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Abstract 
This is the first paper in a two part series on black holes. In this work, we 
concern ourselves with the event horizon. A second follow-up paper will deal 
with its internal structure. We hypothesize that black holes are 4-dimensional 
spatial, steady state, self-contained spheres filled with black-body radiation. 
As such, the event horizon marks the boundary between two adjacent spaces, 
4-D and 3-D, and there, we consider the radiative transfers involving black- 
body photons. We generalize the Stefan-Boltzmann law assuming that pho-
tons can transition between different dimensional spaces, and we can show 
how for a 3-D/4-D interface, one can only have zero, or net positive, transfer 
of radiative energy into the black hole. We find that we can predict the tem-
perature just inside the event horizon, on the 4-D side, given the mass, or ra-
dius, of the black hole. For an isolated black hole with no radiative heat in-
flow, we will assume that the temperature, on the outside, is the CMB tem-
perature, 2 2.725 KT = . We take into account the full complement of radia-
tive energy, which for a black body will consist of internal energy density, ra-
diative pressure, and entropy density. It is specifically the entropy density 
which is responsible for the heat flowing in. We also generalize the Young- 
Laplace equation for a 4-D/3-D interface. We derive an expression for the 
surface tension, and prove that it is necessarily positive, and finite, for a 
4-D/3-D membrane. This is important as it will lead to an inherently posi-
tively curved object, which a black hole is. With this surface tension, we can 
determine the work needed to expand the black hole. We give two formula-
tions, one involving the surface tension directly, and the other involving the 
coefficient of surface tension. Because two surfaces are expanding, the 4-D 
and the 3-D surfaces, there are two radiative contributions to the work done, 

How to cite this paper: Pilot, C. (2019) 
Are Black Holes 4-D Spatial Balls Filled 
with Black Body Radiation? Generalization 
of the Stefan-Boltzmann Law and Young- 
Laplace Relation for Spatial Radiative Trans- 
fers. Journal of High Energy Physics, Gra-
vitation and Cosmology, 5, 638-682. 
https://doi.org/10.4236/jhepgc.2019.53036  
 
Received: April 1, 2019 
Accepted: May 24, 2019 
Published: May 27, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/jhepgc
https://doi.org/10.4236/jhepgc.2019.53036
http://www.scirp.org
https://doi.org/10.4236/jhepgc.2019.53036
http://creativecommons.org/licenses/by/4.0/


C. Pilot 
 

 

DOI: 10.4236/jhepgc.2019.53036 639 Journal of High Energy Physics, Gravitation and Cosmology 
 

one positive, which assists expansion. The other is negative, which will resist 
an increase in volume. The 4-D side promotes expansion whereas the 3-D 
side hinders it. At the surface itself, we also have gravity, which is the major 
contribution to the finite surface tension in almost all situations, which we 
calculate in the second paper. The surface tension depends not only on the 
size, or mass, of the black hole, but also on the outside surface temperature, 
quantities which are accessible observationally. Outside surface temperature 
will also determine inflow. Finally, we develop a “waterfall model” for a black 
hole, based on what happens at the event horizon. There we find a sharp dis-
continuity in temperature upon entering the event horizon, from the 3-D 

side. This is due to the increased surface area in 4-D space, ( )4 2 32πRA R= , 

versus the 3-D surface area, ( )3 24πRA R= . This leads to much reduced radia-
tive pressures, internal energy densities, and total energy densities just inside 
the event horizon. All quantities are explicitly calculated in terms of the out-
side surface temperature, and size of a black hole. Any net radiative heat in-
flow into the black hole, if it is non-zero, is restricted by the condition that,

( )30 1 d d 4 Rc Q t F< < , where, ( )3
RF , is the 3-D radiative force applied to the 

event horizon, pushing it in. We argue throughout this paper that a 3-D/3-D 
interface would not have the same desirable characteristics as a 4-D/3-D in-
terface. This includes allowing for only zero or net positive heat inflow into 
the black hole, an inherently positive finite radiative surface tension, much 
reduced temperatures just inside the event horizon, and limits on inflow. 
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1. Introduction 

Black holes are mysterious objects about which we still know very little. They 
have long intrigued physicists and fascinated the general public ever since they 
were first proposed [1]. Now, however, there is compelling and mounting evi-
dence that they do, in fact, exist [2] [3] [4]. Catalogues of observed black hole 
candidates have been constructed, are readily available [5], and are typically 
ranked according to their mass and distance from the earth. However, we still 
know very little about what they consist of, how they are structured internally, 
and what holds them together. Gravity, of course, plays a central role and the 
strong gravity which they produce, being very compact and massive objects, 
prevents photons from escaping once the event horizon has been reached. The 
photons, upon reaching the event horizon, simply do not have the requisite es-
cape velocity being constrained to move at the speed of light. And so, there is no 
radiative heat outflow, or very little if we believe in black hole evaporative 
processes. The interior temperature of a black hole must also be quite low for 
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otherwise they would not appear black, and yet they pack a considerable amount 
of mass/energy within a relatively small volume. What happens to the photons, 
and in-falling matter, once they enter the black hole? Is all information and 
identity lost, often referred to as information loss paradox? Is there a singularity 
at the center of a black hole, as many suspect? Can this lead to worm holes, and 
white holes? These are all questions, which remain to be answered. 

The event horizon, in particular, is a complete mystery. This interface must 
have certain characteristics, which allow for net radiative heat inflow but zero 
(or very little) heat outflow. It must be a relatively stable structure because it can 
withstand tremendous gravitational forces. And yet, it can, and does expand 
upon massive and massless particle inflow. It seems to function as a sort of 
membrane, almost bubble like in character. There must be internal forces push-
ing out, which prevent complete collapse due to gravity. With or without inflow, 
there is a tremendous mass packed within a very small volume. How is that mass 
distributed, and what prevents complete implosion? Is there really a rip or tear 
in the space-time continuum at the center of a black hole, as is commonly 
thought? 

A third central question is why do black holes have a much reduced tempera-
ture within their interiors? As such, would they not continuously swallow up the 
surrounding CMB radiation? There is also dark matter and dark energy. All are 
in direct contact with the event horizon, and all have been in direct contact since 
black holes were formed. Why does a black hole not feed upon this continuous 
and plentiful source of matter/energy? One would think that due to the ambient 
mass/energy, a black hole would expand continuously. And, that expansion 
would have been much more pronounced in earlier cosmological epochs, when 
the CMB temperature was much, much higher, and the universe was much more 
compact. The standard argument is that this inflow would lead to very small ef-
fects, numerically, and therefore does not contribute significantly to expansion. 
Also, the rip or tear at the center of a black hole would prevent temperature 
from building up within its interior. We will argue, however, that there is no rip 
or tear at the center of a black hole. Instead, there must be a barrier of sorts 
which prevents permanent inflow of CMB photons and other pervasive forms of 
mass/energy surrounding the black hole. Having very low temperatures on the 
inside, the standard 3-D Stefan-Boltzmann law would not prevent black holes 
from permanently absorbing CMB photons, and bringing the black hole tem-
perature up to CMB temperatures. 

We can take this a step further. If the CMB temperature is the lowest possible 
temperature since formation of the universe, and if black holes are in constant 
thermal contact with the cosmic background, then how could they form, and 
evolve, at a lower temperature? We believe this is a valid argument against the 
permanent inflow model, which we will sometimes refer to as the PIM model. 
The permanent inflow model cannot be disproven, or proven, observationally, 
because, as stated, the effects are numerically small, at least in the present epoch. 
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Expansion would not be measurable. Logically, however, we think that the PIM 
model makes little sense. Unless there is a mechanism, which would force the 
temperature out of the black hole, we believe in a natural barrier to entry. Our 
thinking is that, black holes, being 4-D spatial objects, have an inherently lower 
temperature on the inside, at least close to its surface, which is near the event 
horizon. We also believe that true isolated, static black holes, can exist. In fact 
this is the basic assumption behind our two papers. From this, we can show that, 
then, we have either no net radiative heat inflow, d d 0Q t = , or, positive net ra-
diative heat inflow, d d 0Q t > , but now between 3-D/4-D space. Radiative heat 
flowing out of the black hole is not possible other than through evaporative 
processes such as Hawking radiation. In this regard, it can be noted that, obser-
vationally, orbiting stars around black hole candidates seem to have stable orbits. 
Isolated, static black holes would certainly conform to this picture. 

We will make two central assumptions in both papers, other than a black hole 
being a 4-D object. The first is that isolated, static black holes are not only possi-
ble, but likely. In fact, we will assume they must exist. And the second assump-
tion will be that the CMB temperature can be used to find the temperature just 
inside the event horizon, on the 4-D side. This holds true today, as well as in ear-
lier cosmological times. It is interesting to note that positive, net radiative heat 
outflow out of a black hole will not be possible given our assumptions above. It 
is something we can show within our model. The fact that black holes are black, 
observationally, demands a theoretical explanation.  

To answer the questions posed above, we will make a leap of faith. We pro-
pose that black holes are 4-D spatial objects, spherically symmetric and packed 
with blackbody radiation, embedded in 3-D space. Their radiative mass distribu-
tion is distributed in such a way as to make them appear black. A three dimen-
sional analogy would be liquid droplets in a gas, but here we are dealing with a 
4-D droplet, and, furthermore, as it will turn out, not of uniform density. We 
can imagine black holes to be droplets of 4-D radiation, to be precise, within a 
greater 3-D universe. The event horizon is the interface between 4-D space and 
3-D space. This is where the rip or tear in the space-time continuum occurs, and 
not at the center of the black hole, as commonly thought. Indeed, as we shall see 
in the follow up paper, the black hole is well-behaved within its interior and has 
no singularity at its center. While at first sight, this interpretation may seem fan-
ciful and even far-fetched, we will soon see that certain characteristics emerge 
within this picture, which seem to make sense. It is the goal of this paper, and 
the follow-up paper, to show that this hypothesis may have some validity. 

We will build our model with two papers. The first work, this paper, deals 
with the event horizon itself. The second paper, which follows this, will deal al-
most exclusively with the internal structure of a black hole. Both papers are 
lengthy and involve a considerable amount of formulae. However we believe this 
to be necessary in order to make a convincing case, which will support this novel 
hypothesis. 
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Interestingly, as we develop our model, we will also show that a black hole 
cannot be a 3-D ball packed with black-body radiation, or for that matter, a 2-D 
construct. There are several reasons for this, the most important of which are the 
following. We list these in bullet form. 
1) 2-D and 3-D balls of blackbody radiation cannot pack the requisite amount 

of radiative mass in such a small volume. The temperatures would have to be 
incredibly large, even at the surface of a black hole. 

2) 3-D objects will not allow for a natural discontinuity at the interface, which is 
needed to define a radiative surface tension. A finite, positive surface tension 
is required to define a curved object in space, which a black hole inherently 
is. 

3) A 3-D object cannot guarantee that there is no net heat outflow whereas a 
4-D object can. 

4) 3-D/3-D radiative transfers of energy cannot allow for substantially lower 
surface temperatures within the black hole event horizon, which is just un-
derneath the surface. 

5) 3-D/3-D transfers of radiative energy will not allow for much reduced radia-
tion pressures, internal energy densities, entropy densities, and total energy 
(radiative mass) densities, etc. just inside the event horizon. These quantities, 
incidentally, will all increase dramatically within the black hole itself, as one 
approaches, 0r → , in order to pack in the required radiative mass. 

6) 3-D/3-D interfaces will not prevent CMB photons, and other pervasive forms 
of matter/energy surrounding a black hole, from being continuously pulled 
in. With our 4-D/3-D model we can provide a barrier, or lip, which prevents 
permanent inflow and expansion of a black hole. In fact, the outside 3-D 
surface temperature, 2 2.725 KT = , will serve as an input in order to define 
an equilibrium temperature for a black hole, on its inside surface, when there 
is no inflow. This is what we will call an isolated, static black hole. For tem-
peratures, 2  2.725 KT > , we will have radiative heat inflow, i.e., d d 0Q t > , 
the amount of which will depend on the value of 2T . We reserve tempera-
ture, 1T , for the temperature just inside the event horizon, on the 4-D side. 
This will always be substantially lower than the temperature just outside the 
event horizon, with or without radiative inflow. 

There are other reasons for settling on a 4-D/3-D interface, but these will be 
among the most important. 

