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Abstract 
As rule-based systems (RBS) technology gains wider acceptance, the need to create and maintain 
large knowledge bases will assume greater importance. Demonstrating a rule base to be free from 
error remains one of the obstacles to the adoption of this technology. In the past several years, a 
vast body of research has been carried out in developing various graphical techniques such as uti-
lizing Petri Nets to analyze structural errors in rule-based systems, which utilize propositional 
logic. Four typical errors in rule-based systems are redundancy, circularity, incompleteness, and 
inconsistency. Recently, a DNA-based computing approach to detect these errors has been pro-
posed. That paper presents algorithms which are able to detect structural errors just for special 
cases. For a rule base, which contains multiple starting nodes and goal nodes, structural errors are 
not removed correctly by utilizing the algorithms proposed in that paper and algorithms lack ge-
nerality. In this study algorithms mainly based on Adleman’s operations, which are able to detect 
structural errors, in any form that they may arise in rule base, are presented. The potential of ap-
plying our algorithm is auspicious giving the operational time complexity of O(n*(Max{q, K, z})), in 
which n is the number of fact clauses; q is the number of rules in the longest inference chain; K is 
the number of tubes containing antecedents which are comprised of distinct number of starting 
nodes; and z denotes the maximum number of distinct antecedents comprised of the same number 
of starting nodes. 
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1. Introduction 
Adoption of expert systems in real world applications has been greatly increased. In past years, much effort has 
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been devoted to analyze different aspects of rule-based systems such as knowledge representation, reasoning, 
and verification of rule-based systems [1]-[5]. A rule base, which is the central part of an expert system codifies 
the knowledge from domain expert in the form of inference rules. Often these inference rules are built into a rule 
base incrementally over years and subject to frequent refinements. Due to the different and even conflicting 
views provided by domain experts besides the above construction process, a rule base can contain many struc-
tural errors. According to [1]-[4] [6], and several other studies, four typical types of structural errors include in-
consistency (conflict rules), incompleteness (missing rules), redundancy (redundant rules), and circularity (cir-
cular depending rules). Many different techniques have been developed to detect the above errors in rule-based 
systems. Earlier work mainly focused on detecting structural errors by checking rules pair-wisely [7]-[9]. Recent 
work aimed at detecting structural errors caused from applying multiple rules in longer inference chains. The 
majority of recent verification techniques involve using some graphical notations such as graphs [10]-[12], and 
Petri nets [2] [3] [6] [13]-[15]. 

DNA computation has emerged in recent years as an exciting new research field at the intersection of com-
puter science, biology, engineering, and mathematics. There exist two main barriers to the continued develop-
ment of traditional silicon-based computers [16]. Invention of silicon integrated circuits and advances in minia-
turization has led to incredible increases in processors speed and memory access time. However, there is a limit 
to how far this miniaturization can go. Eventually chip fabrication will hit the wall imposed by the Heisenberg 
Uncertainty Principle (HUP) [16]. DNA computing based on its complementary characteristics and massive par-
allelism (when a step is performed in an experiment, the operation is performed in parallel on all molecules in 
the tube) has the potential to solve complex problems such as NP-Complete ones [16]. The physician Richard 
Feynman first proposed the idea of using living cells and molecular complexes to construct sub-microscopic 
computers [17]. After Feynman proposal, there has been an explosion of interest in performing computations at 
molecular level. Adleman who used DNA strands to solve a directed Hamiltonian path problem, indicated the 
feasibility of a molecular approach to solve combinatorial problems [18]. Subsequently, by solving satisfiability 
problem (SAT), Lipton demonstrated the advantage of using the massive parallelism inherent in DNA-based 
computing. 

Authors in [1] proposed algorithms, which utilized DNA computing to render an error free rule base for rule- 
based systems. The algorithms proposed in [1] lack generality since just for special cases of rule base can work 
and there are cases that structural errors are not removed correctly by utilizing their algorithms. Rules in a Rule- 
Based system are typically formed as X → Y, in which X is an antecedent node (AN) and Y is a conclusion node 
(CN). Two nodes, atomic and compound, exist in rule bases. We are interested in the problem domain of Horn 
Clauses, as addressed in [2]-[4], which allow only one conclusion part in each rule and compound antecedents in 
rules are only presented in the conjunction format. So, before we transform rules to their corresponding rule 
paths, a normalization should be carried out in order to obtain Horn Clause form of the rules [3] [4]. In this pa-
per, we are interested in finding structural errors and the set of rules causing these errors. The reasons of struc-
tural errors may be due to rule conflicting, mismatched condition and conclusion, and circular and redundant 
rules [3] [13] [15]. Inconsistent rules result in conflict, which is the direct source of incorrect rule derivation. 
Redundant rules increase the size of rule base and cause non necessary reasoning. Incomplete rules prohibit the 
rule base from activating certain normal rule derivation. Circular dependent rules will force the rule base to run 
into an infinite loop of reasoning.  

In this study, algorithms are developed to cope with all cases. Our algorithms have the ability to detect struc-
tural errors in any form that they may occur in rule base. As a result, DNA computing as an alternative to verify 
structural errors in rule-based systems gains more generality. The remainder of this paper is organized as follows. 
Structural errors are briefly described in Section 2. In Section 3, we outline DNA computation and introduce our 
DNA-based algorithms to detect structural errors in Rule-Based systems. We analyze the complexity of our al-
gorithm and conclusion is represented in Section 4. 

2. Typical Structural Errors in Rule Bases 
• Redundancy. When unnecessary rules exist in the rule base, redundancy occurs. These rules not only increase 

the size of the rule base but also may cause additional useless inferences. Redundancy is a potential source of 
inconsistency when knowledge is updated [4]. A rule is redundant with respect to the conclusion if two rules 
have identical conditions and conclusions (identical rules) or two rules have identical conclusions while the 
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condition for one rule is either a generalization or special case of the condition for the other one [3] [4]. The 
rule, which has more general condition subsumes (is stronger than) the other rule. Logical redundancy im-
plies operational redundancy [4]. Thus, subsumed (less general) rules can be eliminated, which has no influ-
ence on logical inference capability [4].  

