https://doi.org/10.4236/jis.2018.94019

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 267 Journal of Information Security

One of the issues in applying data mining algorithms to malware data directly
is the problem of variable length strings [15], since most data mining algorithms
assume equal length strings. There is surprisingly little work on the application
of data mining algorithms to automatic malware signature generation, mainly
due to the issue of dealing with variable length strings to detect the critical seg-
ments of the malware from which to obtain signatures [16] [17]. The little work
that exists in data mining focuses on unusual behavior detection [18] [19] [20]
based on semantics. The variable length of malware execution traces makes the
application of most data mining algorithms difficult because of the default as-
sumption that strings to be mined are of equal length. On the syntactic front,
previous work [16] demonstrated how variable length malware source code
could be converted into (much longer) equal length code through insertion and
deletion of gaps by performing sequence alignment. However, no attempt was
made to input these equal length sequences directly into a data mining algo-
rithm.

The significance of this paper is to continue a purely syntactic exploration of
the possibility of generating signatures automatically from malware source code
without the need for semantic analysis. Syntactic techniques for signature ex-
traction based on structural detection of malware are relatively unexplored in
comparison to semantic techniques (i.e. techniques based on analyzing the ex-
ecution behavior of malware). The primary benefit with a syntactic or structural
technique is that new and previously unknown variants can be generated from
the extracted syntactic or structural rules of existing variants (see [13] for more
detail). For a semantic approach, an actual variant instance is required so that it
can be run to create an execution trace. This execution trace can be compared
with other execution traces from previous instances to determine whether a new
signature is required and, if so, how effective that signature is in detecting the
family of which this instance is a variant. For a syntactic approach, on the other
hand, the set of actual instances so far found is a subset of possible instances of
the language derivable using a grammar. Effectiveness of signatures can be de-
termined by generating numerous possible instances even if they have not oc-
curred.

Previous work used sequence alignment to extract consensuses (calculated
order of the most frequent symbols found in each position) from malware code
variants for the purpose of generating the minimum possible number of signa-
tures for detecting those variants and previously unseen variants. But there was
no attempt made to make the most of a by-product of the alignment for data
mining purposes, which is the output of equal length malware code of variants.
Our task in this paper is to compare signatures produced from the outcomes of
data mining the variable length malware code before alignment with the out-
comes of data mining the equal length malware code after alignment to deter-
mine which method produces better signatures automatically.

Malware is typically a script or program written first in a high-level language

https://doi.org/10.4236/jis.2018.94019

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 268 Journal of Information Security

(e.g. C, Java) and then compiled into hex code. The source code will contain in-
structions for the infector part (how to spread), the payload part (what action to
take) and methods for encryption/decryption to hide the malware intent. The
infector part also usually contains instructions on how to change the code so
that new variants are produced on infection. This leads to many “variants” of the
same family where the infector and payload are the same but differently coded.
The run-time behavior of the variant is used by human experts to generate sig-
natures (short strings of hex code) for storage in libraries of AVSs to scan in-
coming packets and the contents of memory to detect the variant and its family.
One of the main problems for AVSs is that polymorphic techniques that change
the order of the malware code can evade signatures that assume a constant
left-to-right ordering in malware code variants. As will be seen below, some very
old and well-known viruses still evade modern AVSs because their variants
adopt simple code sequence changes that cannot be detected by the latest signa-
tures.

The task of a syntactic learning system for signature generation of polymor-
phic malware using hex code only (i.e. no execution traces) is specified below
(see Figure 1):

a) From the code of a set of seen variants Ps, automatically generate signatures
to identify and detect unseen variants Pu, where Ps and Pu form currently known
variants Pk.

b) From the code of a set of known variants Pk, automatically generate signa-
tures to identify and detect unknown variants Px for cross-validation. In this
case, Px are code variants that have not been seen before for either training or
testing purposes.

The learning task is to maximize true positive rates, and minimize false positive

Figure 1. Our method comprising of eight steps.

Unknown Polymorphic Variants PX

Known Polymorphic Variants PK

Unseen Polymorphic
Variants PU

Seen
Polymorphic
Variants PS

https://doi.org/10.4236/jis.2018.94019

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 269 Journal of Information Security

and false negative rates in both cases above. As will be seen below, previous work
has addressed a) through sequence alignment techniques that use insertion op-
erations as well as substitution matrices for matching malware code. It is cur-
rently not known whether matching techniques that work well for a) will con-
tinue to work well for b), or whether data mining techniques that look for pat-
terns in underlying structure are required to allow generalization to unknown
variants.

Roadmap: Section 2 and Section 3 discuss the background and limitations of
previous work. Section 4 discusses previous related work relevant to this paper.
Section 5 and Section 6 discuss the data mining technique and sequence repre-
sentations adopted in this paper. In Section 7, we describe our systems and me-
thods. Section 8 summarizes the key features and steps by comparing the three
different sets of experiments conducted in Section 7. Section 9 discusses the re-
sults. That is Section 9-1) compares the data mining results obtained from three
different sets of experiments against other related work and Section 9-2) eva-
luates signatures generated through the three different sets of experiments
against state of the art AVS products, and on the detection of JS.Cassandra po-
lymorphic virus and its known and unknown variants. Section 10 and Section 11
contain the discussions and conclusions. The paper concludes with references
and Appendix section. Appendix Sections A1-A3 explain the three different
sets of experiments (Experiments I-III) that were individually performed with
these methods.

2. Background

A key development in syntactic approaches has been adoption of string-based
algorithms in bioinformatics for identifying structural matches in malware code.
Such algorithms do not just look for the presence or absence of characters in
specific positions but also manipulate the strings to allow for insertion of cha-
racters to expand the number of matching characters. Importantly, the results of
such string manipulation are a set of equal length strings from an initial set of
variable length strings. Earlier work [21] has demonstrated that string matching
and sequence alignment algorithms taken from bioinformatics perform best with
biologically represented strings (DNA or protein) rather than non-biological cha-
racter sets, possibly due to being optimized for chemistry-based mutations be-
tween characters. We follow previous approaches in transforming malware code
to an appropriate biological string representation before sequence alignment,
with transformation of consensuses (i.e., those parts of the malware strings that
are common) back to hexadecimal (hex) code for signature generation (see [21]
for more detail).

A sequence-based method to signature extraction was previously proposed
and illustrated utilizing the Smith-Waterman algorithm (SWA) without gap pe-
nalties [10]. The method adopted in [10] was further fine-tuned [11] by selecting
SWA with six different substitution matrices. Results demonstrated that it was

https://doi.org/10.4236/jis.2018.94019

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 270 Journal of Information Security

possible to extract signatures for pairs of malware strings and meta-signatures
for a family of malware after implementing data mining rule-extraction methods
(PRISM [22]) to the extracted signatures. That is, underlying patterns were
mined after two rounds of matching: the first round dealt with pairwise match-
ing of variable length malware variants to produce level 1 consensuses, where
each consensus was of different length to other consensuses; the second round
dealt with multisequence alignment of these variable length level 1 consensuses
to produce level 2 equal length consensuses, or signatures. The two-stage align-
ment process (pairwise followed by multiple) was required because of the com-
putational difficulty in running multiple sequence alignment directly on strings
of vastly different lengths, as malware variants of a family tend to be. The initial
pairwise alignment allowed pairwise recurring similarities to be first identified in
consensuses before these consensuses were themselves multiply aligned to pro-
duce level 2 consensuses (signatures). These level 2 consensuses of equal length
were then mined using PRISM to find underlying patterns, resulting in me-
ta-signatures. Another relevant enhancement in syntactic methods was also re-
cently published [12]. Two different dynamic programming techniques, namely,
Needleman-Wunsch and SWA, were explored for matching purposes, and it was
found that SWA gave the best results with 100% of unseen Pu variants in the test
set Pk being detected. Recent work [13] adopted ten different combinations of
gap open and gap extend penalties in conjunction with dynamic programming.
It was found that changes in these parameters helped to generate effective sig-
natures for detecting unseen Pu (test set Pk) polymorphic variants.

3. Limitations of Previous Work

Previous work using a sequence alignment approach [10] [11] [12] [13] had two
limitations. First, the string matching search using the SWA found only the most
optimally-conserved meta-signatures using left-to-right matching techniques. It
was not known how successful these meta-signatures would be when used against
unknown Px variants where code has been moved and restructured (i.e. case b)
above), thereby reducing the number of left-to-right matches. A rule-based or
top-down approach that tries to find underlying patterns may overcome the li-
mitation of signatures generated in left to right order, thereby reducing or nulli-
fying the false positive and false negative rates [23] [24]. Rule-based signatures
obtained in this way might potentially capture knowledge which makes the iden-
tification and detection of unknown Px variants possible. Thus, the rule-based
NNge approach (more details in Section 5) is explored in this research and de-
tailed in this paper.

A second limitation, as noted above, was that the alignment using SWA was
“pairwise” and only allowed alignment of two viral sequences at a time in the
first round of alignment. Multiple sequence alignment was then used on all pair-
wise consensuses to generate equal length sequences for rule-based data mining
using PRISM. However, in the first round, only those regions of similarity in the

https://doi.org/10.4236/jis.2018.94019

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 271 Journal of Information Security

pairwise alignment were extracted rather than regions of similarity across all vir-
al sequences. It was not known how much “family” information was lost through
pairwise comparison of variants. A rule-based data mining approach, on the
other hand, allows all sequences to be used to extract signatures should take into
account all the information in all the sequences at the same time, including both
family generic and variant specific information. This should then lead to more
effective signatures.

4. Related Work

The main body of research over the last fifteen years has concentrated on mal-
ware detection adopting semantic-based approaches and only a few adopting
syntactic-based approaches. A list of approaches to automatic signature genera-
tion is presented in Table 1. Practically all previous approaches deal with only a
restricted set of variants belonging to the same malware family and it is currently
not known how generalizable these approaches are for detecting other variants
of the same family, either unseen (Pu) or unknown (Px). In our approach, new Pu
and previously unknown Px structural variants belonging to the JS.Cassandra
polymorphic viral family are provided by one of the most respected grey hat
hackers.

Some other related and selected previous work that primarily focuses on mal-
ware detection using data mining and bioinformatics approaches are shown in
Table 2. Very little research has been undertaken using data mining and bioin-
formatics approaches for the detection of polymorphic virus and its unseen Pu

Table 1. Related research to the automatic signature generation in malware detection.

Researchers/Application Type of Malware Type of Approach Description

Wespi et al. [25] Intrusions Semantic
Variable length patterns from training data consisting of system call
traces of commands under normal execution were analyzed by a
sequence-based algorithm called Teiresias for intrusion detection.

Honeycomb [26], Autograph
[27] and Early Bird [28]

Worms Syntactic
Generate signatures that constitute individual adjoining byte strings
(tokens).

Polygraph [29]
Polymorphic

worms
Syntactic

Generates an array of tokens, a subsequence of tokens and Bayes
signatures based on probabilistic methods to detect polymorphic worms.

Nemean [30] Worms Semantic Focus on generating signatures that defend against worms.

PAYL [31] Worms Semantic
Produces subsequence signature tokens that associate ingress/egress
payload notifications to detect the initial replication of worms.

Hamsa [32]
Polymorphic

worms
Semantic

Produces a set of signature tokens that can deal with polymorphic
worms by investigating their invariant activity.