It has not gone unnoticed that black holes appear, and act very much like balls 
of blackbody radiation [6] [7]. Moreover, it is also known that blackbody radia-
tion was the primordial substance in the early universe [8] [9] [10] [11]. It filled 
essentially all of space, and it has been conjectured that the particles in the stan-
dard model “froze-out”, each at a particular temperature, as the universe cooled 
[12] [13] [14]. For energies above, 1 TeV, corresponding to a background tem-
perature in excess of 1016 K, all particles in the standard model are relativistic, i.e., 
in the form of radiation. Thirdly, the concept of ball lightning (Kugelblitz in 
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German) has been applied to blackbody radiation and, in particular, to the for-
mation of black holes. The idea is that the black body radiation is so concen-
trated in intensity that it curves that space-time itself around it, and forms a 
black hole [15] [16] [17]. A black hole is thus a ball of radiation which gives it its 
radiant mass. John Wheeler [16], himself, already in 1955, even explored the no-
tion of creating elementary particles in this way. We will also allude to this as a 
possible mechanism for producing “elementary particles”. So the basic ideas 
presented in this paper have been thought of before. What is new here is the hy-
pothesis that the black hole is, in reality, a 4-D spatial object, filled with black-
body radiation, and possibly other radiations. As such, the temperature does not 
have to exceed the Planck temperature. Far from it, as we shall see. We will also 
show in our second, follow-up work how to pack that radiation. This is also 
novel. We will introduce a probability distribution function to pack the required 
radiative mass, and still keep the inside surface temperature, just inside the event 
horizon on the 4-D side, very low. The black hole will therefore not emit radia-
tion, other than through mechanisms such as Hawking radiation.  

There have been 2-D models proposed for black holes, so-called holographic 
models [18] [19] [20]. This ties in to the work done by Bekenstein [21] [22], and 
others relating to black hole entropy. The entropy is calculated in terms of the 
3-D black hole surface area, as multiples of Planck area, so-called Plankions. 
Such models predict enormous amounts of entropy associated with a black hole; 
in fact, using such calculations, most of the entropy in the universe is in the form 
of black hole entropy [23] [24] [25] [26]. Supermassive black holes contribute, 
by far, the most entropy. We do not believe entropy to be an intrinsic variable, 
dependent on surface area. Rather, we think that entropy is an extrinsic variable, 
dependent on volume. Moreover, it is a 4-D volume we should be considering, 
and integrating over. In the follow up paper, we calculate the total entropy asso-
ciated with a black hole. For a black hole having the mass of the sun, the entropy 
in our model is calculated to be only 1.63 × 1037 J/K. This is only about 2 orders 
of magnitude greater than the entropy of the sun itself, which is approximately, 
1035 J/K. The Bekenstein model gives the entropy as,  

( ) ( )( )3 2
Bekenstein 1 4 4πBS c k G R= � , which for a black hole of one solar mass 

gives, 1.50 × 1054 J/K. His entropy is much greater than that of the sun by almost 
nineteen orders of magnitude! Moreover, the Bekenstein entropy scales as, 

2
Bekenstein ~S R . Our entropy also scales appreciably, comparable to, 2R , but not 

according to a clear power law. If our model is correct, a black hole is thus a 
highly-ordered state, contrary to what current consensus claims. The calculation 
will be presented in the follow-up paper for several black holes, each with a dif-
ferent mass. 

In this paper, and the next, we will ignore/discount Hawking radiation [27] 
[28] [29] [30]. While it may exist, we proceed as if it does not. Other evaporative 
or leakage processes such as quantum mechanical tunneling [31] [32] [33] 
through the event horizon will also be ignored. Should they exist, they will be 2nd 
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order corrections, at best, to the results presented here. The temperatures just 
inside the event horizon within our model will be shown to be considerably 
higher than the Hawking temperature, which is given by the formula,  

( )3 8πH BT c GMk= � . Nevertheless, the inside surface temperatures will still be 
much less than they are on the outside. Moreover, within the black hole itself, 
those same 4-D temperatures will increase dramatically as one approaches the 
interior of the 4-D black hole. At the very center of the black hole, at, 0r = , we 
theorize that we will have a maximum but finite radiative energy density for a fi-
nite volume. 

The outline of the paper is as follows. In Section 2, we consider the 4-D/3-D 
interface, and generalize the Stefan-Boltzmann law to account for radiative 
energy transfers between different spaces. We show that radiative heat energy 
density is not the only component, which transfers. When transferring between 
spatial dimensions, other forms of radiative energy flow, such as internal energy 
density and radiative pressure. It is an all or nothing proposition. To maintain 
the blackbody identity of the photons at a particular temperature, all compo-
nents, or none, carry over. In this section, we will prove that there can only be 
positive radiative energy inflow into the black hole once the event horizon is 
reached, or none. In Section 3, we consider the expansion of a black hole upon 
net inflow of radiation. We define the surface tension and model the event hori-
zon as an infinitely thin membrane, a bubble of sorts. We derive key relations for 
the work done, in terms of surface tension and coefficient of surface tension. 
Because there are two surfaces expanding, the four-dimensional and the three- 
dimensional, we must take both into account for radiation. Then there is also 
gravity, which will also want to prevent the 4-D surface from expanding in size. 
This is included although the specific details will be worked out in the subse-
quent paper. In this section we generalize the Young-Laplace equations for an 
interface separating two different spaces, one 3-D and the other 4-D.  

In Section 4, we build upon the ideas developed in sections II and III. We 
show that there is a sharp discontinuity in temperature when crossing the 
3-D/4-D threshold. This discontinuity is due to the discontinuity in space itself, 
because in going from the 3-D world to the 4-D space, the surface area increases 
abruptly and dramatically, from, ( )3 24πRA R= , to ( )4 2 32πRA R= , for the same ra-
dius, R. This discontinuity in surface area leads to a precipitous drop in temper-
ature just inside the event horizon. Moreover, this will translate into decreased 
internal energy densities, reduced radiative pressures, and much smaller entropy 
densities just inside the black hole. All these quantities will depend on the out-
side radiative temperature and the size, or mass, of the black hole. In this section, 
we present our so-called “waterfall model” for the event horizon of a black hole. 
The summary and conclusions are highlighted in Section 5, our final section. 
Finally we have an appendix (Appendix A), where we consider non-spherical 
symmetry, and the emission of quadrupole gravitational radiation. We show that 
our model can be extended to this situation, and we work out a few numerical 
examples. 
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2. Generalization of the Stefan-Boltzmann Law 

We start with the radiative flux emitted in N-dimensional space. As is known 
[34], a blackbody at temperature, T, emits a radiative flux, sometimes called ra-
diancy, ( ) ( )N TΦ , given by  

( ) ( ) ( ) ( ) 1d d 1N N N NT Q t A Tσ +Φ = =                (2-1) 

In this equation, dQ stands for the amount of radiative heat emitted in time, 
dt, and the superscript, (N), refers to the number of spatial dimensions. The 
surface area in N-dimensional space, ( )NA , is that area through which radiative 
energy can escape, and ( )Nσ  is the Stefan-Boltzmann constant, generalized to 
N-spatial dimensions. The hyper-surface, ( )NA , in Equation (2-1), can be cal-
culated using the formula [35] [36], 

( ) ( ) ( ) ( )2 12π 2N N N NA A R R N−= = Γ               (2-2) 

In Equation, (2-2), R is the radius in N-space, and ( )xΓ  is the gamma func-
tion. We assume spherical symmetry for this self-contained ball of blackbody 
radiation. The generalized Stefan-Boltzmann constant, ( )Nσ , in Equation (2-1), 
is determined by the following formula [34], 

( ) ( ) ( ) ( ) ( ) ( )
21 12 π 1 1

2
NNN N N

B
Nc k h N N Nσ ζ

−− +  = − Γ + 
 

     (2-3) 

In this equation, Bk  is Boltzmann’s constant, c equals the speed of light, h is 
Planck’s constant, ( )xζ  is the zeta function, and ( )xΓ  is, again, the gamma 
function.  

In 4-D space, Equation (2-2) gives, ( )4 2 32πRA R= , whereas in 3-D space, we 
obtain the familiar ( )3 24πRA R= . We can also determine the values for the Ste-
fan-Boltzmann constants, in 4-dimensional, 3-dimensional and 2-dimensional 
space. Using Equation, (2-3), we obtain numerically 

( ) ( )4 5 3 53.021 10 Watts m Kσ − ⋅= ×              (2-4a) 

( ) ( )3 8 2 45.670 10 Watts m Kσ − ⋅= ×              (2-4b) 

( ) ( )2 11 39.614 10 Watts m Kσ − ⋅= ×
             (2-4c) 

We will be using MKS units throughout this paper, even when not explicitly 
written out. The radiative flux, ( )NΦ , is measured in Watts/mN in Equation, 
(2-1). The emissivity factor will always be taken as unity as we are assuming a 
perfect blackbody. All superscripts in parenthesis, next to a quantity, will refer to 
the number of spatial dimensions over which the quantity is defined. 

We use Equation (2-1), as our basic starting point, to find the radiative trans-
fer of heat energy between adjoining spatial dimensions. For a 3-D to 4-D spatial 
transfer of radiative energy, we may claim that, using this equation, 

( ) ( ) ( ) ( ) ( ) ( )3 4 3 3 4 44 5
2 1d d d d d dQ t Q t Q t A T A Tσ σ= − = −        (2-5) 

In this expression, ( )3d dQ t , is the radiative heat power exiting the 3-D space 
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and entering the 4-D space. The quantity, ( )4d dQ t , on the other hand, is the ra-
diative heat power exiting the 4-D space and entering the 3-D space. The tem-
perature, 2T , is the temperature just outside the black hole, in 3-D space. We 
define the temperature, 1T , as the temperature just inside the event horizon, in 
4-D space. The respective surface areas are found using Equation, (2-2). Equa-
tion, (2-5), is a direct extension of Equation, (2-1), and we call this the first ge-
neralized version of the Stefan-Boltzmann equation for radiative transfers be-
tween adjoining spatial dimensions. We note that even though surface areas, 

( )3A , and, ( )4A , have differing units, Equation, (2-5), is dimensionally consis-
tent. We will assume that the event horizon is infinitesimally thin, and as such, 
the temperatures, 1T , and, 2T , are defined at effectively the same radius, just on 
different sides of radius, R. 

It is obvious from relation, (2-5), that d dQ t  will be positive if the first term 
on the right hand side exceeds the second. If d d 0Q t > , then we will have net 
inflow. For a black hole, we can prove that this is the only possibility, other than 
d d 0Q t = . We will, however, have to assume a 4-D/3-D interface. We will de-
signate a black hole with no net inflow as an isolated, static black hole (ISBH). If 
there is net inflow, we call that a dynamic black hole (DBH). We called the tem-
perature just outside the event horizon, on the 3-D side, 2T . For 2T , we will 
assume a temperature of 2.725 K if the black hole is an ISBH. In other cosmo-
logical epochs, this temperature would have to be modified. For a DBH, the 
temperature on the outside will be larger than the CMB temperature. In Equa-
tion, (2-5), 1T , is the temperature just inside the event horizon, within the black 
hole on the 4-D side. As will be seen shortly, this temperature is determined by 
the radius of the black hole, or what is equivalent, by its mass. Because of the 
Schwarzschild condition, 22R GM c= , the two quantities are proportional. We 
will often make use of the Schwarzschild relation throughout this paper without 
explaining it. In practice, 2T , can be quite large. Due to friction and superheat-
ing of massive and massless inflows, the temperatures can reach X-ray tempera-
tures, 1.16 × 106 K to 1.16 × 109 K for soft and hard X-rays, and higher. These 
X-ray emissions would correspond to photon energies from a few MeV to a few 
GeV. Emissions of this type are readily discernable, observationally, if not too far 
away. Black hole masses, and thus radii, can also be estimated in many instances. 
This will give us enough information to calculate the specific amount of inflow 
using Equation, (2-5). For the temperature, 1T , we assume an equilibrium tem-
perature, calculated as if the black hole had no inflow. This quantity is based 
strictly on the size, or mass, of the black hole, which at the moment of inflow has 
a unique value. 