• Incompleteness. When there are missing rules in a rule base, incompleteness occurs. Except the rules for 
representing facts and goal nodes, a rule is called as a useless rule if the rule’s condition (conclusion) cannot 
be matched by other rules’ conclusion (condition). The unmatched condition are called dangling conditions, 
while the unmatched conclusions are called dead-end conclusions. Mostly, the reasons of useless rules are 
due to some missing rules.  

• Circularity. When two or several rules have circular dependency, Circularity occurs. Circular dependent rules 
can cause infinite reasoning and must be broken.  

• Inconsistency. Since inconsistent rules result in conflict facts, for correct functioning of an expert system, 
inconsistency must be resolved. Two rules r1 and r2 (that their conclusions are not compatible) are inconsis-
tent if there exists a state, such that simultaneously both antecedents (pre-conditions) of r1 and r2 can be fired 
[4].  

2.1. The Structure of DNA and Basic Denaturing and Annealing Operations 
DNA (deoxyribonucleic acid) encodes the genetic information of cellular organisms [16]. It consists of polymer 
chains, commonly referred to as DNA strands. Each strand may be viewed as a chain of nucleotides, or bases, 
attached to a sugar-phosphate backbone. The four DNA nucleotides are Adenine, Guanine, Cytosine, and Thy-
mine, commonly abbreviated to “A”, “G”, “C”, and “T” respectively. Each strand, according to chemical con-
vention, has a 5ʹ and 3ʹ end. Thus, any single strand has a natural orientation. This orientation is due to the fact 
that one end of the single strand has a free 5ʹ phosphate group, and the other end has a free 3ʹ deoxyribose hy-
droxyl group. “A” bonds with “T” and “G” bond with “C”. The pairs (A, T) and (G, C) are therefore known as 
complementary base pairs. The two pairs of bases form hydrogen bonds between each other. Double stranded 
DNA may be dissolved into single strands (denatured), by heating the solution to a temperature determined by 
the composition of the strand [19]. Heating breaks the hydrogen bonds between complementary strands. An-
nealing is reverse of denaturing, whereby a solution of single strands is cooled, allowing complementary strands 
to bind together (Figure 1).  

Figure 1 demonstrate the annealing of 5ʹ end of a single strand DNA to the 3ʹ end of another DNA in presence 
of DNA ligase and a splint. In this figure splint has 20 base pairs and consists of the complement of the 10 nuc-
leotides at the 3ʹ end of one strand and the complement of 10 nucleotides at the 5ʹ end of the other. 

In order to anneal the 5ʹ end of a single strand DNA to the 3ʹ end of another DNA, in the presence of “DNA 
ligase” we hybridize a set of specific splint oligos of length 20. Each splint consists of the complement of the 10 
nucleotides at the 3ʹ end of one strand and the complement of 10 nucleotides at the 5ʹ end of the other. 

2.2. Initial Set Construction 
Oligonucleotides uniquely encoding each node and splint are assigned. As proposed by Barich [20], there are  
 

 
Figure 1. Annealing and denaturing and using annealing to 
form a long single stranded DNA.                                   
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some constraints for strand library design indicating that sequences must be designed in a way that strands have 
little secondary structure in order to prevent unintended probe-library hybridization. Thus, short oligonucleotides 
uniquely encoding each node and splint must be used. Then, splints are used to join to their complement se-
quence. Hence, by defined polarity, short single stranded oligos which represent nodes covalently join and create 
longer single stranded DNA molecules. The above procedure enables us to encode each rule path, including ap-
propriate nodes in form of long single stranded DNA.  

2.3. Operations Description 
We use the basic operations on strands that are defined by Adleman [18], the Parallel Filtering Model of Amos 
[16], and an alternative filtering-style model called the Stickers Model developed by Roweis [21]. In all filtering 
models a computation consists of a sequence of operations on finite multi-set of strands. It is normally the case 
that a computation begins and terminates with a single multi set of strands. An initial solution consists of strands 
which are of length O(n). Where n is the problem size. The initial solution should include all possible solutions 
(Each encoded by a strand) to the problem to be solved. The point here is that the initial set in any implementa-
tion of the model is assumed to be relatively easy to generate as a starting point for the computation. The com-
putation then proceeds by filtering out strands which encode illegal solution and cannot be the result. The opera-
tions defined in parallel filtering models and Adleman experiments are as follows. The implementation of these 
operations can be found in detail in [16] [18] [21] and [22]. 
• Separate (T, s, k, Ton, Toff): This operation separates strands that contain sequence “s” starting from position 

“k”, into Ton; otherwise, into Toff [21]. 
• Extract (T, s, T+, T−): Given a tube T and a sub-strand “s”, this operation creates two new sets T+, T−, where 

T+ include all strands in T containing “s”, and T− includes all strands in T that do not contain “s” [18]. 
• Union (T, T1, T2, …, Tn): This operation creates set T, which is the set union of the T1, T2, …, Tn [16].  
• Copy (T, T1, T2, …, Tn): This operation produces copies T1, T2, …, Tn of the set T [16]. 
• Detect (T): Given a set T, this operation returns true (Y), if T contains at least one DNA strand; Otherwise, it 

returns false (N) [22]. 
• Read (T): This operation describes each DNA strand in set T [22]. 
• Remove (T): This operation removes all strands in tube T [22]. 