ShieldGen [33] Worms Semantic
Generates network signatures for unseen vulnerabilities (worms) that
are based on protocol-aware for instance.

AutoRE [34] Botnets Semantic
Produces a spam signature creation architecture from spam emails that
use botnets to detect them.

Coull and Szymanski [35] Masquerade Semantic
Sequence alignment was used to identify masquerade detection by
comparing “audit data” with legitimate user signatures extracted from
their actual command line entries.

https://doi.org/10.4236/jis.2018.94019

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 272 Journal of Information Security

Continued

Scheirer et al. [36]
Polymorphic

worms
Syntactic and

Semantic
Detection of many polymorphic worms and uses intrusion detection
techniques such as sliding window schemes and instruction semantics.

Wurzinger et al. [37] Botnets Semantic

Detects botnets that are under the influence of botmaster (malicious
body) using network signatures by examining the response from a
compromised host to a received command and by generating detection
models.

Botzilla [38]
Malware
binaries

Semantic
Produces signatures for the malicious activities (traffic) created by a
malware binary executed several times within a controlled domain.

Zhao et al. [39]
General
malware
datasets

Semantic

Generates signatures through an inverse transcoding method by
converting the malware sequential information, such as system call
sequences, propagation dataflow, etc. into amino acid sequences and
then aligning them using multiple sequence alignment tool.

ProVex [40] Botnets Semantic

Generates signatures to detect botnets that use encrypted command and
control (C & C) systems after being given the keys and decryption
routine employed by the malware be derived using binary code reuse
strategy.

FIRMA [41] Botnets Semantic Detects C & C systems but does not produce signatures for those.

Ki et al. [42]
Worms, Trojans,

etc.
Semantic

Generates sequences that are typical API call sequence motifs of
malicious activities belonging to several malware samples and employed
multiple sequence alignment tool to align those malware samples to
extract signatures.

MalGene [43]
Evasive malware

samples
Semantic

Uses sequence alignment techniques on two sequences of system call
events belonging to two different analysis environments: one
environment in which the malware evades the AVS, and the other in
which it exhibits the malicious activities. These events are used to
construct an “evasion signature” using sequence alignment.

Table 2. Some related and selected previous work in malware detection using data mining and bioinformatics approaches.

Researchers Data Mining Data Set Type of Malware Type of Approach

Chen et al.
[16]

Data Mining Classifiers
Algorithms i.e. ANNs (Artificial
Neural Networks) i.e.
JavaNNS and Symbolic Rule
Extraction i.e. J48 classifier

60 malicious files, 30
belonging to virus group and
30 belonging to worm group.

One family, with a total of
60 malicious samples, 30
each for virus and worm
categories.

Extraction of hex sequences from
viral and worm malicious files.
Multiple sequence alignment using
T-Coffee was applied on the extracted
hex sequences for data mining
process.

Kumar et al.
[44]

Data Mining Classifier
Algorithms i.e. IBK (k-nearest
neighbours classifier)

Existing dataset: 323
malicious files with a
combination of viruses and
worms.
New upcoming dataset: 323
malicious files with a
combination of viruses and
worms.

Virus and Worm.

Extraction of hex sequences from
viral files and conversion of hex
sequences into ASCII sequences.
Multiple sequence alignment was
applied on the converted ASCII
sequences for data mining process.

Prabha et al.
[45]

Data Mining Classifier
Algorithms i.e. J48, KNN
(K-Nearest Neighbours), Naïve
Bayes.

100 binaries out of which 90
were benign and 10 were
malware binaries.

15 subfamilies, with a total
of 1056 malicious
viral samples.

Extraction of hex dumps/Extraction
of byte sequences in terms of n-grams
of different sizes.

https://doi.org/10.4236/jis.2018.94019

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 273 Journal of Information Security

Continued

Srakaew et al.
[18]

Data Mining Classifier
Algorithm i.e. J48 by generating
decision trees.

Reference Data Set: 1200 files
in total out of which 900 are
malicious and 300 are
non-malicious.
Application Data Set: 3251
files in total out of which
2951 are malicious and 300
are non-malicious.

Reference Data Set:
Allapple, Podhuha and
Virut viral families each
containing 300 malicious
samples.
Application Data Set:
Allapple, Podhuha and
Virut viral families with
890, 8 and 2,053 malicious
samples, respectively.

Statistical Features Approach:
Conversion of malicious and
non-malicious files into hex
sequences for extracting statistical
aspects using n-grams of bytes.
Abstract Assembly Approach:
Conversion of malicious and
non-malicious files into assembly
instructions for extracting selected
instructions using n-grams of
interesting opcodes.

variants, let alone its unknown Px variants. The syntactic approach most closely
related [44] adds nothing new to what was published by Chen et al. in 2012 [16],
and replicates the structural sequence alignment and data mining approaches
adopted in that paper and subsequently refined by [10] [11] [12] [13].

Previous use of sequence alignment and data mining has for the most part
been semantic in nature, depending on system behavior patterns or using n-grams
of bytes instead of code or structural patterns for the detection of malware. Also,
because of their semantic nature, the generalizability of the results to new Pu va-
riants generated through polymorphism is unknown. A purely syntactic-oriented
approach, on the other hand, is based on the intuition that most new Pu (poly-
morphic) variants are simple syntactic variations of existing versions. The com-
plicating aspect is variable length variations. The “expressive power” of signa-
tures can be estimated by detecting how well these signatures generalize to un-
seen Pu and unknown Px variants of the same family, all obtained through poly-
morphic (structural) alterations to the code. The benefit of a syntactic approach
is that no semantics is needed. More importantly, as will be shown below, the
number of malware training instances required to extract signatures for use
against unseen Pu test instances is exceptionally small given the sequence align-
ment and data mining approaches adopted in the experiments.

5. Data Mining

Previous work [11] used PRISM on the consensuses derived after two rounds of
alignment to generate rule-based signatures by performing several train/test
(Ps/Pu) iterations with an overall accuracy of 62%. Although PRISM and NNge
are both rule induction algorithms, the theoretical advantages of choosing NNge
over PRISM are due to its potential for improved accuracy and production of
extensive or verbose rules. Optimizing rules to produce minimal redundancy is
counter-productive in malware signature generation, especially when trying to
deal with Px instances and to keep false positive and negative rates low. Moreo-
ver, in NNge, frequent removal of data instances and restoration of the training
dataset are not required unlike in PRISM. These steps are overcome in NNge by
joining the instances to its nearest neighbour (more details below).

As an instance of a polymorphic string-based technique, consider the structu-

https://doi.org/10.4236/jis.2018.94019

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 274 Journal of Information Security

rally-related set of sentences [11]:
The cat saw the mouse (Class 1)

The mouse was seen by the cat (Class 2)
We see that the cat saw the mouse (Class 1)

We see that the mouse was seen by the cat (Class 2)
PRISM and NNge were applied on the four structurally-related set of se-

quences by categorizing them into two classes, namely: Class 1—cat saw the
mouse and Class 2—mouse was seen by the cat. The variable length strings were
converted into equal length strings by expanding the shorter strings to have a
length equal to the longest string by adding the letter “x” at the end of each short
string.

PRISM gave the following rules with 75% accuracy after four iterations (“pos”
= position):

If pos1 = the, pos2 = cat, pos3 = saw, pos4 = the, pos5 = cat, pos7 = the, pos8=
mouse, pos9 = x and pos10 = x then Class 1

If pos2 = mouse, pos3 = was, pos4 = seen, pos6 = was, pos7 = seen, pos8 = by,
pos9 = the, pos9 = x and pos10 = x then Class 2

NNge gave the following rules with 100% accuracy (“^” = conjunction; “{}”
signifies disjunctive options):

Class 1 IF: pos1 in {the, we} ^ pos2 in {cat, see} ^ pos3 in {saw, that} ^ pos4 in
{the} ^ pos5 in {cat, mouse} ^ pos6 in {saw, x} ^ pos7 in {the, x} ^ pos8 in
{mouse, x} ^ pos9 in {x} ^ pos10 in {x}

Class 2 IF: pos1 in {the, we} ^ pos2 in {mouse, see} ^ pos3 in {was, that} ^
pos4 in {the, seen} ^ pos5 in {mouse, by} ^ pos6 in {the, was} ^ pos7 in {cat,
seen} ^ pos8 in {by, x} ^ pos9 in {the, x} ^ pos10 in {cat, x}

The strings were extracted from the above-mentioned PRISM and NNge rules
and are shown as follows in their corresponding classes:

PRISM:
Class 1: the cat saw the cat the mouse
Class 2: mouse was seen was seen by the
NNge:
Class 1: the we cat see saw that the cat mouse saw the mouse
Class 2: the we mouse see was that the seen mouse by the was cat seen by the

cat
The results on this example string set show that NNge can generate rules with

100% accuracy over PRISM, which generated rules with 75% accuracy. One of
the aims of this paper is to determine whether this result is generalizable to
many more instances of strings (variants) belonging to different classes (fami-
lies).

NNge, first introduced by Martin (1995), is a nearest neighbor algorithm and
an expansion of Nge [46], which generalizes by merging exemplars [47] and
forming hyperrectangles in feature space that represent conjunction rules
(if-then rules) with internal disjunction. The learning is incremental; each ex-

https://doi.org/10.4236/jis.2018.94019

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 275 Journal of Information Security

ample is first classified and then generalized by joining the example to its nearest
neighbor, either a single instance or a hyperrectangle, in the same class. Each
hyperrectangle is converted into a production rule. When a hyperrectangle cov-
ers just one instance it is regarded to be non-generalized exemplar [48]. An in-
stance of a hyperrectangle is shown below [49]:

class B if p1 = (2 or 4 or 6) AND

p2 = (22) AND

(p3 ≥ 9 AND p3 ≤ 32) AND

p4 = (b or c)

This hyperrectangle covers strings “42210b” and “62231c” but not “3118b”,
for instance. Within the NNge algorithm [49] (see below), creating the collection
of hyperrectangles starting from the training collection is an accumulative pro-
cedure where, for every instance In, the subsequent three stages are consecutively
enforced, i.e. classification, model adjustment and generalization. The classifica-
tion stage locates the hyperrectangle Gb which is nearest to In. The model ad-
justment stage divides the hyperrectangle Gb if it covers an inconsistent instance.
The generalization stage extends Gb in sequence to cover In at most if the genera-
lized instance does not overlap/cover an inconsistent instance/hyperrectangle
[48].

NNge Algorithm:
For each instance In in the training collection do:
Locate the hyperrectangle Gb which is nearest to In /*Classification Stage*/
IF D (Gb, In) = 0 THEN
IF class (In) ≠ class (Gb) THEN Divide/Split (Gb, In) /*Adjustment Stage*/
ELSE G’: = Extend (Gb, In) /*Generalization Stage*/
IF G’ overlaps with inconsistent hyperrectangles
THEN add In as a non-generalized exemplar
ELSE Gb: = G’
The classification stage is formulated based on the distance D(I, G) between

an instance I = (I1, I2, …, In) and a hyperrectangle G as shown in Equation (1)
(Classification Stage).