Focusing further on Equation, (2-5), we specialize to the case where there is 
no inflow. In this instance, d d 0Q t = , and Equation, (2-5), reduces to  

( ) ( ) ( ) ( )4 4 3 35 4
1 2A T A Tσ σ=  

( ) ( )4 32 3 5 2 4
12π 4π 2.725R T Rσ σ=  
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Solving for 1T  gives 
1 5

1 0.581T R−=                      (2-6) 

We have used Equations, (2-4a), and, (2-4b), to obtain this simplified result. 
This we call the equilibrium temperature, just inside the event horizon. It is de-
termined strictly in terms of radius, or equivalently, mass, for a specified black 
hole. The black hole can and will expand upon inflow. And inflow will be deter-
mined using a different and higher value for 2T  by means of Equation, (2-5), 
and this 1T  value. However, until such time that the black hole has expanded, 
the temperature to be used at the event horizon on the inside is 1T , as deter-
mined by this Equation, (2-6). From Equation, (2-6), it is clear that a black hole 
having greater mass will have a lessor temperature just inside the event horizon. 

If we consider a black hole having the mass of the sun (not realistic), then the 
Hawking temperature would give an inside temperature of about 62 nK. Equa-
tion, (2-6), gives a much higher inside surface temperature of 0.117 K, at the 
event horizon. Clearly Hawking radiation and evaporative processes are second 
order effects. For black holes having masses of 10 times and 106 times solar mass, 
we obtain using Equation, (2-6), 1 0.0741 KT = , and, 1 0.0741 KT = , respec-
tively. These are more realistic values as black holes are required to have masses 
many times that of the sun. 

Coming back to Equation, (2-5), in time dt, the amount of radiant heat enter-
ing the black hole is 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3 4

3 3 4 44 5
2 1

3 3 4 44 5
2 1

d d d

d d

1 d 1 d

Q Q Q

A T t A T t

c T V c T V

σ σ

σ σ

= −

= −

= −

                (2-7) 

In the third line of this equation, we made use of, ( ) ( ) ( )3 3 3d d dR RV A c t A R= = , 
and a corresponding equation in 4-D, ( ) ( ) ( )4 4 4d d dR RV A c t A R= = . The infinite-
simal volume element, ( )3dV , is the volume of heat leaving 3-D space, and en-
tering the black hole, a 4-D object, in time dt. By contrast, ( )4dV , is the infinite-
simal volume exiting 4-D space, the black hole, and entering 3-D space in time, 
dt. Because heat enters and exits at the speed of light, we set, d dR c t= . Even 
though we have a constant exchange of photons, back and forth, it will be seen 
that only zero or net positive inflow is allowed, due to the different dimensional-
ity of adjoining spaces. 

In N-dimensional space, a hyper-volume can be defined for a N-dimensional 
ball. The expression [35] [36] is  

( ) ( ) ( ) 2π 1
2

N N N N NV V R R  = = Γ + 
 

           (2-8) 

The superscript “N” in parenthesis on a physical quantity will always refer to 
the spatial dimension over which the quantity is defined. ( )xΓ  is, again, the 
gamma function, and N equals the number of spatial dimensions. From Equa-
tion, (2-8), it follows that ( ) ( )d dN N

RV A R= , where, ( )N
RA , is specified by Equa-
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tion, (2-2). This was utilized in Equation, (2-7). In 4-D space, Equation, (2-8), 
gives a volume equal to, ( )4 2 4π 2V R= . 

The expression, Equation, (2-3), and the relations, Equations, (2-4), through 
to, (2-7), are not quite correct. The ( )Nσ  coefficients are very close to being 
perfect, but have to be adjusted slightly. This is due to the fact that when black-
body photons transfer between spatial dimensions, it is not just internal energy 
density or radiative heat density, separately, which transfer. When blackbody 
photons transfer, the associated internal energy density, plus the radiative pres-
sure, plus the heat density all transfer as one unit. It is an all, or nothing, propo-
sition such that the black body identity of the photons can be maintained in both 
spaces. All of these quantities depend on temperature, and if temperature 
changes, which it does, so do all of the above at the same time. This was shown 
in a previous work [37], where we considered a 1st order phase transition at a 
particular temperature and pressure. The situation here is totally different be-
cause, as we shall soon see, there will be an abrupt change in temperature at the 
event horizon. In the previous work, the temperature remained fixed when the 
transition occurred. Nevertheless, even though the situation is very different be-
cause we are talking about radiative transfer, versus a discontinuous phase tran-
sition, maintaining the identity of the photons in their respective spatial dimen-
sion requires that all forms of blackbody energy transfer.  

To see this more clearly, let ( )3dE  equal the total radiative energy transferred 
in time, dt, into the black hole from 3-D space. As argued in a previous work, it 
will consist of various components, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 3 3 3 3 3 3 3d d d d dE u V p V q V e V= + + ≡         (2-9) 

In Equation (2-9), ( )3e , is the total radiative energy “density”, defined loosely 
in terms of the internal energy density, ( )3u , the radiative pressure, ( )3p , and 
the heat energy density, ( )3q , as follows, 

( ) ( ) ( ) ( )3 3 3 3e u p q≡ + +                   (2-10) 

Equation (2-10), really only makes sense when multiplied by a corresponding 
volume. We are mixing pressure, having units of N/m2, with energy density, 
measured in J/m3, on the right hand side of Equation, (2-10), which is really only 
valid if we form a product with a volume. When forming a product with volume, 
we obtain energy and stored work, which are both measured in Joules, even 
though the pressure and energy density have different units. So, when we write 
an “equation” such as relation, (2-10), this is what is inferred. 

In 4-D space we have a similar definition. Let ( )4dE  equal the total radiative 
energy transferred in time, dt, from the black hole into 3-D space. It also consists 
of various components 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 4 4 4 4 4 4 4 4d d d d dE u V p V q V e V= + + ≡         (2-11) 

Moreover, by definition, the total radiative energy “density” is found by using 
( ) ( ) ( ) ( )4 4 4 4e u p q≡ + +                   (2-12) 
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In these equation, ( )4u , is the 4-D internal energy density, ( )4p , the 4-D ra-
diative pressure, and ( )4q , the 4-D heat density, all defined over 4-D space. Be-
ing 4-D quantities, the densities and pressures have different units than those of 
their 3-D counterparts. Again, Equation, (2-12), is only valid if multiplied by a 
corresponding volume, and this is to be tacitly assumed for an Equation, such as 
(2-12), to make sense. 

We next note that ( ) ( )3 3,u p  and ( )3q  are related. And, so too, are, ( ) ( )4 4,u p  
and ( )4q . As is known [38] [39] [40] [41], the internal energy density in 
N-dimensional space is given by the following function, which depends only on 
temperature and the dimensionality of space, N: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )12 , 2 1 π 1 1 2N NN N
Bu u N T N k T N N hc Nζ+  = = − + Γ + Γ  (2-13) 

In this equation, Bk  is Boltzmann’s constant, c equals the speed of light, h is 
Planck’s constant, ( )xζ  is the zeta function, and ( )xΓ  is the gamma function. 
Moreover, the radiative pressure, heat density, and the entropy density, ( )Ns , 
are related to ( )Nu  via the equations, 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ), , 1N N N N N Np u q N u qN N s T= = + =       (2-14) 

These relations depend only on the dimensionality of space, N, and the tem-
perature, T, because ( )Nu  is, in itself, a function of temperature and dimension. 
Thus, we can construct the quantity, ( )d NE , and define it by 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )d d d d dN N N N N N N N NE u V p V q V e V= + + ≡         (2-15) 

However, by Equations, (2-14), ( )Ne  can be written a variety of ways, 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 2 1 2N N N N N N Ne u p q N u N N p q= + + = + = + =    (2-16) 

This implies that ( )d NE  can be re-expressed as 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

d 2 1 d 2 1 d

2 1 d 2 d 2d

N N N N

N N N N N

E N N u V N N U

N p V q V Q

= + = +

= + = =
        (2-17) 

In Equations, (2-17), ( )d NU  is the internal energy transferred in time dt, and 
( )d NQ  is the corresponding radiative heat transferred within the same time, dt. 

We notice that ( )d NQ  will always equal ( )1 2d NE , irrespective of the number 
of spatial dimensions! This allows us to write 

( ) ( ) ( )3 3 4(4)d d d 1 2d 1 2dQ Q Q E E= − = −              (2-18) 

Using Equations, (2-16), it follows that in 3-D space, 

     ( ) ( ) ( ) ( )3 3 3 38 3 8 2e u p q= = =                 (2-19) 

In 4-D space, we find, however, that 
( ) ( ) ( ) ( )4 4 4 410 4 10 2e u p q= = =                    (2-20) 

Notice the different factors in both sets of equations, as they will be important. 
Moreover, Equations, (2-17), show us that, if 3N = , 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 3 3 3 3 3 3 3d 8 3 d 8 3d 8 d 2 d 2dE u V U p V q V Q= = = = =    (2-21) 
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If, however, the number of spatial dimensions equals, 4N = , then we find 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 4 4 4 4 4 4 4 4d 10 4 d 10 4d 10 d 2 d 2dE u V U p V q V Q= = = = =  (2-22) 

We emphasize, once more, that Equations (2-10), (2-12), (2-16), (2-19) and 
(2-20) really only make sense when multiplied by a corresponding volume be-
cause we are mixing pressure and energy density within the same expression. 
Technically, these equations are only correct if we form a product with a volume, 
which is how we use these equations. 

Coming back to Equation, (2-18), we can write this equation for the radiative 
heat transfer a variety of ways. We utilize Equations, (2-21), and, (2-22), and 
find 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 4 3 4 3 3 4 4d d d 4 3d 5 4d 4 d 5 dQ Q Q U U p V p V= −−= − =    (2-23) 

Furthermore, we keep in mind that, ( )3dU , and, ( )3dQ , are the internal 
energy and heat energy exiting the 3-D world in time dt, and entering the black 
hole. The quantities, ( )4dU , and, ( )4dQ , on the other hand, are the internal 
energy and heat energy exiting the 4-D world, and entering the 3-D world in 
time, dt. As such, we can write 

( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 3 3 3 3 3d d d dR RU u V u A R u A c t= = =           (2-24a) 

( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 3 3 3 3 3d d d dR RQ q V q A R q A c t= = =           (2-24b) 

( ) ( ) ( ) ( ) ( ) ( ) ( )4 4 4 4 4 4 4d d d dR RU u V u A R u A c t= = =           (2-25a) 

( ) ( ) ( ) ( ) ( ) ( ) ( )4 4 4 4 4 4 4d d d dR RQ q V q A R q A c t= = =            (2-25b) 

In Equations, (2-24), and (2-25), the 3-D surface area equals, ( )3 24πRA R= , 
and the 4-D surface area equals, ( )4 2 32πRA R= . We next substitute the last equal-
ities of Equations, (2-24), and, (2-25), into Equations, (2-23). We then 
re-arrange terms to obtain, 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

3 4

3 3 4 4

3 3 4 4

3 4

1 d d 1 d d 1 d d

4 3 5 4

4 5

4 5

R R

R R

R R

c Q t c Q t c Q t

u A u A

p A p A

F F

= −

= −

= −

= −

             (2-26) 

In the last line, we have defined the radiative forces at radius, R, in three and 
four spatial dimensions as 

( ) ( ) ( )3 3 3
2R RF p A≡ , ( ) ( ) ( )4 4 4

1R RF p A≡               (2-27a,b) 

We keep in mind that, ( )3u , ( )3p , and ( )3q  are all defined in terms of a 
temperature just outside the event horizon, 2T . Hence, we have the subscript “2” 
on ( )3

2p . The quantities, ( )4u , ( )4p , and ( )4q , on the other hand, are all defined 
in terms of 1T , which is the temperature just inside the event horizon, within 
the black hole. This is reflected in the subscript “1” on ( )4

1p . See Equations, 
(2-13), and, (2-14). 
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Next, we revisit Equations, (2-13), and, (2-3). We notice that ( )Nu  can be re-
written in terms of, ( )Nσ . In fact, we can prove that the radiative internal ener-
gy densities, ( )4u , ( )3u , and ( )2u , can be reformulated as  

( ) ( ) ( ) ( ) ( )4 4 45 5 13 53π 2 4.7481 10u T a T c T Tσ −= ≡ = × ×        (2-28a) 

( ) ( ) ( ) ( ) ( )3 3 34 4 16 44 7.5657 10u T a T c T Tσ −= ≡ = × ×        (2-28b) 
( ) ( ) ( ) ( ) ( )2 2 23 3 18 3π  1.0075 10u T a T c T Tσ −= ≡ = × ×        (2-28c) 

In Equations (2-28a)-(2-28c), the coefficients ( )4a , ( )3a , and ( )2a  are defined 
by what follows in their respective line. They hold in 4-dimensional, 3-dimen- 
sional and 2-dimensional space, respectively, for blackbody radiation. We include 
the 2-dimensional relations here for completeness, and as a matter of reference. 