2.4. Encoding Inference Rules by DNA Strands 
For a general inference rule with compound antecedent (R:(X1Λ… ΛXn) → Y), each antecedent node (AN) and 
conclusion node (CN) are encoded by a 20-mer DNA strand. To encode the relations “Λ” and “→”, two tetra- 
nucleotide sequences, “AAAA” and “CCCC” (and their complements) are used respectively. Thus, by creating 
24 nucleotide long splints, which contain the appropriate tetra-nucleotide, relations “Xi Λ Xj” and “Xi → Xj” are 
enforced [1]. The “Xi → Xj” is a splint whose sequence in the 3ʹ-5ʹ direction is the concatenation of the com-
plement of 10 nucleotides at the 3ʹ-end of the strand node Xi, four nucleotides of “CCCC”, and the complement 
of 10 nucleotides at the 5ʹ-end of the strand Xj. Similarly, “Xi Λ Xj” is a splint whose sequence is the concatena-
tion of complement of 10 nucleotides at the 3ʹ-end of the strand Xi, four nucleotides of “AAAA”, and the com-
plement of 10 nucleotides at the 5ʹ-end of strand Xj. All strands representing starting nodes are designed in the 
way that, all of them have common sub-strand “TTTTTTTTTT” at the 5ʹ end of their strands and all strands 
representing the goal nodes are designed in the way that all of them contain the common sub-strand “GGGGGG 
GGGG” at the 3ʹ end of their strands. Thus, sequences “AAAAAAAAAA” and “CCCCCCCCCC” are needed in 
our algorithm to distinguish these nodes, as explained in Section 3.6.1. Finally, in order to make sure that strands 
representing the complements of “TTTTTTTTTT” and “GGGGGGGGGG” will bond to the starting nodes and 
goal nodes respectively and nowhere else, all strands representing the other nodes should be designed in the way 
that they do not have successive “G”s or “T”s at the 3ʹ or 5ʹ end of their strands. For instance Figure 2(a) shows 
three distinct strands representing nodes. Figure 2(b) shows two distinct strands representing “Λ” operator and 
two distinct strands representing “→” operator. The resulting strands are shown in Figure 2(c). Since permuta-
tions of k-node compound antecedent creates the same antecedent (k! strands representing the same AN); there-
fore, for each rule with compound antecedent, one of the CN for the k! strands is chosen randomly and poured 
into tube Tr1 in order to detect redundancy and circularity [1]. We encode all permutations of antecedent of the 
rules with compound AN and pour them into tube TΛ. In order to detect subsumed rules, special tubes TΛsk are  
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(a) 

 
(c) 

Figure 2. (a) Distinct strands representing each node; (b) Splints representing “Λ” and “→” operators; 
(c) The resulting long strands R1 and R2, both representing the same rule.                                   

 
created as described below. The antecedent of all rules with compound AN, which are comprised of k starting 
nodes, are poured into tube TΛsk. The strands are labeled with ki. For instance, TΛs1 is comprised of antecedents 
of all rules with atomic AN of starting nodes and are labeled as 1i strands (ith strand of tube TΛs1) and TΛs2 is 
comprised of antecedents of all rules with compound AN of two starting node labeled as 2i strands. Thus tubes 
TΛsk

c, Comprised of many copies of complements of strands in tubes TΛsk are created. These are used in Detect 
Redundancy algorithm described in Section 3.6.4. 

2.5. Generating the Solution Space 
An essential difficulty in all filtering models is that initial multi sets of strands generally have quantity, which is 
exponential in the problem size [16]. What is done in practice is that an initial set is constructed containing a 
polynomial number of distinct strands. The design of these strands ensures that exponentially large initial set of 
the system (rule paths) can be generated automatically [16]. Sequence of pre-steps are carried out in order to 
create the initial solution space containing rule paths. An example of creating the initial set for a simple rule base 
is depicted in Figure 3. These pre-steps are alike what is presented in [1], as follows. 

Pre-Step 1. Tubes TΛ, T →, Tr1, Tr2, Tr3, Tc, and Ts are needed at this stage. Strands representing splints 
“XΛY” And “X → Y” are poured into tube TΛ and T→ respectively. Starting nodes and goal nodes are not con-
clusions and antecedent parts (conditions) of any rule respectively. Thus, in order eliminate these kinds of rules 
and prevent circularity from occurring to starting nodes (in our sample rule base, X1) and goal nodes (in our 
sample rule base, X6), copies of strands designed as “GGGG” followed by the 10 nucleotides at the 5ʹ end of 
starting nodes and 10 nucleotides at 3ʹ end of the goal nodes followed by “GGGG” are poured into tube T→. 
Thus any splint in T→ that anneals to the above strands, is removed. We may have rules in which the goal nodes 
are included in compound antecedents. In order to eliminate these kinds of rules, copies of strands designed as 
10 nucleotides at 3ʹ end of goal nodes followed by “TTTT” and “TTTT” followed by 10 nucleotides at the 5ʹ 
end of the goal nodes are poured into tube TΛ. Thus, any splint in tube TΛ that anneals to the above strands is 
eliminated (assuming Y as goal node, splints formed as Xi Λ Y and Y Λ Xi are eliminated). Next the CN of rules 
with compound AN are poured into tube Tr1 and strands representing CN for each atomic AN is poured into tube 
Tr2. In order to identify which CN has more than one rule leading to it, strands in Tr2 are poured into tube Tr1 to 
make sure that Tr1 contains the CN for all rules. Then only one copy of the complements for all CN is poured 
into Tr1. Any CN in Tr1that does not anneal to its complement represents CN with more than one rule leading to 
it and is poured intoTr3. Next copies of all AN are poured into Tc. 

Pre-Step 2. Splints in TΛ and copies of strands “TTTT” are poured into tube Tc and DNA ligation is allowed 
to occur. By means of splints, each set of compound AN would stick together and creates a double stranded 
DNA in length of the splint. Then single strands are separated from Tc to Ts.  
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Figure 3. Initial set generation.                                                                

 
Pre-Step 3. To process the situation that one of the compound AN of a rule is the CN of another rule, popula- 

tion of strands from T→ are poured into tube Tc. Splints in T→ bond to the strands mentioned above and long 
double stranded DNAs, which are subset of rule chains are formed.  

Pre-Step 4. At this stage copies of “GGGG” and the strands from Ts are poured into Tc to form rule-chain 
subsets containing atomic AN. Each long strand created at this step corresponds to one set of possible inference 
rule paths that may contain any of typical structural errors. 

Pre-Step 5. At this stage, double-stranded DNAs from Tc are denatured and poured into tube T. Finally, all 
possible rule sequences are represented in T. 
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2.6. Detection of Structural Errors 
2.6.1. Removing Incomplete Rule Paths 
In order to remove incomplete rule paths, which do not start with starting nodes or do not lead to the goal node 
the algorithm below is performed [1]. 