() () 2

max min
1

,
,

n
k k

k
k k k

d I G
D I G w

I I=

=

 −

∑ (1)

In Equation (1), min
kI and max

kI indicate the set of numerical values across
the training collection which correspond to attribute k. For categorical (i.e.
nominal) attributes, the length of this set is constantly 1. Gk is the interval
[min

kG , max
kG] if Ik is a quantitative attribute, and is a list of values if Ik is a ca-

tegorical attribute. The distance between the corresponding hyperrectangle i.e.
the “side”, and the attribute values is formulated based on the type of the
attribute, as illustrated in Equation (2) (Distance between the Corresponding
Hyperrectangle).

https://doi.org/10.4236/jis.2018.94019

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 276 Journal of Information Security

()

()

min max

min min

max max

0, belongs to
, ,

1, otherwise

0,

,
,

,

k k
num k k

k k k

num k k k k k k

k k k k

I G
d I G

G I G
d I G G I I G

I G I G

=

 ≤ ≤

= − <
 − >

 (2)

The constant wk signifies weights corresponding to attributes and can be re-
gulated throughout the training procedure [46] or can be assigned to mutual in-
formation [48] [50].

The adjustment stage is implemented when a previously created hyperrectan-
gle covers an instance associated with a different class. To circumvent the crea-
tion of nested hyperrectangles NNge regulates the current hyperrectangle so that the
inconsistent instance is eliminated. This is accomplished by splitting the hyper-
rectangle into two or more hyperrectangles and potentially into a few isolated
variants/instances. The generalization stage comprises modifying the “border” of
the nearest hyperrectangle possessing the same class as the training case in order
to cover it. The extension is obtained only when the newly split hyperrectangle
does not overlap with hyperrectangles possessing a separate class. If the overlap
is detected the training case is included in the model as a non-generalized exem-
plar [48].

6. Sequence Representations

In the experiments that follow, two different types of code representation are
tested for data mining using NNge. The first type uses the hex representation
and the second uses a DNA version of the hex representation, using the conver-
sion rules as follows:

Conversion of hexadecimal into binary code was accomplished employing the
subsequent rules: “1” → “0001”; “2” → “0010”; “3” → “0011”; “4” → “0100”; “5” →
“0101”; “6” → “0110”; “7” → “0111”; “8” → “1000”; “9” → “1001”; “0” → “0000”;
“a” → “1010”; “b” → “1011”; “c” → “1100”; “d” → “1101”; “e” → “1110”; and “f” →
“1111”. Successive conversion of the binary code into DNA sequences was ac-
complished employing the subsequent rules: “00” → “A”; “11” → “T”; “10” →
“G”; and “01” → “C”.

So, for instance, the hex string “1234567890abcdef” becomes
“0001001000110100010101100111100010010000101010111100110111101111” (binary
code) and then becomes “ACAGATCACCCGCTGAGCAAGGGTTATCTGTT”
(DNA sequence).

The experiments are intended to check whether data mining using DNA code
produces better results than using hex code. Once viral code is converted to
DNA code, sequence alignment using publicly validated and provably tested
alignment software becomes possible.

Also, in the experiments below, “padding” was required to convert variable
length viral strings into equal length strings for two of the experiments (Experi-
ments I and II). For example, given hex strings “13ad3” and “245335623f”, pad-

https://doi.org/10.4236/jis.2018.94019

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 277 Journal of Information Security

ding produces “13ad3xxxxxx” to make both strings of equal length.

7. Systems and Methods

Methods Overview (Experiments I-III): The method in Experiment I consists of
six steps, summarized as follows. Step-1 deals with virus code variant generation
Pk and separating the training set Ps from the test set Pu. Step-2 deals with the
process of variable length data mining on a small percentage of the training Ps
and test Pu sets using NNge classifier to generate rules for string extraction.
Step-3 deals with the extraction of common training sequences (i.e. strings, or
first-level rule-based consensuses) using the NNge rules. Step-4 deals with con-
verting the hex code of the training Ps and test Pu sets (obtained from Step-1) as
well as first-level consensuses (obtained from Step-3) into a form (in this case,
DNA) acceptable for sequence alignment. Step-5a deals with the process of
pairwise (local) sequence alignment between the first-level consensuses and
some variants of the training set Ps (both obtained from Step-4) using the SWA
to produce equal length sequences (i.e. second-level consensuses). Step-5b deals
with the extraction of meta-signatures, or common substrings, from these
second-level consensuses. Step-6 deals with the conversion of meta-signatures
back into viral hex code for the purpose of signature testing against Pk and Px
viral sets. More details concerning each step are supplied in Figure A1 in the
Appendix section.

The method in Experiment II consists of six steps. The same procedure as Ex-
periment I was used along with the same training Ps and test Pu sets, with the
only difference being that some variants of the training set Ps were converted in-
to DNA format prior to the process of variable length data mining. More details
concerning each step are supplied in Figure A2 in the Appendix section.

The method in Experiment III consists of seven steps. The same procedure as
Experiments I and II was adopted and the same training Ps and test Pu sets were
used, with the only difference being an additional step of multiple sequence
alignment on the training set Ps to produce equal length sequences prior to the
process of equal length data mining. More details concerning each step are sup-
plied in Figure A3 in the Appendix section.

8. Comparison of Three Sets of Experiments in Detail

Experiment I consist of taking 22 viral strings in hex (11 malicious (set M) and
11 non-malicious (set NM)), applying NNge to MHEX and NMHEX, and convert-
ing the NNge results into two variable length strings (N1HEX, N2HEX), as shown in
the “cat mouse” examples previously. The hex strings are then converted to
DNA for pairwise sequence alignment between N1DNA and Ps on the one hand
and N2DNA and Ps on the other. This produces consensuses C1DNA (between
N1DNA and Ps) and C2DNA (N2DNA and Ps), and these consensus C1DNA and C2DNA
become the meta-signatures for use against Pk and Px after converting back into
hex (i.e. C1HEX and C2HEX). Therefore, the viral code remains in hex format until

https://doi.org/10.4236/jis.2018.94019

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 278 Journal of Information Security

just before pairwise sequence alignment. Set NM in this paper is defined as
malware that is generated by eliminating their key polymorphic functions and
are partially functional with no payload properties.

Experiment II consists of taking 22 viral strings in hex (11 malicious (set M)
and 11 non-malicious (set NM)). MHEX and NMHEX are then converted to DNA
before applying NNge to MDNA and NMDNA, and converting the NNge results in-
to two variable length strings (N1DNA, N2DNA). The N1DNA and N2DNA are then
pairwise sequenced against Ps. This produces C1DNA (between N1DNA and Ps) and
C2DNA (N2DNA and Ps), and C1DNA and C2DNA become the meta-signatures for use
against Pk and Px after converting back into hex (i.e. C1HEX and C2HEX). The dif-
ference between Experiment I and Experiment II is that the viral strings are
converted to DNA first before NNge is applied.

Experiment III consists of taking 22 viral strings in hex (11 malicious (set M)
and 11 non-malicious (set NM)). MHEX and NMHEX are then converted to DNA.
Multiple sequence alignment is then applied on MDNA and NMDNA to produce
equal length sequences ME and NME. Then NNge is applied to ME and NME to
produce variable length strings N1DNA and N2DNA. N1DNA and N2DNA are then
pairwise sequenced against Ps. This produces C1DNA (between N1DNA and Ps) and
C2DNA (N2DNA and Ps), and C1DNA and C2DNA become the meta-signatures for use
against Pk and Px after converting back into hex (i.e. C1HEX and C2HEX). The dif-
ference between Experiment II and Experiment III is that the viral strings are
multiply aligned first to produce equal length strings before NNge is applied.

Table 3 summarizes the key features and steps by comparing the three sets of
experiments (Experiments I-III) performed in this paper. Variable length data
mining techniques produced ten unique and 13 common meta-signatures (C1HEX
and C2HEX). Experiment I generated five unique and four common meta-signatures
(C1HEX and C2HEX). Experiment II generated 5 unique and nine common me-
ta-signatures (C1HEX and C2HEX). Equal length data mining technique (Experi-
ment III) produced 43 unique and five common meta-signatures (C1HEX and
C2HEX). As can be seen from Table 3, the length of sequences, and therefore the
number of attributes where each position in a sequence represents an attribute
value, varies from over 20,000 to over 90,000, making both sequence alignment
and data mining heavy computational and memory-intensive tasks.

9. Results

1) Comparison of the Data Mining Results Obtained from Three Sets of
Experiments as Well as from Other Related and Selected Previous Work

Table 4 presents the results of Experiments I-III and compares those results
with the virus detection results presented in previously published works (see Ta-
ble 2). In the case of the work by Chen et al. [16] only the percentages of cor-
rectly detected and incorrectly detected instances were reported (as for J48 me-
thod) and in the case of Prabha et al. [45] no performance metrics were re-
ported. In the case of Srakaew et al. [18] other overall performance metrics such

https://doi.org/10.4236/jis.2018.94019

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 279 Journal of Information Security

Table 3. Comparison of three sets of experiments.

Features/Steps
Variable length data mining Equal length data mining

Experiment I Experiment II Experiment III

Hex to DNA conversion
For the process of pairwise
sequence alignment only.

For the processes of data
mining and pairwise sequence

alignment.

For the processes of multiple sequence
alignment, data mining and pairwise sequence

alignment.

Multiple sequence alignment for
the process of data mining

No No Yes

Conversion of variable length
sequences into equal length

sequences

By adding the letter “x”
towards the end of each

sequence until all the variable
length sequences were of equal

lengths.

By adding the letter “X”
towards the end of each

sequence until all the variable
length sequences were of equal

lengths.

By the process of multiple sequence
alignment. All the gaps introduced by the

process of alignment were substituted by “X”.

Total number of attributes for the
process of data mining

24,565 49,129 93,438

Total number of labels for the
process of data mining

17 (hex labels: a - f, 0 - 9 and x)
Five (DNA labels: A, T, G, C

and X)
Five (DNA labels: A, T, G, C and X)

File size of the ARFF file 2.49 MB 3.87 MB 7.38 MB

Total time taken to generate NNge
results by Weka

2 minutes and 32 seconds 6 minutes and 13 seconds 32 minutes and 28 seconds

Time taken to build model 0.62 second 0.73 second 1.23 seconds

Correctly classified instances
(%)—Accuracy

22/22 (100.00%) 0/22 (0.00%) 22/22 (100.00%)

Incorrectly classified instances
(%)—Inaccuracy

0/22 (0.00%) 22/22 (100.00%) 0/22 (0.00%)

Kappa statistic 1 −1 1

Mean absolute error 0 1 0

Root mean squared error 0 1 0

Relative absolute error (%) 0.00% 200.00% 0.00%

Root relative squared error (%) 0.00% 200.00% 0.00%

Total number of instances 22 22 22

Total number of rules generated
Two (one for malicious

class and one
for non-malicious class)

Two (one for malicious
class and one for

non-malicious class)

Three (one for malicious class
and two for non-malicious class)

Sequence lengths of extracted
hex/DNA data (first-level

consensuses) from NNge rules

Malicious (hex): 123,338
Non-Malicious (hex): 37,249

Malicious (DNA): 132,103
Non-Malicious (DNA): 41,670

Malicious (DNA): 161,495
Non-Malicious 1 (DNA): 59,740
Non-Malicious 2 (DNA): 11,860

Total number of pairwise
alignments performed

Six (three each for malicious
and non-malicious classes)

Six (three each for malicious
and non-malicious classes)

Nine (three each for malicious, non-malicious
1 and non-malicious 2 classes)

Total number of meta-signatures
(C1HEX, C2HEX) generated

Nine (Four for malicious class
and five for non-malicious

class)

14 (Nine for malicious class
and five for non-malicious

class)

48 (31 for malicious class, nine for
non-malicious class 1 and eight for

non-malicious class 2)

Total number of unique
meta-signatures (C1HEX, C2HEX)

Five Five 43

Total number of common
meta-signatures (C1HEX, C2HEX)

Four Nine Five

https://doi.org/10.4236/jis.2018.94019

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 280 Journal of Information Security

Table 4. Comparison of the results of Experiments I-III with those reported previously for data mining approaches to malware
detection reported in the related work section (see Table 2).