We substitute Equations, (2-28a), and, (2-28b), into the second line of Equa-
tion, (2-26). We thereby obtain, after multiplying through by the velocity of light, 
c, 

( ) ( ) ( ) ( ) ( ) ( )3 3 4 44 5
2 1d d 16 3 15π 8R RQ t T A T Aσ σ= −              (2-29) 

The coefficients, ( )3σ  and ( )4σ  are specified by Equations, (2-4b), and, 
(2-4a), respectively. In Equation, (2-29), the appropriate temperatures have been 
denoted. Just outside the black hole, in 3-D space, we have temperature, 2T . 
Within the black hole, just inside the event horizon, in 4-D space, we have tem-
perature, 1T . The surface areas, ( )3

RA , and, ( )4
RA , are those appropriate for three 

and four spatial dimensions. 
We now compare Equation, (2-29), to Equation, (2-5). We notice right away 

that we have a discrepancy. Equation, (2-29), has an extra factor of (16/3) in 
front of the ( )3σ  term. There is also an additional factor of (15π/8) sitting out 
in front of the ( )4σ  term. We believe that Equation, (2-29), is correct. And that 
Equation, (2-5), needs to be modified. Equation, (2-29), takes all forms of radia-
tive energy, as well as spatial dimension into account, whereas Equation, (2-5), 
only takes internal energy and no change in spatial dimension into account. We 
first explain the factor of (16/3). Because we are in 3-D space, the total energy 
density is 8/3 the internal energy density. See Equation, (2-19). Also, in 3-D, by 
Equation, (2-28b), ( ) ( ) ( )3 3 4a c σ≡ . Combining the two factors gives us (32/3c) 
in front of the ( )3σ  term. We divide by 2 to obtain 16/3 since the heat energy is 
always one-half the total energy density. In 4-D space, the total energy density is 
10/4 times the internal energy density, as seen by Equation, (2-20). Also in 4-D, 

( ) ( ) ( )4 4 3π 2a c σ≡ . See Equation, (2-28a). Multiplying both factors gives 30π/8c. 
We take half of that for heat transfer to obtain the factor, (15π/8). We call Equa-
tion, (2-29), the second generalized Stefan-Boltzmann equation for radiative 
transfers between adjoining spatial dimensions. In our view, it is the correct ex-
pression. 

With this in mind, let us rewrite Equation, (2-29), as 
( ) ( ) ( ) ( )3 3 4 44 5

2 1d d R RQ t T A T Aσ σ′ ′= −                (2-30) 
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where, by definition, the primed variables have been recast in terms of the origi-
nal unprimed variables, as follows, 

( ) ( )3 316 3σ σ′ ≡  and ( ) ( )4 415π 8σ σ′ ≡         (2-31a,b) 

The unprimed sigma values were given by Equations ((2-4a), (2-4b)). We will 
be working with this version of the generalized Stefan-Boltzmann law, Equation 
(2-30), which we call the 2nd generalized version of the Stefan-Boltzmann law. It 
is our contention that this is correct. This Equation (2-30), is equivalent to Equ-
ations, (2-26). 

With the new Stefan-Boltzmann constants, defined in Equations ((2-31a), 
(2-31b)), we can recalculate the equilibrium inside surface temperature of a 
black hole. By setting, d d 0Q t = , Equation (2-30), reduces to 

( ) ( ) ( ) ( )3 3 4 44 5
2 1R RT A T Aσ σ′ ′=                   (2-32) 

Solving for 1T  gives 
5

1 0.0597T R =                       (2-33a) 

or, what is equivalent, 

   1 5
1 0.569T R−=                       (2-33b) 

Upon comparison with Equation, (2-6), we note that, numerically, there is 
virtually no difference between the two results. As far as this result is concerned, 
the 2nd generalized Stefan-Boltzmann law gives an almost identical calculation 
for the equilibrium temperature just inside the event horizon, as our 1st version, 
Equation, (2-5). Nevertheless, let us calculate the inside surface temperature for 
three black holes. We focus on three black holes; one having the mass of the sun, 
another having a mass 10 times the mass of the sun, and for the third black hole, 
we assume a mass, 106 times the mass of the sun. For these three massive black 
holes, we calculate the radii using the Schwarzschild relation, and substitute 
these radii into Equation, (2-33). We thereby obtain, 

( ) ( )6
1,10 ,10 0.115 K,0.0726 K,0.00726 KBH sun sun sunM M M M T= → =   (2-34) 

As stated, these values for 1T  are very close to the values obtained previously. 
We also note that these temperatures, just inside the event horizon in 4-D space, 
are very much higher in value when compared to the Hawking temperature. 

There are many ways of writing our 2nd generalized version of the Ste-
fan-Boltzmann law. Equation (2-30), is one way to express it. Other ways are by 
means of Equations (2-26). If we use the second line of Equation (2-26), and in-
sert the values for ( )3u  and ( )4u  using Equations (2-28b) and (2-28a), we can 
reformulate the law very explicitly in terms of radius and temperatures. The re-
sult is 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

3 3 4 4

3 44 2 5 2 3
2 1

3 2 4 4
2

1 d d 4 3 5 4

4 3 4π 5 4 2π

4 3 4π 2.725

R Rc Q t u A u A

a T R a T R

a R T

= −

= −

= −

             (2-35) 
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Again, ( )3u , is defined in terms of temperature, 2T , whereas, ( )4u , is defined 
in terms of temperature, 1T . This is made explicit in the second line of Equation, 
(2-35). Knowing the temperature just outside the black hole, 2T , and the mass, 
or size, of the black hole, we can determine d dQ t  using this equation. For the 
temperature, 1T , we use the condition, (2-33b). That condition assumed that the 
temperature just outside the event horizon is, 2 2.725 KT = , which is an as-
sumed input. The last line in Equation (2-35) is an alternative, but equivalent 
formulation. It is obtained by realizing that Equation (2-33), is a consequence of 
(2-32), or, what is equivalent, setting the second line in Equation (2-26), equal to 
zero. This allows us to represent the 4-D quantities in terms of the 3-D quanti-
ties, i.e., the second term on the right hand side of Equation (2-26), can be ex-
pressed in terms of the first term on the right hand side. This bypasses the need 
to figure out 1T  first. The last line in Equation (2-35), is particularly useful in 
that now, all quantities are defined in three-dimensional space, and are accessi-
ble observationally.  

The lip, or barrier to entry, is also readily apparent. Utilizing the last line of 
Equation, (2-35), we see that there can be no net outflow. For that to happen, the 
external outside temperature would have to be less than the cosmic microwave 
background, which cannot happen! The cosmic microwave background is what 
we used to eliminate the 4-D term, the ( )45 RF  term, in Equation, (2-26). The 
second term on the right hand side of the last line in Equation, (2-35), is a dis-
guised version of ( )45 RF . This term is what creates the lip, or barrier, for poten-
tially instreaming CMB photons. To make a long story short, we can only have 
net inflow, or, no net inflow, i.e., d d 0Q t ≥ . The quantity, d dQ t , can never 
be negative, which means that there can be no outflow out of the black hole. This 
is a direct consequence of the 4-D/3-D interface. We would not have this condi-
tion if the black hole were defined as a three dimensional entity. 

We close this section by establishing a limit for the amount of inflow. We fo-
cus on the last line of Equation, (2-26). If, d d 0Q t = , then we have an isolated, 
static, black hole (ISBH), and 

( ) ( )3 44 5R RF F= (ISBH)                  (2-36) 

If, on the other hand, d d 0Q t > , then we have a dynamic black hole (DBH), 
which leads us to conclude that, 

( ) ( )3 44 5R RF F> (DBH)                  (2-37) 

It is clear that, in general, ( ) ( )3 44 5R RF F≥ . We further note that, ( )45 0RF > , 
because the temperature and radius are always positive. See the second term on 
the right hand side of Equation (2-35), where ( )45 RF  is explicitly written out. 
We rewrite the last line of Equation, (2-26), as 

( ) ( )4 35 4 1 d dR RF F c Q t= −  

However, the left hand side of this equation is positive definite. Thus, the right 
hand side must also be. This, in turn, leads to the condition, 
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( )34 d d 01RF c Q t ≥>                    (2-38) 

This shows that the amount of radiative heat inflow is restricted to be less 
than, ( )34 RcF , where, ( )3

RF , is the 3-D radiative force acting from the outside in. 
This places limits on the intake of radiative heat into a black hole. This is a spe-
cific, and interesting, prediction of our model.  

We emphasize that this limit placed on radiative heat inflow is a direct conse-
quence of having a 4-D/3-D interface for the event horizon. Equation, (2-38), 
follow from Equations (2-36), and (2-37). These, in turn, depend on the last line 
of Equation (2-26). The factors of 4 and 5 in Equation (2-26), are due to the di-
mensionality of space itself. See, for example, Equations (2-19) and (2-20). More 
specifically, refer to the last equalities in each. Radiative inflow would not be re-
stricted if the black hole were a 3-D object, because those factors sitting out in 
front of ( )3

RF  and ( )45 RF  would essentially be the same. In other words, we 
would not be able to distinguish between, ( )45 RF , and, ( )34 RF .  

Also, for a 3-D/3-D boundary, the Stefan-Boltzmann law would not allow us 
to have a lessor temperature just inside the event horizon. A 4-D/3-D is a re-
quirement for that. The different surface areas between the 3-D and the 4-D 
space, is what causes the sudden drop in temperature, as will be demonstrated in 
section IV. See, also, the second line of Equation, (2-35), and specialize to the 
particular situation where we have no net heat inflow. This will relate the tem-
perature on the inside of the event horizon, 1T , defined over 4-D space, to that 
on the outside of the event horizon, 2T , defined over 3-D space. 

We can evaluate the quantity, ( )34 RF , using the first term on the right hand 
side of Equation (2-35). We obtain 

( ) ( )3 3 4 2 14 4 2
2 24 4 3 4π 1.268 10RF a T R T R−= = ×               (2-39) 

If the outside surface temperature is, 2 2.725 KT = , this reduces to 
( )3 13 24 6.995 10RF R−= ×                       (2-40) 

For outside surface temperatures in excess of, 2.725 K, the value for ( )34 RF  
can be much higher as seen by Equation (2-39). For example, hard photonic 
X-ray emissions just outside a black hole would indicate temperatures in excess 
of, 109 K. Because of the 4

2T  factor in Equation (2-39), we can expect much 
higher limits placed for radiative heat inflow under these conditions, 1036 times 
higher than what is indicated by Equation (2-40). The inequality (2-38), may al-
so help explain the circulating nature of radiative heat inflow before entering the 
event horizon of a black hole. 

3. Generalization of the Young-Laplace Equations for  
Surface Tension at the Event Horizon 

The surface tension will play a key role in our analysis of the black hole event 
horizon. We first recognize that expanding a black hole event horizon requires 
work, or input energy. That work can be expressed very simply as  

d dSTW F R=                         (3-1) 
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here, STF  is the surface tension, and dR is the increase in radius. The surface 
tension acts on the 4-D/3-D membrane, identified as the event horizon, and 

STF  will pull the surface in.  
Another formulation for the positive work done in expanding the event hori-

zon is in terms of pressure. Ordinarily, the pressure just inside the membrane 
has to be larger than the pressure just outside in order to guarantee a positive 
curvature for the object. However, in the case of a 4-D/3-D membrane, this will 
not hold true. The surface area changes in this case, and as a consequence, the 
radiative pressure on the inside will actually be less than that on the outside. 
Remember that we are going from a surface area of, ( )3 24πRA R= , to,  

( )4 2 34πRA R= , upon entering the black hole. But we first consider the conven-
tional 3-D case where surface area does not change upon crossing the mem-
brane.  

For conventional 3-D objects such as liquid droplets or bubble films, it is 
known that ( )i op p A−  gives the outward force, where ip  is the inner pres-
sure, op  is the outside pressure, and A is the surface area. For hydrostatic equi-
librium, the two forces, the surface tension, and the outward force due to pres-
sure difference, must balance. Thus, 

( )i o STp p A F− =                        (3-2) 

For a 3-D sphere, the Young-Laplace equation reads 

( ) ( ) ( )31 1 2i o x yp p p R R Rγ γ∆ = − = + =         (3-3) 

The coefficient of surface tension, ( )3γ , is measured in units of New-
tons/meter, and ,x yR R  are the curvatures in the x, y direction. Because of 
spherical symmetry, we set, x yR R R= = . Similarly, for a 4-D sphere, we extra-
polate and claim that, 

( ) ( ) ( )41 1 1 3i o x y zp p p R R R Rγ γ∆ = − = + + =         (3-4) 

The 4-D coefficient of surface tension, ( )4γ , is measured in Newtons/meter2, 
and ,,x y zR R R  are the curvatures in the x, y, z sense. Again, we set  

 x y zR R R R= = = , because we want spherical symmetry. The cause of surface 
tension in the case of liquid droplets, gas bubbles, soap bubbles, etc. are inter-
molecular forces. For the case of a black hole, the surface tension is caused by the 
difference in radiative force at the interface, and, more importantly, gravity, as 
we shall see shortly. 