Detect completeness algorithm 
1) Input (T); 
2) Extract (T, “TTTTTTTTTT”, Ty, Tincomp); 
3) Extract (Ty, “GGGGGGGGGG”, T, Tincomp); 
4) Remove (Tincomp). 
All strands containing at least one starting node in their sequence are extracted from T into tube Ty; otherwise, 

into tube Tincomp at line 2 (multiple starting nodes can be at the beginning of rule paths in form of compound an-
tecedent of the first rule). This extract operation is carried out by pouring many copies of strand “AAAAAAAA 
AA” into tube T. This strand only anneals to single strands containing “TTTTTTTTTT”. As explained in Section 
3.4, only strands representing starting nodes are designed so that all of them have this sub-strand. At line 3, 
strands containing goal nodes are extracted from Ty and poured into tube T; otherwise, into tube Tincomp. This ex-
tract operation is carried out by pouring many copies of strand “CCCCCCCCCC” into tube T. This strand only 
anneals to single strands containing “GGGGGGGGGG”. As explained in Section 3.4, only strands representing 
goal nodes are designed so that all of them have this sub-strand. At the end of algorithm, strands in tube Tincomp 
represent incomplete rule paths and should be removed. By performing this algorithm just one time, all complete 
rule-paths with different starting nodes and goal nodes are extracted. Thus, there is no need to perform the algo-
rithm for all starting nodes and goal nodes repeatedly. Assuming that Xi is a starting node and Yi is a goal node, 
it should be noted that there is no splint to complement the 10 nucleotides at the 5ʹ end of Xi; therefore, in all 
strands containing Xi, it has to be located in front of the strands (in case of starting nodes in form of compound 
AN there is no splint to complement 10 nucleotides at the 5ʹ end of first starting node). Similarly, there is no 
splint to complement the 10 nucleotides at the 3ʹ end of Yi. Thus, in all strands containing Yi, it has to be located 
at the end of the strand. 

2.6.2. General Algorithm to Detect Circularity 
Algorithm proposed in [1] is aimed at removing all the circularity depending rules that may exist, by removing 
strands, in which the same node appears in at least two location. Only strands containing the nodes that exist in 
Tr3 are likely to have circularity problem. Assuming z to represent the number of nodes in Tr3. We modify the 
algorithm presented in [1] and call it “Detect Circularity Part 0” algorithm as follows. 

Detect Circularity Part 0 

 
Tube Ti

f is composed of strands containing any goal node at position q*24 and thus there is no need to be 
compared. At the end of this algorithm, all rule chains, in which node Xi appears at least twice in the strand are 
poured into tubes Ti

cir. We remove these strands from T. There are some cases that this algorithm is unable to 
remove circularity error and after applying the algorithm, circularity error will remain in rule base. Suppose that 
after performing above algorithm, Xi and Xj are found to be circular nodes and there exist at least two paths be-
tween nodes Xi and Xj or more precisely there exist two rules or chains of rules acting reverse between these two 
nodes (e.g. Xi → Xj and Xj → Xi) besides one or more distinct chains of rules from a starting node (starting 
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nodes can be distinct) leading to nodes Xi and Xj in addition to distinct chains of rules from these nodes leading 
to the goal node. In such a situation, this algorithm is unable to remove circularity error. That is, by removing 
rule paths which have at least two occurrences of nodes Xi and Xj, circularity error will not be removed. In order 
to clarify these situations, take simple rule base shown in Figure 4 as an example. Assuming X1 and X4 are 
starting and goal nodes respectively. The resulting directed graph made by these rules and all the paths starting 
from node X1 and leading to X4 is depicted in Figure 4. 

By performing the “Detect Circularity Part 0” for nodes X2 and X3 strands number 5 and 6 are detected to 
have two occurrence of these nodes respectively. These strands are poured into tubes T1

cir and T2
cir. Next, we 

remove these strands from T. Now, if we establish the directed graph made by rules embedded in remainder 
paths, we see that removing paths 4 and 5 will not result in elimination of any of rules causing circularity error. 
That is, these rules (R4: X2 → X3, R5: X3 → X2) exist in other rule paths. Thus, this error remains and the algo-
rithm is unable to remove it. As a matter of fact this is the case for all rule base with rules or chains of rules act-
ing reverse between circular nodes, in addition to rules or chains of rules from a starting node leading to each 
one of these circular nodes and having from each circular node, paths or more precisely chains of rules, leading 
to the goal node. Thus, by means of these algorithm circularity error for these cases cannot be eliminated. To 
make these statements more clear, another instance of rule base and its corresponding directed graph is depicted 
in Figure 5. Assume nodes X1, X5 to be starting node and goal node respectively. As it is obvious from the di-
rected graph of this rule base, there exists a circle in this rule base comprised of rules R5, R6, and R7. These rules 
are circularly dependent. Similar to the previous section we make an attempt to remove this error by means of 
above algorithm. All the complete paths start from node X1 leading to X5 are as follows. 

By executing the algorithm that explained above, for nodes, which are present in Tr3 (X4, X3, and X4), circular 
paths {4, 8, 12} are found in which nodes X2, X3, and X4 appear twice in these strands respectively. We take into 
account the remainder paths and establish the directed graph constructed by rules embedded in them (rule paths 
{1, 2, 3, 5, 6, 7, 9, 10, 11}). Obviously the directed graph made by these rules is the same as the directed graph 
of original rule base. We notice that all circularly dependent rules (R5, R6, R7) still exist in remainder paths (and 
consequently in rule base) and none of them is removed. Thus, after performing the algorithm, circularity error 
still exists in rule base. It should be noted that, as it is obvious from our examples, in such a situation there exist 
complete rule paths having two occurrence of circular node Xi, in which circular node Xj is located between two 
position of Xi. And there exist complete rule paths having two occurrence of circular node Xj in which circular 
node Xi is located between two position of Xj (in our example paths 4, 8, and 12 have this property for nodes X4, 
X3, and X4). 