Data Mining based
Techniques

Correctly
Classified

Instances (%)

Incorrectly
Classified

Instances (%)

TP (True
Positive)

Rate

FP (False
Positive)

Rate
Precision Recall F1 Score

Experiment I (Variable length) 100.00% 0.00% 1 0 1 1 1

Experiment II (Variable length) 0.00% 100.00% 0 1 0 0 0

Experiment III (Equal length) 100.00% 0.00% 1 0 1 1 1

Chen et al. [16]—J48
before alignment

Training 85.00% 15.00% - - - - -

5-fold cross validation 60.00% 40.00% - - - - -

10-fold cross validation 63.33% 36.67% - - - - -

15-fold cross validation 68.33% 31.67% - - - - -

20-fold cross validation 60.00% 40.00% - - - - -

Chen et al. [16]—J48
after double alignment

Training 96.67% 3.33% - - - - -

5-fold cross validation 78.33% 21.67% - - - - -

10-fold cross validation 66.67% 33.33% - - - - -

15-fold cross validation 70.00% 30.00% - - - - -

20-fold cross validation 63.33% 36.67% - - - - -

Kumar et al. [44]
Existing (known)dataset (Average) 95.9752% 4.0248% 0.96 0.094 0.962 0.96 0.959

New (unknown)dataset (Average) 86.6873% 13.3127% 0.867 0.275 0.872 0.867 0.858

Prabha et al. [45] - - - - - - - -

Statistical method by
Srakaew et al. [18]

Reference Set 98.9167% 1.0833% - - - - -

Application Set 95.0477% 4.9523% - - - - -

10-fold cross validation 95.333% 4.667% - - - - -

Abstract assembly
method by Srakaew et

al. [18]

Reference Set 99.75% 0.25% - - - - -

Application Set 98.39% 1.661% - - - - -

10-fold cross validation 99.5% 0.5% - - - - -

as true positive rate, false positive rate, precision, recall and F1 score were not
reported. These results are not presented here.

Experiments I and III gave results which outperformed those previously re-
ported achieving 100% correctly classified instances and thus 0% incorrectly
classified instances (see Table 4). Although Experiment II achieved 100% incor-
rectly classified instances and thus 0% correctly classified instances, the me-
ta-signatures (C1HEX and C2HEX) extracted in this experiment successfully de-
tected the JS.Cassandra variants (known Pk and unknown Px). Meta-signatures
(C1HEX and C2HEX) extracted in Experiment III were the most effective (~62%) of
all followed by the meta-signatures (C1HEX and C2HEX) extracted in Experiments I
(~55%) and II (43%) (see Section 9-2). The fact that the meta-signatures (C1HEX
and C2HEX) in DNA format performed better if the DNA sequences were aligned
prior to rule mining (Experiment III vs. Experiment II) and extraction is also re-

https://doi.org/10.4236/jis.2018.94019

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 281 Journal of Information Security

flected in the results of the work reported by Chen et al. [16], where improved
classification was observed if J48 classification was performed after a double
alignment process.

2) An Evaluation of the State of the Art AVS Products and Meta-Signatures
(C1HEX and C2HEX) on the Detection of JS.Cassandra Virus and Its Known Pk
and Unknown Px Variants

Table 5 presents the detection ratio obtained using the meta-signatures
(C1HEX and C2HEX) generated in Experiments I to III and five current state of the
art AVSs. The malicious meta-signatures C1HEX4 (I), C1HEX9 (II), and C1HEX26 (III)

Table 5. Detection ratio using five state of the art AVSs and the 14 most effective malicious and 8 non-malicious meta-signatures
(C1HEX and C2HEX) from Experiments I to III with Clamscan scanner.

Files
Scanned

Metrics
Virus Detection Method

AVG AntiVir ClamAV ESET F-Prot

352 known
(Pk)

JS.Cassandra
Malicious
Variants

Detection Ratio
(Accuracy)

312/352 (88.64%) 25/352 (7.10%) 340/352 (96.59%) 296/352 (84.09%) 4/352 (1.14%)

Sensitivity/Recall 88.64% 7.10% 96.59% 84.09% 1.14%

Specificity 0.00% 0.00% 0.00% 0.00% 0.00%

Precision 100% 100% 100% 100% 100%

F1 Score 93.97% 13.26% 98.26% 91.36% 2.25%

43
JS.Cassandra
Non-Malicio

us (Pu)
Variants

Detection Ratio
(Accuracy)

0/43 (0.00%) 1/43 (2.32%) 0/43 (0.00%) 0/43 (0.00%) 0/43 (0.00%)

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00%

Specificity 100% 97.67% 100% 100% 100%

Precision 0.00% 0.00% 0.00% 0.00% 0.00%

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00%

352 Random
JavaScript

Files

Detection Ratio
(Accuracy)

0/352 (0.00%) 0/352 (0.00%) 0/352 (0.00%) 0/352 (0.00%) 0/352 (0.00%)

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00%

Specificity 100% 100% 100% 100% 100%

Precision 0.00% 0.00% 0.00% 0.00% 0.00%

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00%

Files
Scanned

Metrics

Malicious C1HEX1 (I),
C1HEX3 (II),

non-malicious C2HEX41
(III) and C2HEX43 (III)

Malicious C1HEX3
(I) and

C1HEX6 (II)

Malicious
C1HEX7 (II)

Malicious C1HEX4 (I),
C1HEX9 (II),

non-malicious C2HEX37
(III)

Malicious C1HEX5
(III)

352 known
(Pk)

JS.Cassandra
Malicious
Variants

Detection Ratio
(Accuracy)

340/352 (96.59%) 85/352 (24.15%) 325/352 (92.33%) 352/352 (100%) 340/352 (96.59%)

Sensitivity/Recall 96.59% 24.15% 92.33% 100% 96.59%

Specificity 0.00% 0.00% 0.00% 0.00% 0.00%

Precision 100% 100% 100% 100% 100%

F1 Score 98.26% 38.90% 96.01% 100% 98.26%

https://doi.org/10.4236/jis.2018.94019

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 282 Journal of Information Security

Continued

43
JS.Cassandra
Non-Malicio

us (Pu)
Variants

Detection Ratio
(Accuracy)

6/43 (13.95%) 1/43 (2.32%) 20/43 (46.51%) 43/43 (100%) 8/43 (18.60%)

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00%

Specificity 86.05% 97.67% 53.49% 0.00% 81.39%

Precision 0.00% 0.00% 0.00% 0.00% 0.00%

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00%

352 Random
JavaScript

Files

Detection Ratio
(Accuracy)

0/352 (0.00%) 0/352 (0.00%) 0/352 (0.00%) 0/352 (0.00%) 0/352 (0.00%)

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00%

Specificity 100% 100% 100% 100% 100%

Precision 0.00% 0.00% 0.00% 0.00% 0.00%

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00%

Files
Scanned

Metrics Malicious C1HEX9 (III)
Malicious C1HEX15

(III)
Malicious

C1HEX20 (III)
Malicious C1HEX24 (III)

Malicious C1HEX26
(III)

352 known
(Pk)

JS.Cassandra
Malicious
Variants

Detection Ratio
(Accuracy)

329/352 (93.46%) 344/352 (97.73%) 191/352 (54.26%) 202/352 (57.39%) 352/352 (100%)

Sensitivity/Recall 93.46% 97.73% 54.26% 57.39% 100%

Specificity 0.00% 0.00% 0.00% 0.00% 0.00%

Precision 100% 100% 100% 100% 100%

F1 Score 96.62% 98.85% 70.35% 72.93% 100%

43
JS.Cassandra
Non-Malicio

us (Pu)
Variants

Detection Ratio
(Accuracy)

1/43 (2.32%) 29/43 (67.44%) 9/43 (20.93%) 14/43 (32.56%) 43/43 (100%)

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00%

Specificity 97.67% 32.56% 79.07% 67.44% 0.00%

Precision 0.00% 0.00% 0.00% 0.00% 0.00%

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00%

352 Random
JavaScript

Files

Detection Ratio
(Accuracy)

0/352 (0.00%) 0/352 (0.00%) 0/352 (0.00%) 0/352 (0.00%) 0/352 (0.00%)

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00%

Specificity 100% 100% 100% 100% 100%

Precision 0.00% 0.00% 0.00% 0.00% 0.00%

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00%

Files
Scanned

Metrics Malicious C1HEX27 (III)
Non-malicious

C2HEX7 (I), C2HEX11
(II)

Non-malicious
C2HEX8 (I)

Non-malicious C2HEX12
(II)

Non-malicious
C2HEX35 (III)

352 known
(Pk)

JS.Cassandra
Malicious
Variants

Detection Ratio
(Accuracy)

140/352 (39.77%) 339/352 (96.31%) 140/352 (39.77%) 325/352 (92.33%) 352/352 (100%)

Sensitivity/Recall 39.77% 96.31% 39.77% 92.33% 100%

Specificity 0.00% 0.00% 0.00% 0.00% 0.00%

Precision 100% 100% 100% 100% 100%

F1 Score 56.91% 98.12% 56.91% 96.01% 100%

https://doi.org/10.4236/jis.2018.94019

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 283 Journal of Information Security

Continued

43
JS.Cassandra
Non-Malicio

us (Pu)
Variants

Detection Ratio
(Accuracy)

3/43 (6.98%) 37/43 (86.04%) 16/43 (37.21%) 20/43 (46.51%) 43/43 (100%)

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00%

Specificity 93.02% 13.95% 62.79% 53.49% 0.00%

Precision 0.00% 0.00% 0.00% 0.00% 0.00%

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00%

352 Random
JavaScript

Files

Detection Ratio
(Accuracy)

0/352 (0.00%) 0/352 (0.00%) 0/352 (0.00%) 0/352 (0.00%) 0/352 (0.00%)

Sensitivity/Recall 0.00% 0.00% 0.00% 0.00% 0.00%

Specificity 100% 100% 100% 100% 100%

Precision 0.00% 0.00% 0.00% 0.00% 0.00%

F1 Score 0.00% 0.00% 0.00% 0.00% 0.00%

and the non-malicious meta-signatures C2HEX35 (III) and C2HEX37 (III) successful-
ly detected all 352 known (Pk) malicious variants of the JS.Cassandra polymor-
phic virus, where (I), (II) and (III) represent the meta-signatures (C1HEX and
C2HEX) generated from Experiments I, II and III. None of the five state of the art
AVSs fully detected all known (Pk) JS.Cassandra variants. Scan results for AVG,
AntiVir and F-Prot AVS products were obtained from an open source online
website known as “Gary’s Hood” [51]. We used “Gary’s Hood” online tool [51]
as it allows multiple files to be scanned at the same time adopting the four exist-
ing AVS products/scanners (i.e. AVG, AntiVir, ClamAV and F-Prot). ESET AVS
product was installed on a private machine with Windows based operating sys-
tem and Clamscan antivirus scanner was installed on a private machine with
Linux based (Linux Mint) [52] operating system using their own ClamAV data-
base and using the own generated (.ndb) databases [10] containing the corres-
ponding malicious or non-malicious meta-signature (C1HEX and C2HEX). The da-
tabases of all the AVS products were up-to-date with the latest updates.