To expand a surface in 3-D space, we use Equation, (3-1), and write 

( ) ( )d d d dST i o i oW F R p p A R p p V= = − = −             (3-5) 

where dV is the increase in volume. In 4-D we use the same formula, Equation, 
(3-1), but now, 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )4 4 4 4 4 4 4d d di o i oW p p A R p p V= − = −              (3-6) 

here, ( )4p  has units of Newtons/meters3 and dV is measured in (meters)4. We 
see that, ( )i o STp p F A− = , in both 3-D and 4-D space. Therefore, using Equa-
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tions, (3-3), and, (3-4), we can write, 
( ) ( ) ( )3 3 32 STR F Aγ =                        (3-7a) 

( ) ( ) ( )4 4 43 STR F Aγ =                       (3-7b) 

Substituting Equation, (3-7a), into Equation, (3-5), gives 
( ) ( ) ( )( ) ( ) ( ) ( )3 3 3 3 3 3d d 2 d dSTW F R R A R Aγ γ= = =              (3-8) 

This holds true because, ( ) ( )3 2d d 4π 8π  dA R R R= = . Similarly, substituting 
Equation, (3-7b), into Equation, (3-6), renders 

( ) ( ) ( )( ) ( ) ( ) ( )4 4 4 4 4 4d d 3 d dSTW F R R A R Aγ γ= = =              (3-9) 

here, ( ) ( )4 2 3 2 2d d 2π 6π dA R R R= = . Equations, (3-8), and, (3-9), give the work 
done in terms of, ( )3γ , and, ( )4γ , which in turn, are defined by Equations, (3-3), 
and, (3-4), respectively. The quantities, ( )3γ , and, ( )4γ , are called the coefficients 
of surface tension. 

For a black hole to expand, two surfaces have to expand, the 3-D surface and 
the 4-D surface. For our 4-D blackbody black hole radiation model, we set 

( ) ( ) ( )3 4 4
,d d d d dST R R G RW F R F R F R F R= = − +              (3-10) 

In this equation, ( )3
RF , is the 3-D radiative pressure force pushing the event 

horizon in, and ( )4
RF  is the 4-D radiative pressure force pushing the event ho-

rizon out. We also have the absolute value of the gravitational force, ( )4
,G RF , 

which acts on the event horizon, and which wants to pull it in. We only count 
this once, and because it is derived within the black hole, which is a 4-D con-
struct, the gravitational force, itself, is 4-D. The total contribution to actual work 
done is given by Equation, (3-10), which will be positive for an increase in R, 
from R to R + dR. As mentioned, R, characterizes the event horizon. From Equ-
ation, (3-10), we see that the total work will consist of three separate compo-
nents, and each goes into defining the surface tension, on the left hand side of 
this equation. 

As we have seen in the last section the radiative force, ( )3
RF , is always larger 

than its 4-D counterpart, ( )4
RF . Refer to Equations, (2-36), and, (2-37). In fact, 

using these two conditions, and Equation, (2-26), we see that 
( ) ( )

( ) ( ) ( )
( )

3 4
radiative

3 3

3

d d d

d 0.8 0.2 1 d d d

0.2 1 d d d

R R

R R

R

W F R F R

F R F c Q t R

F c Q t R

≡ −

 = − − 
 = + 

             (3-11) 

Therefore, by Equations, (3-10), and, (3-11), another way to write the 4-D/3-D 
radiative surface tension is 

( ) ( )

( )

( )

3 4
radiative

3

3

0.2 1 d d

0.2

ST R R

R

R

F F F

F c Q t

F

≡ −

 = + 

≥

                  (3-12) 
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For an isolated static black hole (ISBH), d d 0Q t = , and, ( )3
radiative 0.2ST RF F= , 

which is definitely greater than zero. For a dynamic black hole (DBH), where, 
d d 0Q t > , we obtain an even larger radiative surface tension by Equation, 
(3-12). In fact, knowing the outer surface temperature allows us to calculate the 
amount of heat inflow as shown in the last section. We also have a larger value 
for ( )3

RF  because the outside temperature is now larger. It is interesting to re-
mark that, even without gravity, a ball of radiation is positively curved, if that 
ball of blackbody radiation has 4 spatial dimensions. This, we believe, is a very 
significant result, as it may relate to elementary particles, and the formation of 
black holes. 

The full surface tension has to include the gravitational force acting on the 
event horizon. By Equations, (3-10), and, (3-11), we can write, 

( ) ( ) ( )

( ) ( )( )
3 4 4

,

4 4
radiative , radiative ,

d d d d d

d d d

ST R R G R

G R ST G R

W F R F R F R F R

W F R F F R

= = − +

= + = +
         (3-13)  

We can thus calculate the associated surface tension using Equation, (3-13), if 
we know the value of the 4-D gravitational force at the event horizon, and 

( ) ( )3 4
radiativeST R RF F F≡ − . In the next paper, we will calculate an expression for, 

( )4
,G RF . It will turn out to be immense. In fact, the radiative forces are insignificant 

in comparison, except in the most extreme of circumstances. In expanding the 
black hole, we will see that the work done is essentially against gravity. Moreover, 
with, or without, gravity, the surface tension is positive definite, making the 
black hole a positively curved object in space. 

An alternative formulation to Equations, (3-10), and, (3-13), is 
( ) ( ) ( ) ( ) ( ) ( )3 3 4 4 4 4d d d dGW A A Aγ γ γ= − +                (3-14) 

This is the infinitesimal positive work done by inflowing matter/radiation in 
expanding the black hole event horizon in both 3-D and 4-D space. The term, 

( ) ( )3 3dAγ , will fight expansion, whereas the product, ( ) ( )4 4dAγ , will assist in ex-
panding the membrane, and hence we have the difference in sign in Equation, 
(3-14). We also have gravity, which fights expansion of the event horizon. In 
other words, it will hinder an increase in event horizon surface area. The last 
term on the right hand side of Equation, (3-14), represents this contribution to 
the infinitesimal work done. Its associated coefficient of surface tension is, ( )4

Gγ . 
We will give actual expressions for ( )3γ , and ( )4γ , in the next section, where it 
will be seen that both are radius and temperature dependent. The coefficient, 

( )4
Gγ , can only be specified in the follow up paper, once we derive an expression 

for gravitational force, ( )4
,G RF . The gravitational force at the surface will turn out 

to be model dependent. 
Equations, (3-1), and, (3-10), led us to conclude that the radiative portion of 

surface tension is the difference in radiative forces, ( ) ( )3 4
radiativeST R RF F F= − . We 

also saw, by Equation, (3-12), that this surface tension is positive and finite. 
We wish to write the surface tension in another form. By invoking Equations, 
(2-37a,b), (2-14), and, (2-28a,b), we can demonstrate that 
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( ) ( ) ( ) ( ) ( ) ( )3 3 3 3 3 34 4 2
2 2 21 3 1 3 4πR R RF p A a T A a T R= = =           (3-15a) 

( ) ( ) ( ) ( ) ( ) ( )4 4 4 4 4 45 5 2 3
1 1 11 4 1 4 2πR R RF p A a T A a T R= = =          (3-15b) 

Hence, a new way to write this part of the surface tension is 
( ) ( ) ( ) ( )

( ) ( )

3 4 3 44 2 5 2 3
radiative 2 1

43 2 4
2

1 3 4π 1 4 2π

1 3 4π 4 5 2.725

ST R RF F F a T R a T R

a R T

= −= −

= − 
 

       (3-16) 

In the second line of Equation, (3-16), we have used the identity, 
( ) ( ) ( )43 42 5 2 3

14 3 2.725 4π 5 4 2πa R a T R=              (3-17) 

This is a disguised version of Equation, (2-33). We previously saw that 

radiativeSTF  is a function of, R, and, 2T . See Equation, (3-12), and the discussion 
that followed. The Equation, (3-16), is an alternative formulation. It is more di-
rect than calculating d dQ t  first, and then inserting this value into Equation, 
(3-12). Moreover, with this new formulation, we once again see that the radiative 
surface tension can never be zero. The lowest temperature allowed in Equation, 
(3-16), is 2 2.725 KT = , and for that value, we obtain ( )30.2 RF , as before. 

We next give some numerical values. We first consider an isolated, static, 
black hole, where, d d 0Q t = . In this instance, by Equations (3-12) and (3- 
15a), 

( ) ( )3 3 4 2 14 2
radiative 20.2 8π 30 3.497 10ST RF F a T R R−= = = × (ISBH)   (3-18) 

In the last equality, we have set the temperature, 2 2.725 KT = , and used the 
numerical value of ( )3a , specified in Equation, (2-28b). Equation, (3-18), just 
re-produces results obtained earlier, in Equations, (2-39), and, (2-40). Equation, 
(3-18), tells us, that for an isolated black hole, the radiative surface tension in-
creases as the radius squared. 

For the three black hole masses considered in Equations, (2-34), we use Equa-
tion (3-18), to calculate the associated radiative surface tensions. Mass first gets 
converted to radius using the Schwarzschild relation, 22 RR GM c= . The re-
sults of this calculation are: 

( )
( )

6

7 5 5
radiative

,10 ,10

 3.052 10 ,3.052 10 ,3.052 10

BH sun sun sun

ST

M M M M

F − − +

=

→ = × × ×
         (3-19) 

All forces are measured in Newtons. We notice that both small and large black 
holes have hardly any radiative surface tension, given their significant size. The 
values indicated in Equations, (3-19), are really quite small. We will see, however, 
that what holds the black hole together isn’t just radiative surface tension. It is 
gravity! And gravity acts within the black hole, as well as on its surface, as will be 
shown in the follow up paper. The values indicated in Equation, (3-19), hold for 
an isolated, static black hole (ISBH), where there is zero inflow. 

We should also mention that other forces will invariably come into play be-
side blackbody radiation and gravity, in stabilizing the event horizon. These will 
also prevent the black hole from expanding outwards. There is dark energy, and 
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dark matter, and ordinary matter. These components are not taken into account 
in Equations, (3-10), nor in, (3-14), which is equivalent. CMB photons contri-
bute very little, in the present epoch, to the total energy density of the universe, 
only about 10−5 of the total amount. Also, in those regions of space where matter 
is prevalent, and where black holes are to be found, CMB photons contribute an 
even smaller percentage. Equations, (3-19), only considers blackbody photons. 
Nonetheless, they do indicate that an inherently positive, finite value exists for 
the radiative surface tension, even if the black hole is pure photonic radiation. 
This was the case in the very early universe. 

We next consider a dynamic black hole, where d d 0Q t > . In this instance, 
both terms on the right hand side in the second line of Equations, (3-12), con-
tribute. Using Equation, (2-35), and specifically, the last line, we can calculate 
d dQ t . This then gets substituted into the second line of Equation, (3-12), to 
find radiativeSTF . For determining the value of ( )30.2 RF , we can use the second 
equality in Equation, (3-18), namely, ( ) ( )3 3 4 2

20.2 8π 30RF a T R= . For an evalua-
tion of, radiativeSTF , it is therefore necessary to specify the temperature just out-
side the event horizon, 2T , as well as the radius, R, of the black hole. A more di-
rect method to determine radiativeSTF  would simply be to use the last line in Equ-
ation, (3-16). Needless to say, the radiative surface tension will be much higher 
for a dynamic black hole than for an isolated static, black hole even if the radius 
is the same. Both terms, ( )30.2 RF , and, d dQ t , will increase in the situation 
where we have a dynamic black hole. 

We emphasize that a positive surface tension is needed in order to define a 
positively curved object such as a black hole. Our surface tension is inherently 
positive definite as seen by Equations, (3-12), or (3-16); it can never be less than 

( )30.2 RF . And this is just the radiative component. Again, this is a consequence of 
a 4-D/3-D interface. Upon retracing our steps, the ( )30.2 RF  disparity is due to 
the factor of 5 versus 4 for a 4-D versus 3-D space. See, for example, Equations, 
(2-36), and, (2-37). These factors are a direct consequence of the dimensionality 
of space! See also the last equalities in Equations, (2-19), and (2-20). If the black 
hole were defined as a 3-D blackbody ball of radiation, there would be no such 
inherent radiative surface tension. This, obviously, is another compelling argu-
ment for considering the black hole as a 4-D object, embedded in a 3-D space. 