In this section we propose an algorithm, which can perfectly remove circularity errors. This algorithm com-
prises three parts performed for each pair from circular nodes (Xi, Xj) that has been found in the previous  
 

 
Figure 4. Rule base with circularity error.                                      

 

 
Figure 5. Rule-base with circularity error.                                     
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algorithm. It should be noted that all paths at this stage start from starting nodes and there are no rules in which 
starting nodes are inferred from them. Thus, in performing different parts of our Detect Circularity algorithm, 
we don’t need to check position 0 to 24 of the paths. That is, in all parts of Detect Circularity algorithm, q is in-
itially equal to one (q = 1). First, Detect Circularity Part 0 is performed. This algorithm results in separating 
paths, in which node Xi appears at least in two positions (i.e. circular nodes are found) in the strands and pouring 
them into tube Ticir. Next, for instance, if we assume that three circular nodes X2, X3, and X4 are found, three 
pairs (X2, X3), (X2, X4), and (X3, X4) should be analyzed in subsequent parts of our algorithms. Using k to 
represent the number of pairs from circular nodes other parts ofour algorithm is represented in Table 1. 

Detect Circularity Part 1: At this part of our algorithm for each pair from circular nodes, the algorithm is 
performed in parallel as follows. Three extra tubes (Tij

a, Tij
b, Tij

c) are necessary for each pair (Xi, Xj). Initially, k 
copies of Ti cir is created as tubes Tij in parallel. Lines 4 to 9 are carried out until there is no strand in tube Tij. At 
line 6, strands from Tij having node Xi at position q*24 are extracted and poured into tube Tij

a. At line 7, strands 
from Tij

b that all of them has occurrence of Xi are extracted and poured into tube Tij
c if they have Xj located after 

the first position of Xi. Strands in Tij
c represent paths having Xj located between first and last position of Xi 

(strands in Tij include at least two occurrence of node Xi). Within the qth iteration of the algorithm, line 5 checks 
whether Tij

c contains any strands. If it is so, the algorithm makes sure that there exist paths that Xj is located be-
tween first and last position of node Xi and part one of the algorithm finishes; otherwise, it will continue until 
tube Tij contains no strands. If tube Tij

c contains no strands. After performing this part, it means that there is no 
rules or chains of rules between these two circular nodes acting reverse (which cause circularity still remains in 
the rule base after performing Detect Circularity Part 0). Thus by removing strands in Ti

cir and Tj
cir from tube T, 

the remainder paths contain no circularity dependent rules caused by these two nodes. And performing Detect 
Circularity part 0 is enough in order to remove circularity. The next part of the algorithm is performed. If tube 
Tij

c contains any strand. The second part of the algorithm is performed in parallel as follows. 
Detect Circularity Part 2: At this part of our algorithm for each pair from circular nodes, the algorithm is 

performed in parallel as follows. Three extra tubes (Tji
a, Tji

b, Tji
c) are necessary for each pair (Xi, Xj). Initially, k 

copies of Tj
cir is created as tubes Tji in parallel. In this part, between lines 4 to 9, for all pairs of circular nodes in 

parallel, if there exist a strand in Tji, which has sub-strand representing Xi located between two position of sub- 
strand representing Xj, is poured into tube Tji

c. There is no rules or chains of rules acting reverse between circu-
lar nodes Xi and Xj If there is no strand in Tji

c. In this situation, by removing strands in tubes Ti
cir and Tj

cirfrom T, 
we will be sure that there is no circularity error considering nodes Xi and Xj; otherwise, we put into practice the 
third part of our algorithm for each pair from circular nodes, which both previous parts has been fulfilled for 
them as follows. 
 
Table 1. Detect circularity algorithm.                                                                           

{k: number of pairs from circular nodes,  
in which Xi is the first node in them} 

{k: number of pairs from circular nodes  
defined in previous part, in which Xj  

is the second node in them} 

{k: number of pairs from circular  
nodes obtained from previous parts} 

Detect Circularity Part 1 Detect Circularity Part 2 Detect Circularity Part 3 
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Detect Circularity Part 3: At this part of the algorithm four extra tubes are necessary for each pair (Xi, Xj) 
from circular nodes. Initially, k copies of T are generated as tubes Ti. At the final part of our Detect Circularity 
algorithm for each pair from circular nodes (Xi, Xj), Xi or Xj is selected (here Xi is chosen). Then between lines 
4 to 9, all paths in which node Xj is located after Xiare extracted from Ti and poured into Ti2 in parallel. At the 
end of this part of our algorithm, tubes Ti2 are merged into tube T2. We then extract strands in T2 from tube T. 
Thus, all complete paths from T, in which node Xj is located after node Xi will be removed from T. Thus, we 
make sure that after performing this part, there are no rules or chains of rules from Xi leading to Xj in tube T. 
Consequently one of rules or one of chains of rules causing circularity between Xi and Xj are removed. In the 
end, the resulting rule base will be free of any form of circularly dependent rules. 

In order to demonstrate effectiveness of the algorithm, we perform it for rule base shown in Figure 5. As 
stated above, in this rule base, rules {R5, R6, R7} cause circularity between nodes {X2, X3, X4}. After performing 
Detect Circularity Part 0, each tube Ti

cir has strands shown below.  
T2

cir = {R1R4R5R6R7}    T3
cir = {R3R5R6R4R9}    T4

cir = {R2R6R4R5R8} 
These strands are removed from T. In order to clarify the procedure of our algorithm, we perform it for each 

pair of circular nodes {(X2, X3), (X2, X4), (X3, X4)} successively. In Detect Circularity Part 1, tubes T23, T24, and 
T34 are created for these pairs of circular nodes in parallel at line 3. Tubes T32, T42, and T43 are created for these 
pairs of circular nodes in parallel at Detect Circularity Part 2, line3. First consider nodes (X2, X3). By performing 
Detect Circularity Part 1, In T2

cir(T23), we find X3located between two position of X2. Thus, Detect circularity 
part 2 is performed and X2 is found to be located between two positions of X3 in T3

cir(T32). Thus, there exists 
rules (chains of rules) acting reverse between these nodes (i.e. {R5, (R6, R7)}). At Detect circularity part 3, we 
choose X2 and extract all strands, in which X2 is located before X3 from T1 and pour them into T12. We remove 
these strands from T. Paths 2, 3, and 7 are removed from T and the remainder paths are as follows. 