In total, 71 meta-signatures (9 meta-signatures from Experiment I, 14 me-
ta-signatures from Experiment II and 48 meta-signatures from Experiment III)
were generated from malicious and non-malicious sequences. All the 71 me-
ta-signatures (C1HEX and C2HEX) were scanned/tested against the 352 known (Pk)
JS.Cassandra malicious variants, 43 JS.Cassandra non-malicious (Pu) variants
and 352 random JavaScript files individually by placing these meta-signatures
inside their own generated (.ndb) database [10]. The testing process was con-
ducted using Clamscan antivirus scanner. None of the scans took longer than a
second.

Table 5 shows the scan results of some of the effective meta-signatures tested
against the malicious, non-malicious and random datasets. Non-malicious
C2HEX7 (I) and C2HEX11 (II) detected 339 out of the 352 (with 96.31% accuracy)
JS.Cassandra malicious (Pk) variants, whereas non-malicious C2HEX41 (III) and
C2HEX43 (III) detected 340 out of the 352 (with 96.59% accuracy) JS.Cassandra

https://doi.org/10.4236/jis.2018.94019

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 284 Journal of Information Security

malicious (Pk) variants. Malicious C1HEX1 (I) and C1HEX3 (II) (i.e. meta-signature
number 1 and meta-signature number 3 of the 71 meta-signatures for the mali-
cious class C1) detected 340 out of the 352 (with 96.59% accuracy) JS.Cassandra
malicious (Pk) variants, whereas malicious C1HEX15 (III) detected 344 out of the
352 (with 97.73% accuracy) JS.Cassandra malicious (Pk) variants. The reason
non-malicious meta-signatures (C2HEX) detect malicious variants and malicious
meta-signatures (C1HEX) detect non-malicious variants is that the malicious and
non-malicious variants both contain common functions which lead to the gen-
eration of common meta-signatures between the two classes C1HEX and C2HEX
(see Table 3 for total number of common meta-signatures).

Malicious C1HEX4 (I), C1HEX9 (II), C1HEX26 (III) along with non-malicious
C2HEX35 (III) and C2HEX37 (III) were the only five meta-signatures (C1HEX and
C2HEX) that fully detected all 43 non-malicious (Pu) JS.Cassandra variants. These
meta-signatures (C1HEX and C2HEX) not only detected 352 malicious (Pk) variants
successfully but also detected 43 non-malicious (Pu) variants. As noted in Figure
A1, non-malicious (Pu) variants still had some polymorphic functions intact in-
side. All 43 non-malicious (Pu) variants were still executable. The results pre-
sented in Table 5 shows that none of the existing AVSs fully detected these
non-malicious (Pu) variants as malicious.

The same batch of 71 meta-signatures (C1HEX and C2HEX) was once again
tested against the 100 unknown (Px) JS.Cassandra malicious variants by using
the own generated (.ndb) database [10]. The testing process was conducted us-
ing Clamscan antivirus scanner. The uniqueness of these 100 new (Px) malware
variants was cross-checked by generating a CRC32b hash value for each variant,
and no duplicates were found. Table 6 gives the detection ratio obtained by
testing the 71 meta-signatures (C1HEX and C2HEX) generated in Experiments I to
III and two current state of the art AVSs (ClamAV and Bitdefender Total Secu-
rity 2017) against the 100 new (Px) JS.Cassandra variants. ClamAV and Bitde-
fender Total Security 2017 AVSs had overall accuracies of 85% and 0%, respec-
tively, and meta-signatures (C1HEX and C2HEX) from Experiments I-III using

Table 6. Detection ratio using two state of the art AVSs and the 71 meta-signatures (C1HEX and C2HEX) obtained from Experiments
I to III with Clamscan antivirus scanner.

Files Scanned Metrics

Virus Detection Method

ClamAV
Bitdefender

Total Security
2017

Nine
Meta-Signatures
(Experiment I)

14
Meta-Signatures
(Experiment II)

48
Meta-Signatures
(Experiment III)

100 unknown (Px)
JS.Cassandra

Malicious
Variants

Detection Ratio
(Accuracy)

85/100 (85.00%) 0/100 (0.00%) 100/100 (100.00%) 100/100 (100.00%) 100/100 (100.00%)

Sensitivity/Recall 85.00% 0.00% 100.00% 100.00% 100.00%

Specificity 0.00% 0.00% 0.00% 0.00% 0.00%

Precision 100.00% 100.00% 100.00% 100.00% 100.00%

F1 Score 91.89% 0.00% 100.00% 100.00% 100.00%

https://doi.org/10.4236/jis.2018.94019

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 285 Journal of Information Security

Clamscan had overall accuracies of 100%, across all three experiments (see Table
6). Table 6 shows that all 100 (accuracy of 100%) JS.Cassandra unknown (Px)
variants were successfully detected by the Clamscan using the .ndb database
augmented with our meta-signatures.

The 71 meta-signatures (C1HEX and C2HEX) were tested for false positives. First,
any duplicate meta-signatures (C1HEX and C2HEX) along with meta-signatures
(C1HEX and C2HEX) that were six characters or below were removed. In total, 26
meta-signatures (i.e. 16 malicious C1HEX and 10 non-malicious C2HEX) were re-
moved from the generated (.ndb) database [10]. The remaining 45 me-
ta-signatures (C1HEX and C2HEX) were tested against the 352 known (Pk) variants,
43 non-malicious (Pu) variants, 100 new (Px) variants and 18,123 clean files. The
clean files contained a combination of 9000 PDF files, 500 Microsoft document
files, 96 Linux files, 100 JAR files, 108 PDF files with embedded 3D videos, 200
RTF files and 8119 Microsoft Windows files. These files were obtained from a
BlogSpot called “contagio” [53].

Figures 2(a)-(c) are the screenshots of the scan results indicating that 352 of
the 352 known (Pk) malicious variants, 43 of the 43 non-malicious (Pu) variants
and 100 of the 100 unknown (Px) malicious variants were successfully identified
as infected by the Clamscan antivirus scanner using the 45 meta-signatures
(C1HEX and C2HEX). Figure 2(d) shows that only 29 of the 18,123 clean files were

Figure 2. Screenshot of the scan results obtained from Clamscan antivirus scanner for JS.Cassandra variants and clean files
using the 45 meta-signatures (C1HEX and C2HEX).

https://doi.org/10.4236/jis.2018.94019

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 286 Journal of Information Security

detected as false positives (0.159% false positive rate) using the 45 meta-signatures
(C1HEX and C2HEX), thereby satisfying the false positive rate requisite of 0.1%.

10. Discussions

It was found from the experiments conducted in this paper that Experiment III
(equal length data mining technique) gave the highest number of successful me-
ta-signatures (C1HEX and C2HEX) in comparison to Experiments I and II (variable
length data mining technique). Experiment II gave the lowest number of suc-
cessful meta-signatures (C1HEX and C2HEX). Not only did Experiment III gave the
highest number of meta-signatures (C1HEX and C2HEX), but it also gave the high-
est number of effective meta-signatures (C1HEX and C2HEX). Moreover, Experi-
ment III generated meta-signatures (C1HEX and C2HEX) that were not generated
in Experiments I and II. The importance of multiple sequence alignment prior to
data mining significantly improved both the quality and quantity of me-
ta-signatures (C1HEX and C2HEX) in comparison to Experiments I and II. In com-
parison to previous reported work (see Section 4 and Section 5), the syntactic
approach to automatic signature generation using NNge successfully has ad-
dressed the limitations of previous work by generating signatures in the quick-
est, simplest and most accurate manner.

In total, 45 out of the 71 overall meta-signatures (C1HEX and C2HEX) i.e. around
63.38% (33.80% malicious (24/71) and 29.58% non-malicious (21/71)) were ef-
fective i.e. detected seen (Ps) and unseen (Pu) variants from the two different types
of groups (i.e. malicious and non-malicious). Specifically, six out of the nine
meta-signatures (C1HEX and C2HEX) generated from Experiment I (i.e. around 66.66%
meta-signatures—44.44% malicious (4/9) and 22.22% non-malicious (2/9)) detected
seen (Ps) and unseen (Pu) variants belonging to malicious and non-malicious
groups (see Table 5). And seven out of the 14 meta-signatures (C1HEX and
C2HEX) generated from Experiment II (i.e. 50% meta-signatures—28.57% mali-
cious (4/14) and 21.43% non-malicious (3/14)) detected seen (Ps) and unseen (Pu)
variants belonging to malicious and non-malicious groups (see Table 5). Addi-
tionally, 32 out of the 48 meta-signatures (C1HEX and C2HEX) generated from Ex-
periment III (i.e. 66.66% meta-signatures—35.41% malicious (17/48) and 31.25%
non-malicious (15/48)) detected seen (Ps) and unseen (Pu) variants belonging to
malicious and non-malicious groups (see Table 5). Only 11 out of the 30 effec-
tive meta-signatures (C1HEX and C2HEX) obtained from Experiment III are shown
in Table 5.

As Experiments I and II were performed using two different representational
approaches (i.e. hex/DNA) along with Experiment III containing aligned DNA
sequences, all with the same (unchanged) instances each time, some of the me-
ta-signatures (C1HEX and C2HEX) obtained from the three sets were identical to
each other. Malicious C1HEX1 (I), C1HEX3 (II), non-malicious C2HEX41 (III) and
C2HEX43 (III) share identical meta-signature. On the other hand, malicious C1HEX4
(I), C1HEX9 (II) and non-malicious C2HEX37 (III) share identical meta-signature.

https://doi.org/10.4236/jis.2018.94019

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 287 Journal of Information Security

Although Experiment II generated rules with 100% inaccuracy, the overall com-
bined percentage of effective meta-signatures (C1HEX and C2HEX) generated from
all three sets of experiments was 57.75%. On the other hand, the overall com-
bined percentage of non-effective meta-signatures (C1HEX and C2HEX) generated
from all three sets of experiments was 42.25%.

The key differences between previous related work [10] [11] [12] [13] and the
work presented here are as follows:

1) Previous work adopted left-to-right string matching techniques to find the
most optimally-conserved meta-signatures. The work presented in this paper
adopts a rule-based or top-down approach that attempts to find underlying pat-
terns.

2) Previous work generated equal length consensuses using sequence align-
ment techniques, whereas the current work generates variable length consensus-
es adopting a variable length data mining technique (NNge).

3) Previous work adopted pairwise alignment techniques for extracting signa-
tures which only allowed alignment of two viral sequences at a time taking into
account only the information available in the sequence pair. This work allows all
sequences to be used to extract signatures and so takes into account all the in-
formation in all the sequences at the same time, including both family generic
and variant specific information.