We close this section by mentioning that in the Appendix A, we consider 
non-spherical symmetry. Surface tension leads to work done, and we consider 
radiative black body inflow under the assumption that the black hole has the 
shape of an oblate spheroid. Rotating black holes assume this shape, and if there 
is net inflow, we can demonstrate that gravitational quadrupole radiation will be 
emitted. We calculate a few such examples to show the robustness of the model. 

4. Radiative Waterfall Model for the Event Horizon of a  
Black Hole 

We now have the required tools to discuss what happens at the event horizon, 
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given our 4-D radiation model for a black hole. The results will only hold at the 
4-D/3-D interface. In a follow-up paper we will discuss the internal structure of a 
black hole. 

For now, however, we will indicate that hydrostatic equilibrium has to be 
maintained layer by layer within the black hole. We therefore set 

( ) ( ) ( )4 4 4
d ,dr r r G rF F F+− =  ( )r R<                    (4-1) 

here, ( )4
rF , is the radiative force pushing the layer out, at radius, r, which acts on 

a segment of thickness, dr, between radii, r, and, r + dr. The quantity, ( )4
dr rF + , is 

the radiative force pushing the layer in, at radius, r + dr. On the right hand side 
we have, ( )4

,d G rF , which is the gravitational force pulling the layer in. The layer is 
at radius, r and of thickness, dr. In a follow-up paper, we will give a specific 
temperature gradient within the black hole. Because it will depend on radius, r, 
we will write, ( )rT T r= . It will turn out that, dr r rT T +> , which will make the 
left hand side of Equation, (4-1), positive. The gravitational force is, of course, 
directed radially inwards, and has magnitude given by the right hand side of 
Equation, (4-1). We will derive explicit expressions for, ( )4

,d G rF , and for ( )4
rF  

with ( )4
dr rF +  in the subsequent paper. Because, dr r rT T +> , the internal energy 

density, the radiative pressure, and the radiative heat density, will all decrease as 
one increases the radius, starting from the center of the black hole. As was seen 
in section II, the quantities depend on temperature and temperature only. See 
Equations, (2-28a), and, (2-20). One can also claim that these quantities are ra-
dius dependent because the temperature inside the black hole is radius depen-
dent. Outside of the black hole we do not have any such layering because the 
temperature is, by and large, uniform. Also, the blackbody photons there on the 
outside are “unbounded”, i.e., not trapped within a confining volume except that 
of the entire universe, itself. 

We now come back to the event horizon. At the event horizon, we will assume 
that the 4-D space abruptly changes into 3-D space, at radius, r R= . In other 
words, the event horizon has no thickness. Moreover the radiative force, which 
pushes the event horizon out, is, ( ) ( ) ( ) ( )4 4 4 4 2 3

1 2πR R RF p A p R= = . On the other hand, 
the radiative force, which pushes the event horizon in, from the 3-D side, is, 

( ) ( ) ( ) ( )3 3 3 3 2
2 4πR R RF p A p R= = . See Equations, (2-27a,b). We also have the gravita-

tional force, ( )4
,G RF , pulling the event horizon in. It seeks to prevent any 4-D sur-

face area increase. The quantity, ( )4
,G RF , will refer to the magnitude. If there is no 

inflow, then we know that, 2 2.725 KT = . With inflow, 2 2.725 KT > . The 
quantity, ( )3

2p , is defined in terms of 2T , as can be seen by Equation, (2-28b). 
From the second equality in Equations, (2-19), we recognize that ( ) ( ) ( )3 3

2 21 3p u=  
(when multiplied by an appropriate volume element). The 4-D radiative pres-
sure, ( )4

1p , acting from within the black hole and pushing the event horizon out, 
is at a different temperature, 1T . The event horizon is assumed to be infinitely 
thin, i.e., it has no thickness. Gravity will make an abrupt jump in value when 
entering the black hole, as will be shown in the 2nd paper. The gravitational 
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coupling constant, which is Newton’s constant in 3-dimensions, will increase 
abruptly upon entry into the 4-D space. The gravitational potential, however, 
can be chosen to have the same value at, r R= , in both three and four dimen-
sional space, by choosing the constant of integration appropriately. We will show 
that ( ) ( )3 4

R Rϕ ϕ=  where, ( )N
Rϕ , is the gravitational potential in N-dimensional 

space at, r R= . The difference in radiative force is, of course, the radiative sur-
face tension. The actual expression for surface tension is given by the first line in 
Equations, (3-13), and this net force pushes the event horizon in. 

We first calculate the relevant densities and radiative pressure, just outside the 
event horizon, on the 3-D side. We assume, for the time being, that we are deal-
ing with an isolated, static black hole. Using our CMB temperature of, 2.725 K, 
we find using Equations, (2-28b), and, (2-19), 

( )3 14 3
2 4.172 10 J mu −= × , ( )3 14 2

2 1.391 10 N mp −= × (ISBH)   (4-2a,b) 

( )3 14 3
2 5.562 10 J mq −= × , ( ) ( )3 14 3

2 2.041 10 J m Ks −= × ⋅ (ISBH)   (4-2c,d) 

Just inside the event horizon, on the 4-D side, we use a different set of equa-
tions. We use the temperature, specified by Equation, (2-33). We also employ 
relations, (2-28a), and, (2-20). The results are now black hole radius dependent, 

     ( )4 13 5 14 1
1 14.7479 10 2.832 10u T R− − −= × = ×  in J/m4 (ISBH)    (4-3a) 

   ( ) ( )4 4 15 1
1 1

1 7.080 10
4

p u R− −= = ×  in N/m3 (ISBH)    (4-3b) 

    ( ) ( )4 4 14 1
1 1

5 3.540 10
4

q u R− −= = ×  in J/m4 (ISBH)    (4-3c) 

    ( ) ( )
4

4 4 14 5
1 1 15 4 6.221 10s u T R

−−= = ×  in J/(m4∙K) (ISBH)    (4-3d) 

For the second equality of Equation, (4-3a), we have substituted Equation, 
(2-33). We notice that the size, or mass, of a black hole will have a direct impact 
on the various densities and radiative pressure, just inside the surface. In fact, as 
the radius increases, the densities and pressure will decrease according to Equa-
tions, (4-3a,b,c,d). Also note the different units between Equations, (4.2a,b,c,d), 
and, (4-3a,b,c,d). This makes a difference determination impossible. However, 
we can set up ratios to see how the 4-D quantities relate to the corresponding 
3-D quantities. 

For an isolated, static black hole, we know that Equation, (2-36), holds. 
Therefore, by Equations, (2-27a,b), we must have 

( ) ( ) ( ) ( )3 3 4 4
2 14 5R Rp A p A= (ISBH)               (4-4) 

We use this to construct the ratio, ( ) ( )4 3
1 2p p . We substitute our expressions 

for 3-D and 4-D surface areas, and simplify. We thereby obtain 
( ) ( ) ( )4 3
1 2 8 5π 1p p R= (ISBH)              (4-5) 

Moreover, due to the identities in Equations, (2-19), and (2-20), we can fur-
ther prove that 
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  ( ) ( ) ( ) ( ) ( )4 3 4 3
1 2 1 24 3 32 15π 1pu p Ru = = (ISBH)         (4-6) 

   ( ) ( ) ( ) ( )4 3 4 3
1 2 1 25 43 4 2 π1q q u Ru= = (ISBH)         (4-7) 

   ( ) ( ) ( ) ( )4 3 4 3 4 5
1 2 1 2 2 115 16 2 π 4.789s s u u T T R−= = (ISBH)     (4-8) 

In the last equation, we have made use of  
1 5 1 5

2 1 2.725 0.569 4.789T T R R= = (ISBH)          (4-9) 

See Equation, (2-33). What is important to note in Equations, (4-5), through 
to, (4-9), is the fact that, due to the presence of R, we have a discontinuous jump 
in value in all these quantities as one enters the black hole. The decreasing jump 
in value, or gap, depends on the size (or mass) of a black hole. The 4-D densities, 
will decrease abruptly from the corresponding 3-D quantities as one breaks 
through the event horizon envelope. This holds for the radiative pressure and 
temperature, as well, as seen in Equation, (4-5), and, (4-9). This break in value is 
what we refer to as our “waterfall model”. Many quantities will drop precipi-
tously as one makes their way into the black hole. Again, this is a direct conse-
quence of the change in dimensionality of space. No such drop in value would 
occur if the black hole were a 3-D construct. 

We have seen that the temperature changes abruptly upon entering the 4-D 
space through Equation, (2-9). Another way of expressing it is to make use of the 
second line in relation, (2-35). If d d 0Q t = , then this allows us to write 

( ) ( )3 44 2 5 2 3
2 14 3 4π 5 4 2πa T R a T R= (ISBH)             (4-10) 

We solve this equation for 5 4
1 2T T . The result is 

( )( )( ) ( ) ( )( ) ( )3 45 4 3
1 2 4 3 8 5π 1 1.082 10 1T T R a a R−= = × (ISBH)    (4-11) 

Equation, (4-11), is another way to express the discontinuity in temperature, 
because of the presence of R on the right hand side. The mass, or size, of the 
black hole will determine the discontinuous jump in temperature. If we substi-
tute 2 2.725 KT =  into Equation, (4-11), and solve for 1T , then we would ob-
tain (2-33). There has to be a break in temperature at the event horizon. As far as 
we know, this abrupt change in temperature upon entering the black hole proper 
has never been theoretically modeled before. It has been stated more as an ac-
cepted observational fact, given that black holes appear black. Here we provide 
an unequivocal theoretical reason for why this is so. A change in spatial dimen-
sion gives a natural explanation for not only this decrease in temperature, but 
also for the other quantities decreasing abruptly and discontinuously, upon en-
tering a black hole. 

Equations, (4-5), through to, (4-9), are also intriguing from another perspec-
tive, namely elementary particles. Attempts have been made in the past, to iden-
tify elementary particles as mini-black holes. As with black holes, outward cha-
racteristics such as charge, spin and mass are what is observed. The interior 
seems to defy an explanation. We notice that if the radius is made very, very 
small, in Equations, (4-5), through to, (4-9), we obtain incredibly large values for 
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4-D radiative pressures, internal energy densities, heat densities, entropy densi-
ties, etc.. This may turn out to be an intriguing way to model elementary par-
ticles. These mini-black holes have the opposite behavior than their macroscopic 
counterparts, in that their temperatures, radiative pressures, internal energy 
densities, etc. would increase (sky-rocket) within their immediate interior. For 
macroscopic black holes, we have seen that those values for density and pressure 
decrease in value. Another compelling argument for this identification with ele-
mentary particles is the fact that no gravity is assumed. We would obtain a nat-
ural curvature in space due to radiative surface tension, and radiative surface 
tension only. This, of course, would take us too far afield in this work. But we 
definitely find this to be an intriguing line of research. The second paper will 
show us how to go into the specifics about modeling this very possibility.  

Our waterfall model also extends to the radiative force, ( )3
RF , changing ab-

ruptly at the event horizon to a new value, ( ) ( )4 30.8R RF F≤ , where ( )4
RF  is the 

radiative force just inside the 4-D space. See Equations, (2-36), and, (2-37). We 
have a step-function decrease due to the discontinuity of space, and the different 
surface areas involved. This is literally what causes the radiative surface tension, 
defined as, ( ) ( ) ( )3 4 3

radiative 0.2ST R R RF F F F= − ≥ , to be greater than zero. The inequa-
lity holds for net inflow of radiative heat (and energy), whereas the equality is 
valid for an isolated, static black hole with no net inflow. In the second paper 
which follows, we will also see that the gravitational force changes abruptly at 
the event horizon. Upon crossing the 3-D/4-D threshold, it will suddenly in-
crease in value over its 3-D counterpart. All these facts will support our waterfall 
hypothesis. We believe that the 3-D photons literally drop out of view upon 
reaching the event horizon due to the abrupt change in spatial dimension. 