1: R2R8: X1→X2→X5 
5: R3R9: X1→X4→X5 
6: R3R7R8: X1→X4→X2→X5 
9: R4R10: X1→X3→X5 
10: R4R6R9: X1→X3→X4→X5 
11: R4R6R7R8: X1→X3→X4→X2→X5 
Now, we perform the algorithm for nodes (X2, X4). We perform Detect circularity part 1 for node X2 and in 

tube T2
cir(T24), we find X4located between two position of node X2 besides finding (in tube T4

cir(T42)) X2 located 
between two position of node X4, in Detect circularity part 2. In Detect circularity part 3, we choose node X2 and 
extract from tube T2 all strands having X2 located before X4 in their sequence. These strands (if there exist any) 
should be removed from T. In the end, we perform the algorithm for nodes (X3, X4). Since in Detect Circularity 
Part 1, we find paths in which (in tube T3

cir(T34)), X4 is located between two position of node X3 in addition to 
finding paths, in which X3 is located between two position of X4 in tube T4

cir(T43) in Detect Circularity Part 2, 
we choose one of these nodes (here we choose X4) and remove all strands, in which X4 is located before X3. 
Consequently the remainder paths and the directed graph made by them are shown in Figure 6.  

As it is obvious, rule R4 is removed and circularity error is eliminated from the rule base. Consequently, there 
is no circle between rules in the resultant rule base. It should be noted that Detect Circularity Part 3 (in lines 5 
and 6), depending on the selection of the node that is located before the other in strands, extracts strands in 
which selected circular node is located before the other circular node (for instance, X2 is located before X3 in our 
example). Therefore, at least one of rule chains (rules) causing circularity between circular nodes is removed and  
 

 
Figure 6. Resultant rule base after removing circularity.                      
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at the most, all the rule chains (rules) causing circularity between circular nodes are removed (in our example all 
rules {R4, R5, R6} at the most). This removal is dependent on the node selection in Detect Circularity Part 3. 
however, all pairs from circular nodes, which fulfill Detect Circularity Part 1 and Part 2, has distinct rules or 
chains of rules from starting nodes leading to each one of them. Thus, our algorithm does not cause incomplete-
ness in the rule base in all cases. 

2.6.3. Inconsistency Detection of Rule Bases 
Conflicts are known conditions in the system. Thus, we define conflicting nodes as pair (Xi, Xj). If there exists a 
physical state for which the rules resulting in conflicting nodes can be fired simultaneously, one can say that the 
rules are physically (practically) conflicting [4]. Our Detect Conflict algorithm is performed for each pairs of 
conflicting nodes in parallel as follows (assuming k is the number of conflicting pair nodes). 

Detect Inconsistency  

 
For each pair of conflicting nodes (Xi, Xj) in parallel, strands containing node Xi are extracted from Tz and 

poured into tube Tz
+; otherwise, poured into tube Tz

− (line 3) .Strands containing Xj are extracted from Tz
+ and 

poured into Tube Tz2; otherwise, into tube Tz1 (line 4). Strands containing Xj are extracted from Tz
− and poured 

into Tz3; otherwise, into Tz4 (line 5). Strands in Tz1 and Tz3 contain Xi and Xj within their sequences respectively. 
Strands in tube Tz2 contain conflicting nodes Xi and Xj in their chain and are invalid. These tubes are merged in-
to tube Tr to be discarded. According to the definition of inconsistency [4], two rules resulting in inconsistent 
nodes (Xi, Xj) (and consequently their corresponding rule paths in tubes Tz1, Tz3) are inconsistent, if there exists 
a state, such that simultaneously both rules can be fired. Although, this is a potential inconsistency, such a possi-
bility exists. These kinds of rules should be further analyzed by domain experts. If there exist a physical state for 
which the rules can be fired simultaneously, they should be analyzed, modified, or one of them be eliminated. 
Modification is carried out to arrive at pre-conditions (antecedents) for these rules that cannot be fired at the 
same time. It is the problem of so called conflict resolution mechanism to select a single rule to be fired [4]. 
Conflict situations can be solved with appropriate inference control mechanism [4]. If one wants to keep both of 
these rules, this can be done by controlling the facts and inference control and avoid generating inconsistency by 
selection of one of the rules (never fire the second rule if the other was fired (e.g. by priority mechanism) [4]. In 
the event that if, it is decided to eliminate one of the rules resulting in inconsistent nodes (Xi, Xj), this can be 
done by removing strands in one of these tubes (strands in tube Tz1 or Tz3) from tube T (based on domain experts 
decision). In this way, inconsistency can be eliminated and the resultant rule base will be free of inconsistency 
error.  

2.6.4. Redundancy Detection of Rule Bases 
According to definition of redundancy, a rule is redundant with respect to the conclusion, in the even that if two 
rules have identical conditions and conclusions identical rules) or two rules have identical conclusions while the 
condition for one rule is either a generalization or special case of the condition for the other one [3] [4]. The rule, 
which has more general condition subsumes (is stronger than) the other rule. Suppose that we have more than 
one starting node in rule base and starting nodes are logically independent and none of them implies the other. 
For instance, consider the simple rule base and directed graph established for it in Figure 7. Assume nodes X1, 
X2, X3, and X4 are starting nodes and X8 is the goal node. 

Complete paths from starting nodes leading to goal node are as follows. 
According to the definition of redundancy, paths 1, 2, 4 are not redundant from paths 3. Thus, in order to 

maintain the completeness of rule base, both rule paths 1 and 3 (rules R5 and R8) are system required and should 
remain in rule base (since these rules are not subsumed by any other rule in this rule base). However, algorithm 
proposed in [1] considers these rule paths redundant from each other. In the subsequent section we propose an  
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Figure 7. Resultant rule base after removing circularity.                                          

 
algorithm to detect redundancy in which we have taken into account starting nodes and assumed independency 
of starting nodes in detecting redundancy error. In our algorithm we will find redundant rules in forms of iden-
tical and subsumed rules as follows. The detect redundancy algorithm is represented in Table 2. 