11. Conclusions

In this paper, some of the limitations (discussed in Section 3) of previous work
[10] [11] [12] [13] were addressed. The learning task of maximizing true positive
rates and minimizing false positive and false negative rates was satisfied. A syntac-
tic approach was investigated and three sets of experiments were conducted which
involved various approaches to automatic signature generation using the NNge
classifier to generate rules that distinguish between malicious and non-malicious
files. The results show that this string-based syntactic approach using an NNge
rule generation and subsequent extraction and sequence alignment using SWA
can successfully generate signatures (C1HEX and C2HEX) which are capable of de-
tecting the known (Pk) (i.e. seen and unseen) as well as unknown (Px) polymor-
phic variants of the JS.Cassandra virus (see Table 5, Table 6 and Figure 2). Re-
markably, this research demonstrated that it is possible to detect seen (Ps) (train-
ing set), unseen (Pu) (test set) as well as unknown (Px) variants using the training
signatures obtained from a very small proportion (typically 3% and below) of
training variants of that test family. A minimal number of training variants was
deliberately chosen because the need to detect large numbers of test variants
from a minimal number of training variants accurately represents the syntactic
malware signature generation approach in the real world.

The use of newly generated novel (Px) variants differentiates our approach
from all previous research that adopts existing malware samples from an online
repository. In comparison to the semantic-based approaches as shown in Table

https://doi.org/10.4236/jis.2018.94019

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 288 Journal of Information Security

1, we explored a purely syntactic approach which produces variable length syn-
tactic viral signatures (C1HEX and C2HEX) that detect known (Pk) and unknown
(Px) variants belonging to a polymorphic viral family (JS.Cassandra virus), inde-
pendently of execution traces, and without needing numerous infections.

In conclusion, the contributions of this paper are listed as follows:
1) Adopting a data mining algorithm, NNge, to generate rule-based signatures

automatically from real malware data.
2) Comparing variable length data mining algorithm to equal length data

mining algorithm using NNge on malware source code by conducting three dif-
ferent experiments (Experiments I-III).

3) Distinguishing malicious variants from non-malicious with the help of
rules generated using the data mining algorithm, NNge.

4) Testing the derived rule-based signatures against real malware data and
comparing the results to other commercial AVSs.

5) Comparing the overall performance metrics such as true positive rate, false
positive rate, precision, recall, etc. with other related work on malware detection
using data mining algorithms.

6) Detecting known Pk (i.e. Ps and Pu) and unknown Px variants of a poly-
morphic malware family using rule-based signatures (see Figure 1 for the dis-
tribution of polymorphic malware variants).

More work is required to apply the current rule-based approach to more in-
tricate polymorphic as well as metamorphic viruses.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Thompson, G.R. and Flynn, L.A. (2007) Polymorphic Malware Detection and Iden-

tification via Context-Free Grammar Homomorphism. Bell Labs Technical Journal,
12, 139-147. https://doi.org/10.1002/bltj.20256

[2] Harley, D. and Lee, A. (2007) The Root of All Evil?—Rootkits Revealed.
http://eset.version-2.sg/softdown/manual/Whitepaper-Rootkit_Root_Of_All_Evil.p
df

[3] Mishra, U. (2010) An Introduction to Virus Scanners.
https://ssrn.com/abstract=1916673

[4] Rad, B.B., Masrom, M. and Ibrahim, S. (2011) Evolution of Computer Virus Con-
cealment and Anti-Virus Techniques: A Short Survey. International Journal of
Computer Science Issues, 8, 113-121.

[5] Vinod, P., Laxmi, V. and Gaur, M.S. (2009) Survey on Malware Detection Methods.
Proceedings of the 3rd Hackers’ Workshop on Computer and Internet Security,
Kanpur, 17-19 March 2009, 74-79.

[6] Cesare, S. and Xiang, Y. (2010) A Fast Flowgraph Based Classification System for
Packed and Polymorphic Malware on the Endhost. Proceedings of the 24th IEEE In-
ternational Conference on Advanced Information Networking and Applications,

https://doi.org/10.4236/jis.2018.94019
https://doi.org/10.1002/bltj.20256
http://eset.version-2.sg/softdown/manual/Whitepaper-Rootkit_Root_Of_All_Evil.pdf
http://eset.version-2.sg/softdown/manual/Whitepaper-Rootkit_Root_Of_All_Evil.pdf
https://ssrn.com/abstract=1916673

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 289 Journal of Information Security

Perth, 20-23 April 2010, 721-728.

[7] Cesare, S., Xiang, Y. and Zhou, W. (2013) Malwise—An Effective and Efficient
Classification System for Packed and Polymorphic Malware. IEEE Transactions on
Computers, 62, 1193-1206. https://doi.org/10.1109/TC.2012.65

[8] Rad, B.B., Masrom, M. and Ibrahim, S. (2012) Camouflage in Malware: From En-
cryption to Metamorphism. International Journal of Computer Science and Net-
work Security, 12, 74-83.

[9] Cabrera, A. and Calix, R.A. (2016) On the Anatomy of the Dynamic Behavior of
Polymorphic Viruses. Proceedings of the 2016 International Conference on Colla-
boration Technologies and Systems, Orlando, 31 October-4 November 2016,
424-429. https://doi.org/10.1109/CTS.2016.0081

[10] Naidu, V. and Narayanan, A. (2016) A Syntactic Approach for Detecting Viral Po-
lymorphic Malware Variants. In: Chau, M., et al., Eds., Pacific Asia Workshop on
Intelligence and Security Informatics (PAISI), LNCS 9650, Springer, Berlin,
146-165.

[11] Naidu, V. and Narayanan, A. (2016) The Effects of Using Different Substitution
Matrices in a String-Matching Technique for Identifying Viral Polymorphic Mal-
ware Variants. Proceedings of the IEEE Congress on Evolutionary Computation,
Vancouver, 24-29 July 2016, 2903-2910.

[12] Naidu, V. and Narayanan, A. (2016) Needleman-Wunsch and Smith-Waterman
Algorithms for Identifying Viral Polymorphic Malware Variants. Proceedings of the
14th IEEE International Conference on Dependable, Autonomic and Secure Com-
puting, Auckland, 8-12 August 2016, 326-333.

[13] Naidu, V., Whalley, J. and Narayanan, A. (2017) Exploring the Effects of Gap-Penalties
in Sequence-Alignment Approach to Polymorphic Virus Detection. Journal of In-
formation Security, 8, 296-327. https://doi.org/10.4236/jis.2017.84020

[14] Gold, E. (1967) Language Identification in the Limit. Information and Control, 5,
447-474. https://doi.org/10.1016/S0019-9958(67)91165-5

[15] Xinguang, T., Miyi, D., Chunlai, S. and Xin, L. (2009) Detecting Network Intrusions
by Data Mining and Variable-Length Sequence Pattern Matching. Journal of Sys-
tems Engineering and Electronics, 20, 405-411.

[16] Chen, Y., Narayanan, A., Pang, S. and Tao, B. (2012) Malicious Software Detection
Using Multiple Alignment and Data Mining. Proceedings of 26th International
Conference on Advanced Information Networking and Applications, Fukuoka,
26-29 March 2012, 8-14.

[17] Narayanan, A. and Chen, Y. (2013) Bio-Inspired Data Mining: Treating Malware
Signatures as Biosequences. Computing Research Repository (CoRR), 1-33.

[18] Srakaew, S., Piyanuntcharatsr, W. and Adulkasem, S. (2015) On the Comparison of
Malware Detection Methods Using Data Mining with Two Feature Sets. Interna-
tional Journal of Security and Its Applications, 9, 293-318.
https://doi.org/10.14257/ijsia.2015.9.3.23

[19] Rieck, K., Holz, T., Willems, C., Düssel, P. and Laskov, P. (2008) Learning and Clas-
sification of Malware Behavior. In: Zamboni, D., Ed., International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment, LNCS 5137,
Springer, Berlin, 108-125.

[20] Singhal, P. and Raul, N. (2012) Malware Detection Module Using Machine Learn-
ing Algorithms to Assist with Centralized Security in Enterprise Networks. Interna-
tional Journal of Network Security & Its Applications, 4, 61-67.
https://doi.org/10.5121/ijnsa.2012.4106

https://doi.org/10.4236/jis.2018.94019
https://doi.org/10.1109/TC.2012.65
https://doi.org/10.1109/CTS.2016.0081
https://doi.org/10.4236/jis.2017.84020
https://doi.org/10.1016/S0019-9958(67)91165-5
https://doi.org/10.14257/ijsia.2015.9.3.23
https://doi.org/10.5121/ijnsa.2012.4106

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 290 Journal of Information Security

[21] Naidu, V. and Narayanan, A. (2014) Further Experiments in Biocomputational
Structural Analysis of Malware. 10th International Conference on Natural Compu-
tation, Xiamen, 19-21 August 2014, 605-610.

[22] Cendrowska, J. (1988) PRISM: An Algorithm for Inducing Modular Rules. Interna-
tional Journal of Man-Machine Studies, 27, 349-370.
https://doi.org/10.1016/S0020-7373(87)80003-2

[23] Witten, I.H. More Data Mining with Weka. Class 3, Lesson 1, Decision Trees and
Rules. University of Waikato, Hillcrest. http://www.cs.waikato.ac.nz/

[24] Koklu, M., Kahramanli, H. and Allahverdi, N. (2015) Applications of Rule Based
Classification Techniques for Thoracic Surgery. Management, Knowledge and
Learning—Joint International Conference 2015—Technology, Innovation and In-
dustrial Management, Bari, 27-29 May 2015, 1991-1998.

[25] Wespi, A., Dacier, M. and Debar, H. (1999) An Intrusion-Detection System Based
on the Teiresias Pattern-Discovery Algorithm. IBM Thomas J. Watson Research
Division.

[26] Kreibich, C. and Crowcroft, J. (2004) Honeycomb: Creating Intrusion Detection
Signatures Using Honeypots. ACM SIGCOMM Computer Communication Review,
34, 51-56. https://doi.org/10.1145/972374.972384

[27] Kim, H.-A. and Karp, B. (2004) Autograph: Toward Automated, Distributed Worm
Signature Detection. USENIX Security Symposium, San Diego, 286.

[28] Singh, S., Estan, C., Varghese, G. and Savage, S. (2004) Automated Worm Finger-
printing. OSDI, 4.

[29] Newsome, J., Karp, B. and Song, D. (2005) Polygraph: Automatically Generating
Signatures for Polymorphic Worms. IEEE Symposium on Security and Privacy,
Oakland, 8-11 May 2005, 226-241.

[30] Yegneswaran, V., Giffin, J.T., Barford, P. and Jha, S. (2005) An Architecture for
Generating Semantic-Aware Signatures. 14th USENIX Security Symposium, Balti-
more, 1-5 August 2005, 97-112.

[31] Wang, K., Cretu, G. and Stolfo, S.J. (2005) Anomalous Payload-Based Worm Detec-
tion and Signature Generation. In: International Workshop on Recent Advances in
Intrusion Detection, Springer, Berlin, 227-246.

[32] Li, Z., Sanghi, M., Chen, Y., Kao, M.-Y. and Chavez, B. (2006) Hamsa: Fast Signa-
ture Generation for Zero-Day Polymorphic Worms with Provable Attack Resi-
lience. IEEE Symposium on Security and Privacy, Berkeley, 21-24 May 2006, 15.

[33] Cui, W., Peinado, M., Wang, H.J. and Locasto, M.E. (2007) Shieldgen: Automatic
Data Patch Generation for Unknown Vulnerabilities with Informed Probing. IEEE
Symposium on Security and Privacy, Oakland, 20-23 May 2007, 252-266.