It is important to realize that, within this model, what causes the photons to 
disappear is not that the escape velocity exceeds that of light. This is one way of 
looking at it, and it assumes that there are no other photons pushing back at the 
event horizon. We would have a situation where the black hole just grows and 
grows. We do believe that 4-D internal photons do push back at the event hori-
zon. The 4-D photons hold back the floodgates, so to speak. But because they are 
4-D, they cannot push back with the same force as the 3-D photons pushing in. 
Our interpretation is that, as a consequence, the 3-D photons are pulled in and 
fall into a gravitational hole once they enter this new 4-D space. Those photons 
have to exceed a certain threshold temperature on the outside, which we chose 
to equal, 2.725 K. In a sense the photons fall off a cliff upon entering the event 
horizon, and are never seen again. We can also think of the event horizon as a 
kind of simple machine. The sudden increase in surface area when entering the 
3-D/4-D threshold causes a step-like decrease in radiative pressure, and radiative 
force. This is a trap from which photons cannot escape. What makes this unique 
is that it is the change in spatial dimension which causes this increase in surface 
area, and ultimately, this photon trap. 

For a dynamic black hole, we must have the condition, d d 0Q t > , and the 
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outside surface temperature, 2T , plays an important role. For a black hole of a 
given size (or mass), the temperature, 2T , will determine the amount of radia-
tive heat inflow via Equation, (2-35). Obviously, 2T  needs to be larger than 
2.725 K for there to be inflow. An alternative formulation is through Equation, 
(2-26). From the last line, for there to be inflow, we must have, ( ) ( )3 44 5R RF F> . 
We will use this inequality to establish other inequalities, which are pertinent to 
this situation. Using Equations, (2-27a,b), this inequality can be written as 

  ( ) ( ) ( ) ( )3 3 4 4
2 14 5R Rp A p A> (DBH)              (4-12) 

Substituting, ( )3 24πRA R=  and, ( )4 2 32πRA R= , and simplifying gives 

 ( ) ( ) ( )4 3
1 2 8 5π 1p p R< (DBH)             (4-13) 

Upon comparison with Equation, (4-5), we see that this makes sense because 
the denominator on the left hand side is greater than that in Equation, (4-5). In 
Equation, (4-5), we assumed an outside temperature of 2.725 K, whereas here, 

2 2.725 KT > . From the inequality, (4-12), it also follows that 

 ( ) ( ) ( ) ( )3 3 4 4
2 14 3 5 4R Ru A u A> (DBH)              (4-14) 

Using our formulae for surface areas in 3-dimensional and 4-dimensional 
space, and rearranging, we find that 

 ( ) ( ) ( )4 3
1 2 32 15π 1u Ru < (DBH)              (4-15) 

Comparing with Equation, (4-6), we notice that the inequality is again due to 
the higher outside temperature, 2 2.725 KT > . An isolated, static black hole as-
sumes that, 2 2.725 KT = . Continuing in this vein, we can further demonstrate 
that 

( ) ( )4 3
1 2 2 π1 Rq q < (DBH)               (4-16) 

( ) ( )4 3 4 5
1 2 2 π 4.789s Rs −< (DBH)             (4-17) 

and,  
1 5 1 5

2 1 2.725 0.569 4.789T T R R> = (DBH)       (4-18) 

For the inequality in relation, (4-17), we note that in terms of proportionality, 
( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )4 3 4 3 5 4 4 3
1 2 1 2 2 1 1 2 2 1 1 2~ ~ ~T T T T T T Ts s u u T∗ ∗ . The temperature, 

1T , is fixed by the relation, (2-33). However, the temperature, 2T , increases for a 
dynamic black hole over that of an isolated, static black hole. As a consequence, 
we obtain the inequality shown in relation, (4-17).  

We next consider net heat inflow. From section III, we know that positive 
work has to be done by an external agent in order to cause the black hole to ex-
pand its volume. That external agent can only be in-falling matter/energy. One 
way to describe the work done is through Equations, (3-1), and, (3-10). Another 
formulation is through Equation, (3-14). We focus, on Equation, (3-10). The ra-
diative surface tension is given by the expression, (3-16). Using this expression, 
we calculate the work done against radiation in increasing the black hole from 
an initial radius, iR  to a final radius, fR . We obtain, 

https://doi.org/10.4236/jhepgc.2019.53036


C. Pilot 
 

 

DOI: 10.4236/jhepgc.2019.53036 665 Journal of High Energy Physics, Gravitation and Cosmology 
 

  
( ) ( )

( ) ( )
( ) ( ) ( ) ( )( )

radiative radiative

43 2 4
2

43 4 2
2

3 3 3 3
2 2.725

d

1 3 4π 4 5 2.725 d

1 3 4 5 2.725 4π d

0.8

f

i

f

i

R
STR

R

R

f i

W F R

a R T R

a T R R

p p V V

∆ =

 = − 

= −

 = − − 

  

∫

∫

∫
        (4-19) 

In the 3rd line, we assumed that the outside surface temperature is held con-
stant during the expansion process. For the 4th line we used Equations, (2-19), 
and, (2-28b). We also defined, ( )3

2.725 p , as the 3-D radiative pressure at a temper-
ature of 2.725 K. The result from Equation, (4-19), tells us that the total work 
done, against radiative forces, is simply proportional to the increase in 3-D vo-
lume, ( ) ( ) ( )( )3 3 3

f iV V V∆ = − . The outside temperature also plays a role because it 
will determine a value for ( )3

2p . It is to be noticed that a volume increase is ne-
cessary in order for work to be done.  

Another way to find the work done is through Equation, (3-14), which makes 
use of the coefficients of surface tension. This will give us the same result as Eq-
uation, (4-19), and so we will not reproduce it. Instead we will focus of the coef-
ficients themselves, which will round off the discussion. Knowing the surface 
areas in 3-D and 4-D space, we can easily demonstrate that, ( )3d 8π dRA R R= , and 

( )4 2 2d 6π dRA R R= . These, we substitute into Equation, (3-13), to obtain, 
( ) ( )3 4 2 2

radiatived 8π d 6π dW R R R Rγ γ= −              (4-20) 

Upon comparison with Equation, (3-1), it is clear that 
( ) ( )3 4 2 2

radiative 8π 6πSTF R Rγ γ= −              (4-21) 

Moreover, since, ( ) ( )3 4
radiativeST R RF F F= − , it is found upon comparing with 

Equation, (4-21), that 
( ) ( )3 3 8πRF Rγ= , ( ) ( )4 4 2 26πRF Rγ=            (4-22a,b) 

The radiative forces at the event horizon can thus be related to the radiative 
coefficients of surface tension. Taking a final step, we use Equations, (2-27a,b), 
and substitute these into Equations, (4-22a,b), to eliminate ( )3

RF , and ( )4
RF . 

Upon simplification, the results are even more direct, 
( ) ( )3 3
2 2p Rγ= , ( ) ( )4 4

1 3p Rγ=            (4-23a,b) 

These just reproduce Equations, (3-3), and, (3-4), which were put forward 
previously, more as a claim, than as a fact. The coefficients, ( )3γ , and, ( )4γ , are 
just constants which indicate how easy, or how difficult, it is to stretch the event 
horizon membrane. Larger values indicate more work is necessary. From these 
equations, we see what these coefficients depend on the size, and the tempera-
tures, inside and outside, of a black hole. The radiative pressure, ( )3

2p , depends 
on the outside surface temperature, 2T , whereas, the radiative pressure, ( )4

1p , 
depends on the inside surface temperature, 1T . 

We can rewrite Equations, (4-23a,b), to show this more explicitly. From Equa-
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tions, (2-19), and (2-20), we know that ( ) ( )3 3
2 21 3p u= , and, ( ) ( )4 4

1 11 4p u= . It is 
also possible to express ( )3

2u  and ( )4
1u  directly in terms of temperature, using 

Equations, (2-28b), and, (2-28a). Substituting these relations into Equations, 
(4-23a,b), gives us 

( ) ( ) ( ) ( ) ( )3 3 3 4
2 22 3 1 6R u a T Rγ = =               (4-24a) 

( ) ( ) ( ) ( ) ( )4 4 4 5
1 143 1 12R u a T Rγ = =               (4-24b) 

We see clearly that ( )3γ  and ( )4γ  are temperature and radius dependent. 
The former depends on the outside surface temperature, whereas the latter de-
pends on the inner surface temperature. Both coefficients are proportional to ra-
dius. 

To see just how easy it is to stretch the membrane, the event horizon, against 
radiative forces, we consider a numerical example. We consider a black hole 
having a mass, ten times the mass of the sun. We will assume an increase in ra-
dius by a factor of 1.1, or, 10%. Thus, the radius will increase from an initial val-
ue, 42.954 10 metersiR = × , to a final value, ( )41.1 2.954 10 metersfR = × × , 
where we have used the Schwarzschild relation to find the radius, given a specific 
mass. Finally let us assume an outside surface temperature of, 9

2 10 KT = , 
which is held constant during the expansion process. The 3-D volume increase is, 
correspondingly, 

 ( ) ( ) ( )33 4 3 13 34π 3 2.954 10 1.1 1 3.574 10 mRV∆ = × − = ×        (4-27) 

The 3-D radiative pressure at, 6
2 10 KT = , is, 

 ( ) ( ) ( ) ( ) ( )43 3 3 9 20 2
2 21 3 1 3 10 2.522 10 N mp u a= = = ×        (4-28) 

We use the expression, (4-19), to find the work done against radiative forces. 
At a temperature, 9

2 10 KT = , the second term within the square brackets in 
Equation, (4-19), is truly insignificant, compared to the value calculated in Equ-
ation, (4-28). Thus, we can ignore it, and the total work done against radiative 
forces is simply, 

    ( ) ( ) ( )( )3 3 3 33
radiative 2 9.014 10 Joulesf iW p V V∆ = − = ×          (4-29) 

This is the work done against radiative, and radiative forces only. Gravity will 
also have to be considered, which will be the case in a follow up paper. The ra-
diative work done in Equation, (4-29), may seem considerable, but it will be next 
to nothing when compared to the work done against gravity, for the same situa-
tion. We will see that in the next paper, where we will give an expression for the 
4-D gravitational force. However a crude order of magnitude estimate shows us 
that an increase of mass by 10% for the black hole of 10 solar masses, amounts to 
a mass difference of one solar mass, (1.99 × 1030 kg). If we multiply this by, 2c , 
the corresponding increase in energy is, 47~ 1.791 10 JoulesRE∆ ×  The value 
indicated in Equation, (4-29), is insignificant when compared to this. Larger 
surrounding temperatures will be considered in our follow-up paper. 
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We close this section by emphasizing, once more, that the waterfall model 
presented here is a direct consequence of the assumed change in spatial dimen-
sion at the event horizon. A 3-D/3-D interface would not allow for a precipitous 
drop in temperature when crossing the boundary. We would not have much re-
duced internal energy densities, entropy densities, and radiative pressures, when 
entering the black hole. Nor would the radiative force due to blackbody photons 
drop abruptly upon entry into the black hole. Finally, a 3-D/3-D event horizon 
will not allow for gravity to increase dramatically upon entry into the black hole, 
as will be shown in a follow-up paper. But then again, a 3-D/3-D interface would 
also not allow for a rip in the space-time fabric, as there would be no a-priori 
discontinuity in space at the event horizon. 

5. Summary and Conclusions 

In this work, we presented a model for a black hole based on a 4-D spatial sphere 
filled with blackbody radiation. We focused on the event horizon and argued for 
an interface, which separates 4-D space, the black hole, from 3-D space, the sur-
roundings. For a static black hole with no inflow, d d 0Q t = , and the ambient 
temperature is taken to equal 2.725 K, the CMB temperature. If there is net in-
flow into the black hole, d d 0Q t > , and the surrounding 3-D temperature, 2T , 
must be higher. See Equation (2-35), where in the last line, this is made very ex-
plicit. Because the outside temperature, 2T , can never be lower than 2.725 K, we 
can never have net outflow out of the black hole. And thus, we have established 
the condition that, d d 0Q t ≥ . We have distinguished between the temperature 
just inside the event horizon, 1T , which is on the 4-D side, and the temperature, 

2T , just outside the event horizon, which is on the 3-D side. Because the event 
horizon is assumed infinitely thin, both temperatures are effectively at the same 
radius, R. The event horizon is a membrane separating the 4-D space from our 
3-D world, and we argue that there is a sharp discontinuity at the event horizon. 
As such we established, in this paper, conditions and equations, which must ap-
ply if such a scenario is realized in nature. We focused exclusively on blackbody 
photonic radiation, although this scheme can be generalized later to include 
other types of radiation including fermionic components. 