Initially, z copies of tube T are generated as tubes Ti. At line 2, in parallel for each redundant node, we extract 
all strands containing redundant node Xi. Next strands containing “→Xi” are extracted from Ti

+ and poured into 
tube Ti

Red; otherwise, into tube Ti
Req at line 3. It should be noted that if a rule path contains the redundant node 

Xi, but it lacks a node that directly infers Xi, then Xi must be part of a compound AN in the rule path. Thus, this 
rule path needs to exist when considering redundant node Xi and is poured into tube Ti

Req (line 3). Next, we ca-
tegorize strands in tube Ti

Red in terms of length of the antecedent of the first rules in strands. To do so, many 
copies of strands representing complements of strands in tube TΛsk are poured into tube Ti

Red. First, for correct 
extraction of strands, this line is carried out for tube which contains paths with longest AN of first rules and is 
repeated until the last tube which contains paths with shortest AN of first rules. Thus, any strand in tube Ti

Red 
that anneals to the above strands are extracted and poured into tube Tik

Red (tube TΛsk is comprised of strands 
representing k starting nodes in conjunction form). Thus, the AN of first rules of strands in tube Tik

Red is com-
prised of k starting nodes, if there exist any strand of this form.  

Strands in each tube Tik
Red, which the AN of first rules of them, are the same (or permutation of one another) 

are redundant from each other (antecedent of the first rule in all strands in tube Tik
Red have k starting nodes). 

Other strands in tubes Tik
Red, represent rule paths with distinct starting nodes, or strands in which at least one of 

starting nodes of the first rules are distinct from those of other rule paths. These strands are not redundant from 
each other.  

In order to determine subsumed rules, we compare strands in each tube Tik
Red with strands in all other tubes 

{Tij
Red,…} for all j > k, generated at Detect Redundancy Part 1. Our Detect Redundancy Algorithm Part 2 is de-

scribed below. For each tube Tik
Red, this algorithm is performed in parallel as follows. Each strand in tube TΛsk is 

represented by ki. Thus, kz denotes strand number z of tube TΛsk (explained in Section 3.4). At line 3, strands 
containing kz are extracted from Tik Red and poured into tube Tik

+. At line 4, If there exists any strand in tube 
Tik

+, the first rule of this strand subsumes all rule paths in tubes Tij
Red (j > k), which contain kz. Thus, all rule 

paths containing kz are extracted from all Tij
Red (j>k) in parallel and poured into tube TijR+ (line 5). Consequent-

ly all strands in tubes TijR+, are subsumed rule paths. In order to show the effectiveness of our algorithm, we 
perform it for the rule base depicted in Figure 7. Node X6 has more than one rule leading to it thus it is candi-
date for redundancy error. Paths {1, 2, 3, 4} contain sub-strand “→X6” and are extracted from T6 and poured 
into T6

Red at Detect Redundancy Part 1. Next, strands in tube T6
Red, which contain, strands in tube TΛs3 (i.e.    

X1 Λ X2 Λ X4) are extracted from T6
Red and poured into tube T63

Red. At next iteration of while-loop, strands in 
tube T6

Red, which contain sub-strands in tube TΛs2 (i.e. X1 Λ X2 and X2 Λ X3) are extracted from T6
Red and poured 

into tube T62
Red. Finally, strands containing the sub-strand in tube TΛs1 (i.e. X1) are extracted and poured into 

tube T61
Red. At Detect Redundancy Part 2, lines 3 to 5 is performed in parallel for all tubes T61

Red, T62
Red, T63

Red. 
We describe the process for tube T61

Red. At line 3, strands in tube T61
Red, which contains sub-strand in tube TΛs1 

(X1) are extracted from T61
Red and poured into tube T61

+. Since tube T61
+ is not empty, line 5 of the algorithm is 

performed and strands containing Sub-strand X1 are extracted from T62
Red and T63

Red and poured into tubes 
T62R+, T63R+ respectively. Finally, strands in tubes T62R+ and T63R+ are redundant (subsumed) rule paths. It 
should be noted that the algorithm is performed for all tubes Tik

Red (in our example, T61
Red, T62

Red, and T63
Red). 

Thus, between lines 2 to 5, the algorithm will find other redundant rule paths by checking tubes T62
Red and T63

Red, 
if there exists any. The process of our algorithm for the example explained above is depicted in Figure 8(a). 
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Table 2. Detect redundancy algorithm.                                                                           

{k = number of last tube from tubes TΛsk, arranged in ascending order of k} 

Detect Redundancy Algorithm Part 1 Detect Redundancy Algorithm Part 2 

  

 

 
(a)                                                      (b) 

Figure 8. (a) Redundancy detection; (b) Example of redundant rule base.                                               
 

It should be noted that, rules in the middle of the rule paths with atomic or compound AN does not influence 
the redundancy detection procedure even if there exist nodes in the middle of the paths that are inferred from 
distinct starting nodes. To make these statements more clear, take the rule base depicted in Figure 8(b) as an 
example. Assume that X1 and X2 are starting nodes and X7is the goal node. The complete rule paths for this rule 
base is shown in Figure 8(b). 

By performing detect redundancy algorithms, rule paths (1, 2) and (3, 4) are redundant from each other. By 
removing one of the redundant rule paths, incompleteness will not arise in the rule base. The reason is that, a 
system required rule that is eliminated by removing one of the paths, remains in other rule paths. For such a spe-
cial case depicted in Figure 8(b), we should be careful not to eliminate redundant rule paths in a way that a sys-
tem required rule be removed from the rule base, as a result of elimination of redundant rule paths considering 
different starting nodes (for example, rule X3 Λ X4 → X7 and X4 Λ X3 → X7 will be removed by elimination of 
rule paths 1 and 3). 