[34] Xie, Y., Yu, F., Achan, K., Panigrahy, R., Hulten, G. and Osipkov, I. (2008) Spam-
ming Botnets: Signatures and Characteristics. ACM SIGCOMM Computer Com-
munication Review, 38, 171-182. https://doi.org/10.1145/1402946.1402979

[35] Coull, S.E. and Szymanski, B.K. (2008) Sequence Alignment for Masquerade Detec-
tion. Computational Statistics & Data Analysis, 52, 4116-4131.
https://doi.org/10.1016/j.csda.2008.01.022

[36] Scheirer, W. and Chuah, M.C. (2008) Syntax vs. Semantics: Competing Approaches
to Dynamic Network Intrusion Detection. International Journal of Security and
Networks, 3, 24-35. https://doi.org/10.1504/IJSN.2008.016199

[37] Wurzinger, P., Bilge, L., Holz, T., Goebel, J., Kruegel, C. and Kirda, E. (2009) Au-
tomatically Generating Models for Botnet Detection. In: European Symposium on

https://doi.org/10.4236/jis.2018.94019
https://doi.org/10.1016/S0020-7373(87)80003-2
http://www.cs.waikato.ac.nz/
https://doi.org/10.1145/972374.972384
https://doi.org/10.1145/1402946.1402979
https://doi.org/10.1016/j.csda.2008.01.022
https://doi.org/10.1504/IJSN.2008.016199

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 291 Journal of Information Security

Research in Computer Security, Springer, Berlin, 232-249.

[38] Rieck, K., Schwenk, G., Limmer, T., Holz, T. and Laskov, P. (2010) Botzilla: Detect-
ing the Phoning Home of Malicious Software. Proceedings of the ACM Symposium
on Applied Computing, Sierre, 22-26 March 2010, 1978-1984.

[39] Zhao, Y., Tang, Y., Wang, Y. and Chen, S. (2013) Generating Malware Signature
Using Transcoding from Sequential Data to Amino Acid Sequence. International
Conference on High Performance Computing and Simulation, Helsinki, 1-5 July
2013, 266-272.

[40] Rossow, C. and Dietrich, C.J. (2013) Provex: Detecting Botnets with Encrypted
Command and Control Channels. In: International Conference on Detection of In-
trusions and Malware, and Vulnerability Assessment, Springer, Berlin, 21-40.
https://doi.org/10.1007/978-3-642-39235-1_2

[41] Rafique, M.Z. and Caballero, J. (2013) Firma: Malware Clustering and Network
Signature Generation with Mixed Network Behaviors. In: International Workshop
on Recent Advances in Intrusion Detection, Springer, Berlin, 144-163.

[42] Ki, Y., Kim, E. and Kim, H.K. (2015) A Novel Approach to Detect Malware Based
on API Call Sequence Analysis. International Journal of Distributed Sensor Net-
works, 2015, Article No. 4. https://doi.org/10.1155/2015/659101

[43] Kirat, D. and Vigna, G. (2015) Malgene: Automatic Extraction of Malware Analysis
Evasion Signature. Proceedings of the 22nd ACM SIGSAC Conference on Comput-
er and Communications Security, Denver, 12-16 October 2015, 769-780.

[44] Kumar, V. and Mishra, S.K. (2013) Detection of Malware by Using Sequence
Alignment Strategy and Data Mining Techniques. International Journal of Com-
puter Applications, 61, 16-19.

[45] Prabha, A.P.M. and Kavitha, P. (2012) Malware Classification through HEX Con-
version and Mining. Proceedings of International Conference on E-Governance &
Cloud Computing Services, December 2012, 6-12.

[46] Salzberg, S. (1991) A Nearest Hyperrectangle Learning Method. Machine Learning,
6, 277-309. https://doi.org/10.1007/BF00114779

[47] Panda, M. and Patra, M.R. (2009) Semi-Naïve Bayesian Method for Network Intru-
sion Detection System. In: Leung, C.S., et al., Eds., 16th International Conference on
Neural Information Processing, Part I, LNCS 5863, Springer, Berlin, 614-621.

[48] Zaharie, D., Perian, L. and Negru, V. (2011) A View inside the Classification with
Non-Nested Generalized Exemplars. IADIS European Conference Data Mining.

[49] Martin, B. (1995) Instance-Based Learning: Nearest Neighbour with Generalisation.
Working Paper Series 95/18 Computer Science, Hamilton, University of Waikato,
Hillcrest, 90.

[50] Wettschereck, D. and Dietterich, T.G. (1995) An Experimental Comparison of the
Nearest-Neighbor and Nearest-Hyperrectangle Algorithms. Machine Learning, 19,
1-25. https://doi.org/10.1007/BF00994658

[51] Gary’s Hood (2016) Online Virus Scanner. http://www.garyshood.com/virus/

[52] Linux Mint (2016) From Freedom Came Elegance. https://www.linuxmint.com/

[53] Contagio (2013) 16,800 Clean and 11,960 Malicious Files for Signature Testing and
Research.
http://contagiodump.blogspot.co.nz/2013/03/16800-clean-and-11960-malicious-file
s.html

[54] Oracle VM VirtualBox (2016) VirtualBox. https://www.virtualbox.org/

https://doi.org/10.4236/jis.2018.94019
https://doi.org/10.1007/978-3-642-39235-1_2
https://doi.org/10.1155/2015/659101
https://doi.org/10.1007/BF00114779
https://doi.org/10.1007/BF00994658
http://www.garyshood.com/virus/
https://www.linuxmint.com/
http://contagiodump.blogspot.co.nz/2013/03/16800-clean-and-11960-malicious-files.html
http://contagiodump.blogspot.co.nz/2013/03/16800-clean-and-11960-malicious-files.html
https://www.virtualbox.org/

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 292 Journal of Information Security

[55] JS. Cassandra by Second Part to Hell (2015) rRlF#4 (Redemption).
http://spth.virii.lu/rrlf4/rRlf.13.html

[56] Viruses (2004) Second Part to Hell’s Artworks VIRUSES.
http://spth.virii.lu/Cassandra-testset.rar

[57] ClamavNet (2015) ClamAV Is an Open Source Antivirus Engine for Detecting Tro-
jans, Viruses, Malware & Other Malicious Threats. https://www.clamav.net/

[58] Weka 3: Data Mining Software in Java (2016) Weka 3—Data Mining with Open
Source Machine Learning Software in Java. http://www.cs.waikato.ac.nz/ml/weka/

[59] JAligner (2010) JAligner: Java Implementation of the Smith-Waterman Algorithm
for Biological Sequence Alignment—SourceForge. http://jaligner.sourceforge.net/

[60] VirusTotal (2016) Free Online Virus, Malware and URL Scanner.
https://www.virustotal.com/

[61] Katoh, K., Misawa, K., Kuma, K. and Miyata, T. (2002) MAFFT: A Novel Method
for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform. Nucleic
Acids Research, 30, 3059-3066. https://doi.org/10.1093/nar/gkf436

[62] Katoh, K. and Standley, D.M. (2013) MAFFT Multiple Sequence Alignment Soft-
ware Version 7: Improvements in Performance and Usability. Molecular Biology
and Evolution, 30, 772-780. https://doi.org/10.1093/molbev/mst010

[63] MAFFT Alignment and NJ/UPGMA Phylogeny (2016) MAFFT Version 7.
http://mafft.cbrc.jp/alignment/server/index.html

https://doi.org/10.4236/jis.2018.94019
http://spth.virii.lu/rrlf4/rRlf.13.html
http://spth.virii.lu/Cassandra-testset.rar
https://www.clamav.net/
http://www.cs.waikato.ac.nz/ml/weka/
http://jaligner.sourceforge.net/
https://www.virustotal.com/
https://doi.org/10.1093/nar/gkf436
https://doi.org/10.1093/molbev/mst010
http://mafft.cbrc.jp/alignment/server/index.html

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 293 Journal of Information Security

Appendix
A1. Experiment I

More details referring to the steps involved in this experiment can be found in
the previous work [13] and Figure A1. Our method for Experiment I consists of
six steps (see Figure A1).

Hex dump extraction (Step-1) and testing (Step-6) were undertaken on a
stand-alone system to prevent possible unintended infection of other systems.
Downloading of polymorphic malware (and seen Ps as well as unseen Pu variants)
was performed using “Oracle VM VirtualBox” [54] (an x86 software package
with virtualization capability) with a pre-installed Linux-based (Linux Mint) [52]
operating system image. Due to possible security sensitivity, some of the me-
thods below (Step-1 and Step-6) are not described in detail, especially details
concerning generating hex dumps from polymorphic malware. Interested read-
ers are requested to contact the corresponding author, using their academic
email addresses, for further information.

23 withheld variants (Ps and Pu) were selected for Experiment I. A CRC32b
hash value was generated for each of these 23 withheld variants and no dupli-
cates were found, indicating that they were unique. The percentage of training to

Figure A1. Our method for Experiment I comprising of six steps.

https://doi.org/10.4236/jis.2018.94019

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 294 Journal of Information Security

test ratio (Ps to Pu) in Pk for malicious JS.Cassandra virus is 3.125% (11:352). A
severely reduced proportion of training to test samples was used to reflect the
current difficulty in detecting signatures that generalize from a small, previously
encountered set of known (Pk) variants to a potentially infinite set of new (Px)
variants.

All 23 withheld variants (Ps and Pu) were checked using the “VirusTotal”
[60] (a free online scanner for malware) website to confirm and validate
that malicious functionality was maintained in the 11 malicious variants
i.e. set M (along with the original JS.Cassandra virus) and eliminated in the 11
non-malicious/non-payload variants (set NM). “VirusTotal” [60] employs 56
well-known AVSs and so provides good assurance that our manual code altera-
tions for non-malicious variants were effective. The scan results of the 23 va-
riants obtained from “VirusTotal” website indicated that on average 35.06% and
71.43% of the 56 AVS products successfully detected the 11 malicious variants
(set M) and original JS.Cassandra virus, respectively. On average, 0.00% and
0.714% of the 56 AVS products successfully detected the 11 non-malicious va-
riants (set NM). Only four out of the 56 AVSs detected a few of the non-malicious
variant files as malicious, as some of the non-malicious variant files still had
their polymorphic functions in place.

For the process of data mining using NNge (Step-2), the variable length hex
sequences were converted into equal length sequences by constraining the
shorter sequences to have a length equal to the longest sequence by adding the
letter “x” at the end of each short sequence. Lower case “x” was added as the hex
sequences were represented in lower cases. An ARFF (Attribute-Relation File
Format) file was created which contained the hex dump sequences (MHEX and
NMHEX) for the 22 JS.Cassandra variants. The 23rd variant was not included in
the ARFF file since it will only be used in Step-4 and Step-5 for the process of
pairwise sequence alignment.

In total, the ARFF file consisted of 24,565 attributes (one attribute per posi-
tion) and two classes (malicious and non-malicious). The NNge classifier was
trained on the full dataset. Two NNge rules (one for each class) were generated
with a data fitting accuracy of 100%. A partial segment of two NNge (hex) rules
obtained in this step for the malicious (m), and 11 non-malicious (nm) hex se-
quences are shown below:

Malicious (m)—class m IF: pos1 in {2, 6} ^ pos2 in {0, 3} ^ pos3 in {6, 7} ^
pos4 in {a, b, 1, 2, 3, 7, 9} ^ pos5 in {6, 7} ^ pos6 in {a, e, 1, 2, 3, 5, 6, 7, 9} ^ pos7
in {6, 7} ... and so on.

Non-Malicious (nm)—class nm IF: pos1 in {2, 6, 7} ^ pos2 in {f, 6} ^ pos3 in
{2, 6, 7} ^ pos4 in {f, 1, 5} ^ pos5 in {2, 6, 7} ^ pos6 in {e, 0, 2} ^ pos7 in {2, 6,
7} ... and so on.

The best instance to represent the process of rule extraction (Step-3) us-
ing the above-mentioned rule is, for (m) the first substring at pos 1 be-
comes the first substring in the new NNge rule extracted string, and so on:

https://doi.org/10.4236/jis.2018.94019

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 295 Journal of Information Security

“260367ab1237967ae123567967...”. The length of the malicious string (N1HEX)
was 123,338 hex characters, whereas, the length of the non-malicious string
(N2HEX) was 37,249 hex characters. Only hex data (by excluding the letter “x”)
from the two NNge rules were extracted.

After conversion (Step-4), six discrete pairwise alignments (Step-5a) were first
conducted (sequence 1 with sequence 2, sequence 3 with sequence 4, etc.). The
equal combination of gap open (i.e. 10) and gap extend (i.e. 1) penalty (as used
in [10] [11] [12] [13]) was used during the processes of pairwise sequence
alignment. Step-5b resulted in nine common substrings (C1DNA and C2DNA) from
the six pairwise local alignments. One of the nine meta-signatures, with a se-
quence length 50, generated from one of the six pairwise alignments, is shown
below in nucleic acid representation:

CAATCAAGGCGCGCTCCCGTGCGATCTCACGGCCGTTCGTGAGAAC
GATC

In Step-6a and Step-6b, the nine DNA meta-signatures were first converted
into hex (C1HEX and C2HEX) and then later tested against the JS.Cassandra viral
variants (Pk and Px) using clamscan scanner. One of the nine hex meta-signatures,
with a sequence length 25, is shown below in hex representation:

4342999d5b98dd1a5bdb8818d

A2. Experiment II

The same procedure as Experiment I was used along with the same JS.Cassandra
(training) variants, with the only difference being that the variants (MHEX and
NMHEX) were converted into DNA format (MDNA and NMDNA) prior to NNge
rule generation. The conversion to DNA format was undertaken as normal using
the DNA representational method as detailed in Section 6. Our method for Ex-
periment II consists of six steps (see Figure A2).

In this step (Step-3), as for Experiment I, equal length sequences were created
by adding the letter “X” at the end of each sequence to the length of the longest
variant. Upper case “X” was added as the DNA sequences were represented in
upper cases. In total, the resultant ARFF file contained 49,129 attributes and two
class labels (malicious and non-malicious). The final and error-free version of
ARFF file was loaded into Weka and NNge classification undertaken using all
the data as the training set. After the first iteration, two NNge rules (one for each
class) were generated in under seven minutes. Partial segments of the two NNge
(DNA) rules are shown below:

Malicious (M)—class M IF: pos1 in {A, C} ^ pos2 in {G} ^ pos3 in {A} ^ pos4
in {A, T} ^ pos5 in {C} ^ pos6 in {T, G} ^ pos7 in {A, G, C} ^ pos8 in {T, G, C} ...
and so on.

Non-Malicious (NM)—class NM IF: pos1 in {A, C} ^ pos2 in {T, G} ^ pos3
in {T, C} ^ pos4 in {T, G} ^ pos5 in {A, C} ^ pos6 in {T, G} ^ pos7 in {A, T, C} ^
pos8 in {T, C} ... and so on.

In this step (Step-4), two strings (first-level consensuses—N1DNA and N2DNA)

https://doi.org/10.4236/jis.2018.94019

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 296 Journal of Information Security

Figure A2. Our method for Experiment II comprising of six steps.

in DNA format were extracted in the same way as for Experiment I from these
two NNge rules and the substrings in each position were concatenated as illu-
strated here for the Malicious class: “ACGAATCTGAGCTGC...”.

The sequence length of the malicious NNge DNA string (N1DNA) was 132,103
bases, whereas the sequence length of non-malicious NNge DNA string (N2DNA)
was 41,670 bases. In this step (Step-5a), pairwise local alignment was then per-
formed using SWA and the ID matrix with same gap penalties in a process simi-
lar to that described for Experiment I (Step-5a). In total, as in Experiment I, six
pairwise alignments were performed in this step (Step-5a).

Overall, 14 common substrings (i.e. meta-signatures—C1DNA and C2DNA) were
obtained in this step (Step-5b) from the six pairwise local alignments. One of the
14 meta-signatures, with a sequence length 59, generated from one of the six
pairwise alignments, is shown below in nucleic acid representation:

ACAGGAAGGCCTTCAATCAAGGCGCGCTCCCGTGCGATCTCACGGC
CGTTCGTGAGAAC

In Step-6a and Step-6b, the 14 DNA meta-signatures were first converted into
hex (C1HEX and C2HEX) and then later tested against the JS.Cassandra viral va-

Step-4: Extraction of first-level consensuses from NNge rules

Step-5a: Pairwise (Local) Sequence Alignment using SWA

Step-6a: Converting sequences back into viral hex code

Step-1a: Acquiring virus code variants

Step-3: Variable length data mining using NNge Classifier

Step-6b: Meta-signature testing

Step-1b: Separation of training set Ps from test set Pu

Step-1c: Hex dump extraction

Step-5b: Extraction of meta-signatures from second-level consensuses

Step-2: Converting viral code into a form acceptable for sequence alignment

https://doi.org/10.4236/jis.2018.94019

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 297 Journal of Information Security

riants (Pk and Px) using clamscan scanner. One of the 14 hex meta-signatures,
with a sequence length 28, is shown below in hex representation:

28297d0d0a66756e6374696f6e20

A3. Experiment III

This experiment takes a different approach from Experiments I and II to dealing
with the need for equal length sequences in order to generate rules using an
equal length data mining approach. Multiple sequence alignment is undertaken
prior to NNge rule generation to convert the variable length sequences (MDNA
and NMDNA) into equal length sequences (ME and NME) by inserting gaps
(Figure A3). In Step-3, a multiple sequence alignment using MAFFT [61] [62]
[63] was conducted on the 22 variable length DNA sequences (MDNA and
NMDNA). The final alignment file had overall sequence identity and similarity
percentages of 38.35% and 65.13%, respectively. All the gaps introduced at this
stage were substituted by the letter “X”. Upper case “X” was added as the DNA
sequences were represented in upper cases.

Figure A3. Our method for Experiment III comprising of seven steps.

Step-5: Extraction of first-level consensuses from NNge rules

Step-6a: Pairwise (Local) Sequence Alignment using SWA

Step-7a: Converting sequences back into viral hex code

Step-1a: Acquiring virus code variants

Step-4: Variable length data mining using NNge Classifier

Step-7b: Meta-signature testing

Step-1b: Separation of training set Ps from test set Pu

Step-1c: Hex dump extraction

Step-6b: Extraction of meta-signatures from second-level consensuses

Step-2: Converting viral code into a form acceptable for sequence alignment

Step-3: Multiple sequence alignment using MAFFT

https://doi.org/10.4236/jis.2018.94019

V. Naidu et al.

DOI: 10.4236/jis.2018.94019 298 Journal of Information Security

In Step-4, the same NNge classification was undertaken using Weka. The data
was converted into Weka’s ARFF file format and consisted of 93,438 attributes
and two classes malicious and non-malicious. Three NNge rules (one for the
malicious class and two for the non-malicious class) were generated with an ac-
curacy of 100% in under 33 minutes. A partial segment of each of these NNge
rules are shown below:

Malicious (M)—class M IF: pos1 in {A, X} ^ pos2 in {G, X} ^ pos3 in {A, X}
^ pos4 in {A, X} ^ pos5 in {C, X} ^ pos6 in {T, G, X} ^ pos7 in {A, G, X} ^ pos8
in {T, G, C, X} ^ pos9 in {C, X} ^ pos10 in {T, G, X} ... and so on.

Non-Malicious 1 (NM1)—class NM IF: pos1 in {X} ^ pos2 in {X}… ^ pos96
in {T, X} ^ pos97 in {A, X} ^ pos98 in {G, X} ^ pos99 in {A, X} ^ pos100 in {A, X}
^ pos101 in {C, X} ^ pos102 in {T, G, X} ^ pos103 in {G, C, X} ... and so on.

Non-Malicious 2 (NM2)—class NM IF: pos1 in {X} ^ pos2 in {X} … ^
pos1294 in {X} ^ pos1295 in {C} ^ pos1296 in {A} ^ pos1297 in {G} ^ pos1298 in
{T} ^ pos1299 in {C} ^ pos1300 in {A} ^ pos1301 in {T} ... and so on.

In Step-5, three strings (first-level consensuses—N1DNA and N2DNA) in DNA
format were constructed based on each of these NNge rules. The process of ex-
traction of strings from the rules is the same as detailed in Experiments I and II
and any “X” string extension characters were ignored. An example of this string
extract process from the rules for NM1 is: “TAGAACTGGC...”. The sequence
length of the resultant malicious DNA string (N1DNA) was 161,495 bases, whereas,
the sequence lengths of the non-malicious DNA strings (N2DNA) were 59,740
bases (NM1) and 11,860 bases (NM2).

Next, in Step-6a, local pairwise sequence alignment between these DNA se-
quences (first-level consensuses—N1DNA and N2DNA) extracted from each of the
NNge rules and the three malicious JS.Cassandra variants (Ps) in DNA format
was performed one by one using SWA and the ID matrix, as per Experiments I
and II. In this step (Step-6b), common substrings that are the meta-signatures
(C1DNA and C2DNA) for JS.Cassandra were extracted from the nine second-level
consensuses generated from the process of nine pairwise local alignments. In to-
tal, 48 meta-signatures (C1DNA and C2DNA) were obtained. The meta-signature of
sequence length 88 obtained from one of the nine pairwise alignments is shown
below in its nucleic acid representation:

GGAAGTGCTAGCGTTCTCCCGTGCGCAAGGACATCCGACCTCACGG
AAGTGCTAGCGACCGTGCGCACGTTCGTCAGGAAGGCAGGGA

In Step-7a and Step-7b, the 48 DNA meta-signatures were first converted into
hex (C1HEX and C2HEX) and then later tested against the JS.Cassandra viral va-
riants (Pk and Px) using clamscan scanner. One of the 48 hex meta-signatures,
with a sequence length 22, is shown below in hex representation:

292c283538322f36292c28

https://doi.org/10.4236/jis.2018.94019

	Generating Rule-Based Signatures for Detecting Polymorphic Variants Using Data Mining and Sequence Alignment Approaches
	Abstract
	Keywords
	1. Introduction
	2. Background
	3. Limitations of Previous Work
	4. Related Work
	5. Data Mining
	6. Sequence Representations
	7. Systems and Methods
	8. Comparison of Three Sets of Experiments in Detail
	9. Results
	10. Discussions
	11. Conclusions
	Conflicts of Interest
	References
	Appendix
	A1. Experiment I
	A2. Experiment II
	A3. Experiment III