3. Conclusions 
Different techniques have been developed in order to represent rule-based systems and detect structural errors in 
them. Nazareth proposed an approach based on Petri nets to verify rule-based systems [13]. Zhang and Nguyen 
proposed a tool based on Pr/T net to automatically detect potential errors in a rule-based system [23]. Agarwal 
and Tanniru utilized incidence matrix of Petri nets for detecting structural errors in rule base [14]. An approach 
based on hyper-graph to verify rule-based systems is proposed by Ramaswamy et al. [10], which utilizes di-
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rected hyper-graphs to model rule-based systems’ graph and transform the hyper-graph into adjacency matrix. 
He et al. [6] utilized a special class of low level Petri nets (ω-nets) in order to detect the structural errors in rule 
based systems. In their approach, transitions were used to represent rules, and places of Petri-nets represent con-
ditions and conclusions. Thus, rules that their firing does not result in marking of w-net are considered either 
redundant or circular rules. The algorithms presented in [6] do not distinguish between redundancy and circular-
ity problem. Algorithms based on DNA computing are proposed in [1] in order to detect the four structural errors 
in rule-base systems. That paper presents algorithms, which are able to detect structural errors just for special 
cases with one starting node and one goal node. For rule base, which contains more than one starting node and 
goal node, structural errors are not removed correctly by utilizing these algorithm. By virtue of the special strand 
design that we used to encode starting nodes and goal nodes, all complete paths can be extracted from initial so-
lution by performing our detect incompleteness algorithm just one time. 

Thus, in case of multiple starting nodes and goal nodes, there is no need to repeat the algorithm. Our algo-
rithm efficiently removes all circularity errors in chains of rules in any form that they may occur. In our ap-
proach for each pair of inconsistent nodes (Xi, Xj), rule paths which lead to these nodes are extracted from T and 
categorized in distinct tubes in parallel. Then, these rule paths and rules resulting in inconsistent nodes should be 
further analyzed, modified or eliminated based on experts domain decision. If there exists a state for which these 
rules resulting in inconsistent nodes (Xi, Xj) can be fired simultaneously, and it is decided that one of the rules 
resulting in these nodes should be removed, this can be done by removing strands in one of the tubes containing 
Xi or Xj based on experts domain decision. The Detect Redundancy algorithm considers starting nodes, which 
are logically independent and there is no implied relationship between them. Hence, two rules with the same 
conclusions, which are inferred under different conditions (different starting nodes) are not considered redundant 
from each other. And Detect Redundancy algorithm is able to detect subsumed rule paths. 

Efforts utilizing traditional measures of complexity such as time and space have been made to characterize 
DNA computation. Most existing models determine the time complexity of DNA-based algorithms by counting 
the number of biological steps it take to solve the given problem. We use the strong model of DNA computation 
for parallel filtering models. This model considers that a basic operator actually needs a time dependent on the 
problem size rather than taking constant time to be carried out [16]. The operation time of some of the operators 
utilized in this paper is presented in [16]. For instance, Union (T, T1, …, Tn) and Copy (T, T1, …, Tn) take O(n) 
time rather than taking constant time , which n is the problem size.  

Our algorithm comprises eight parts: Detect Completeness, Detect Circularity Part 0 to Part 3, and Detect 
Conflict, Detect Redundancy Part 1, and Detect Redundancy Part 2. We assume that the initial library (solution) 
is already constructed. Issues about constructing the initial library can be found in [16]. Operations of our algo-
rithm are as follows. The Detect Completeness algorithm includes 2 Extract and one Remove operations and the 
time it takes is from the order of O(n). Detect Circularity Part 0 includes one Copy, (q − 1) Detect, (3*(q − 1)) 
Separate, (q − 1) Union, and one Remove operations and takes O(n*q) time. Detect Circularity Part 1, consists 
of one parallel Copy, (2* (q − 1)) parallel Detect, (2* (q − 1)) parallel Separate, (q − 1) parallel Union, and one 
Remove and takes O(n*q) time. By the same token, number of operations included in Detect Circularity Part 2, 
is exactly the same as Detect Circularity Part 1 and takes O(n*q) time. Detect Circularity Part 3, consists of one 
Copy, (q − 1) parallel Detect, (3*(q − 1)) parallel Separate, (q − 1) parallel Union, one Remove, and one Union 
operations and takes O(n*q) time. Detect Conflict algorithm consists of one parallel Copy, 3 parallel extract, one 
parallel Union and takes O(n) time. Detect Redundancy Part 1 algorithm consists of one Copy, (K + 2) parallel 
Extract, and takes O(K*n) time, in which “K” is the number of tubes TΛsk. Detect Redundancy Part 2 algorithm 
consists of (2*z) parallel Extract and (z) parallel detect operations and takes O(z*n) time, in which “z” denotes 
the maximum number of distinct sub-strands in tubes TΛsk. In the end, one Read operation is performed which 
takes O(1) time. 

Using the strong parallel model of DNA computation, according to the above complexity analysis, the bio-
logical operations of our algorithm in the worst case is O (20q + K + 3z + 3), in “q” is the number of rules in the 
longest inference chain, “K” is the number of tubes {TΛs1, …, TΛsk}, and “z” denotes the maximum number of 
distinct sub-strands in tubes TΛsk. If we assume that just Detect circularity Part 0 and Part 1 are performed, then 
the complexity of our algorithm would be O(10q + K + 3z − 1). The time complexity of our algorithm in all 
cases is O(n*(Max{q, K, z})). Applicability of utilizing DNA computing to verification of rule-based systems 
first shown in [1]. But proposed algorithms were not general and there are lots of cases, in which these errors 
cannot be removed correctly by utilizing their algorithms. In this paper, the deficiencies of the algorithms pre-
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sented in [1] are outlined. We have proposed algorithms in which these deficiencies are eliminated. The pro-
posed algorithms are able to detect the four structural errors in rule base in any forms that they may occur. Our 
algorithms utilize an entirely linear increase of computation and for a rule base with n nodes, the time complex-
ity of our algorithm is O(n*(Max{q, K, z})), almost the same as the time complexity that has been achieved in 
[1]. The number of biological operations used in our algorithm at the worst case of complexity, for which all 
parts of the Detect Circularity algorithm is performed is O(22q + K + 3z + 3). Our algorithm utilizes some more 
operations than the algorithm proposed in [1]. However, this small number of added operations results in effi-
cient performance of our algorithms for different cases and consequently, supplements DNA computing ap-
proach to verify Rule-Based Systems. In future, we plan to investigate the application of sparse Bayesian models 
in classification of errors in rule-bases systems [24]-[26]. Additionally we plan to investigate application of sys-
tem dynamics modeling in implementation and verification of rule based systems [27].  
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