In Section 2, we first generalized the Stefan-Boltzmann law for radiative 
transfers between three dimensional and four dimensional spaces. The result is 
Equation (2-26), or Equation (2-35), if we bring the right hand side in terms of 
3-D quantities. All superscripts refer to the dimensionality of space over which 
the physical quantity is defined. In Equation, (2-26), ( )3 dQ t , is the rate of ra-
diative heat emitted from 3-D space and this enters the 4-D black hole. The 
quantity, ( )4 dQ t , by contrast, is the heat given off per unit time by the 4-D 
black hole, and this enters the 3-D space. In other words, there is a constant ex-
change of photonic energy back and forth, just like in the ordinary Ste-
fan-Boltzmann law in 3-D space, when they are at the same temperature. Here, 
however, we have different temperatures on either side of the event horizon for 
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no net inflow/outflow due to the different dimensionality of space. It will turn 
out that the temperature within the event horizon is always less than that on the 
outside, even if there is no net radiative flow. We also find that for there to be 
net outflow from the black hole, the temperature on the outside would have to 
be less than the CMB temperature, which is not possible. See the last line of Eq-
uation (2-35), where this is clearly stated. This equation enforces the condition 
that, d d 0Q t ≥ . The right hand side of Equation (2-35), is either positive for a 
dynamic black hole with inflow, or zero for an isolated, static black hole with no 
net heat inflow. We have discounted/ignored Hawking radiation and other 
forms of evaporative leakages emanating from the black hole, as these will turn 
out to be second order corrections at best. In Equations (2-26) and (2-35),  

( )3 24πRA R= , and ( )4 2 32πRA R= , are the 3-D and 4-D surface areas through 
which heat (photons) can escape. 

We argued that the first version of the Stefan-Boltzmann generalization for 
radiative transfers between spatial dimensions, given by Equations (2-5) and 
(2-7), is incorrect. These equations do not take into account all forms of black-
body energy, which consists of internal energy density, radiation pressure, and 
radiative heat energy. These quantities are all defined at a specific temperature, 
and if the temperature changes, as, for example, upon entering the event horizon, 
then these quantities must also change collectively as one unit. It is an all or 
nothing proposition. Moreover, we have to concern ourselves with the different 
dimensionality of space, when moving from one dimension to the next. Hence, 
Equations (2-5) and (2-7), have to be modified. The correct expressions for the 
generalized Stefan-Boltzmann law are Equations (2-26) and (2-35). There, the 
factors are correct, and we call these relations, the 2nd generalized versions of the 
Stefan-Boltzmann law. They take the dimensionality of space into account, as 
well as all forms of radiative energy transfer. See the discussion following Equa-
tion (2-29), and Equations, (2-28a,b). Numerically, the differences between the 
two versions are slight. Nevertheless the distinction is important. 

With our generalized Stefan-Boltzmann equations, we can predict the amount 
of radiative heat inflow, given the temperature just outside the event horizon, 
and the mass, or radius, of a black hole. These are quantities, which are accessi-
ble observationally. If the temperature just outside the event horizon, 2T , equals 
2.275 K, then we have by Equation (2-35), an isolated, static black hole, where 
d d 0Q t = . In this situation, the temperature just inside the event horizon can 
be determined from Equation (2-33). We find that 1 5

1 0.569T R−= . Equation, 
(4-25), is another version of the same equation. If the temperature just outside 
the event horizon, 2T , is greater than 2.275 K, then we have a dynamic black 
hole with inflow, where d d 0Q t > . This will lead to expansion, but until such 
time that the event horizon has actually expanded, we still use Equation (2-33), 
or (4-25), to determine inside surface temperature, 1T . Some inside surface 
temperatures for various black holes are evaluated numerically in Equations 
(3-34). We also have an interesting restriction on radiative heat inflow, specified 
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by relation, (2-38). This restriction is important if outside surface temperatures 
are close to, 2.725 K; at higher outside temperatures, this lip, or barrier, is in-
consequential. This restriction is a by-product of the 4-D/3-D interface. 

In Section 3, we focused on the surface tension. The black hole has positive 
curvature, and therefore, there must be a positive surface tension associated with 
the event horizon. The radiative surface tension is the difference in radiative 
forces between the outside, and the inside, of the event horizon. The formal rela-
tion is Equation, (3-10), or, (3-12), where it is seen that ( ) ( )3 4

radiativeST R RF F F= − . 
We define ( ) ( ) ( )3 3 3

2R RF p A≡  as the radiative force acting from the outside in, and 
( ) ( ) ( )4 4 4

1R RF p A≡  is the radiative force acting from the inside out, at radius, R. The 
radiative pressure, ( )3

2p , is defined exclusively in terms of temperature, 2T , just 
outside the event horizon, whereas the radiative pressure, ( )4

1p , is defined exclu-
sively in terms of temperature, 1T , which is the equilibrium temperature just in-
side the event horizon. The total expression for surface tension was derived by 
considering the amount of work done in expanding the black hole. It also in-
cludes gravity, which in Equation, (3-10), is given by the last term on the right 
hand side. In Equation, (3-14), we have, correspondingly, the last term on the 
right hand side. We will derive an expression for the 4-D gravitational force in 
our follow up paper. For now, we will just indicate that this is, by far, the major 
component which will contribute to the total work done upon expanding the 
black hole, except in the most extreme of situations. It is also to be noticed that 
radiative heat inflow can be expressed in terms of, ( )3

RF , and ( )4
RF . See the last 

line of Equation, (2-26). An interesting version of radiative surface tension is 
Equation, (3-12), where we have expressed the surface tension due to radiation 
directly in terms of heat inflow. Both terms on the right hand side increase upon 
net heat inflow, and therefore, the radiative surface tension can increase dramat-
ically in such situations. 

With or without heat inflow, there is a jump or gap in radiative force upon 
entering the black hole. The radiative surface tension can never equal zero. In 
fact, Equation, (3-12), shows that at a very minimum, for d d 0Q t = , the radia-
tive surface tension equals ( )30.2 RF . In this situation, Equation, (3-18), applies, 
and we notice that the radiative surface tension is strictly proportional to 2R . 
For a dynamic black hole with inflow, Equation, (3-16), must be used, where we 
see first-hand that temperature, 2T , also comes into play. In Equations, (3-19), 
we have calculated some specific radiative surface tensions for an isolated, static 
black hole. Gravitational surface tension will have to be added to this. 

In this section, section III, we have calculated the radiative work done in ex-
panding a black hole upon net radiative inflow. The work done is given by ex-
pressions, (3-11), or, equivalently, (3-14). To expand the black hole, both the 
3-D and the 4-D surface areas have to expand. We have generalized the 
Young-Laplace relations in Equations, (3-3), and (3-4). Both contribute to the 
expansion process as shown in Equation, (3-14), where one term assists, and the 
other term hinders, the expansion process. See Equations, (3-7a,b), for the con-
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nection between radiative surface tension and radiative coefficients of surface 
tension. Both formulations give the same results for the amount of work re-
quired if we expand from an initial volume to a final volume, as they must. 

In Section 4, we brought the ideas developed in sections II and III together. 
We proposed a so-called “waterfall model” to describe what happens at the event 
horizon. Due to the change in spatial dimension, we have a sharp discontinuity 
at the event horizon. The temperature, the radiative pressure, the internal energy 
density, the radiative heat density, and the entropy density, all drop precipitously 
in value at the 3-D/4-D interface upon entering the black hole. We have condi-
tions, (4-5), (4-6), (4-7), (4-8), and (4-9), which hold for an isolated, static, black 
hole (ISBH). All physical quantities on the inside depend strictly on their coun-
terparts in 3-D space, as well as, on size, or mass, of the black hole. For a dy-
namic black hole (DBH), we have the inequalities, relations, (4-12), through to, 
(4-18). To find the values for the inside variables, we resort to relations, (4-12), 
through to, (4-18). We see that we need not only the size, or mass, of the black 
hole, but also a specific outside temperature, 2 2.725 KT > . This outside tem-
perature would have to be specified in order to evaluate the specific entries. 

If we have an isolated, static black hole, then, ( ) ( )3 44 5R RF F= , by Equation, 
(2-26). For a dynamic black hole, ( ) ( )3 44 5R RF F> , and d dQ t  can be evaluated 
most simply, by using Equation, (2-35). In both instances, we have a drop in 
value for radiative force, because, ( ) ( )3 44 5R RF F≥ . This is precisely what led to a 
non-zero value for the radiative surface tension, ( ) ( ) ( )3 4 3

radiative 0.2ST R R RF F F F≥= − , 
which, in turn, guaranteed a positive curvature for a black hole, even in the ab-
sence of gravity. Refer to Equations, (3-12), and, (3-16). This surface tension, or 
discontinuity in radiative force, is precisely due to the change in spatial dimen-
sion.  

Our waterfall model explains why we have a discontinuity at the event horizon. 
We cannot see the black hole, because once photons enter, they disappear from 
view due to the much reduced temperatures, radiative pressures, internal and 
other energy densities on the 4-D side. But more importantly, the radiative 
forces are such that, once entered, there is no escape. Due to the sudden drop in 
radiative force, they have entered a radiative trap. They have reached the point 
of no return, because of the inherent drop in radiative force. It is as if we have a 
waterfall which drops abruptly, and enters a region which opens up into a much 
wider valley (space). The water cannot jump back up into the original space. All 
radiative quantities take a sharp drop in value, and the ultimate flow depends on 
the size, or mass, of the black hole, as well as on the outside surface temperature. 

Some numerical values for an isolated, static black hole (ISBH) are indicated 
by Equations, (4-2a,b,c,d), and (4-3a,b,c,d). Equations (4-2a,b,c,d) hold just out-
side the event horizon, while Equations, (4-3a,b,c,d), hold just inside the event 
horizon. Just inside the event horizon, the values are quite low as can be appre-
ciated by comparing values relative to the outside. The Young-Laplace coeffi-
cients associated with radiative surface tension are given by Equations, (4-24a), 
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and (4-26). We see that ( )3γ  and ( )4γ  are both radius and temperature depen-
dent. The coefficient, ( )3γ , is dependent on the temperature on the outside, 
whereas, ( )4γ , is evaluated using the temperature just inside the event horizon. 
Both are proportional to radius, R. The total radiative work done in expanding 
from an initial radius, iR , to a final value, fR , can be found using Equation, 
(4-19). This result assumes that the temperature on the outside surface remains 
constant. We see by this expression that we can determine the work done by 
analyzing what happens in 3-D space. 

We have emphasized throughout this paper why a black hole cannot be iden-
tified with a 3-D blackbody ball of radiation. First, no intrinsic, finite positive 
radiative surface tension can be defined for such a situation. The posi-
tive-definite radiative surface tension is due precisely to the change in spatial 
dimension. Second, our waterfall model goes a long way towards explaining why 
photons are pulled into the black hole once the event horizon is reached. We 
have a sudden drop in key thermodynamic variables at the interface, including 
temperature. All quantities drop abruptly because of the change in spatial di-
mension. Third, if black holes were three dimensional, the Stefan-Boltzmann law 
would not prevent continuous inflow of CMB photons. The cosmic microwave 
background has been in thermal contact with the event horizon since cosmolog-
ical time, and, as such, a black hole should have fed indiscriminately on such 
CMB photons, as well as on dark matter and dark energy. One would imagine 
that the same equilibrium temperature would be reached in short order, on both 
sides of the event horizon, due to the conventional Stefan-Boltzmann law. With 
a 4-D black hole, we have an internal mechanism to prevent indiscriminate ex-
pansion. We have a natural barrier, or lip, for entry. Fourth, for a 4-D black hole, 
radiative inflow is restricted by Equation, (2-38). This factors significantly if the 
outside surface temperature, 2T , approaches 2.725 K. For a 3-D object, no such 
restriction would exist. Fifth, a 3-D/4-D interface allows for a substantial cooling 
of photons once they enter the black hole. A 3-D/3-D interface does not. Finally, 
as will be shown in a follow-up paper, a 3-D black hole filled with blackbody 
radiation simply does not have the capacity to store so much radiative energy 
within such a compact volume. In order for a 3-D black hole to do that, the sur-
face temperature just inside the event horizon would be extreme. A 4-D black 
hole, on the other hand, can pack in the needed radiative mass, and distribute it 
appropriately within a relatively small, from our perspective 3-D volume. We 
can think of black holes as exotic 4-D spatial capacitors, but instead of storing 
charge, they store radiative mass. More will be said on this point in the follow up 
paper. 

We have spent a considerable amount of time discussing the positive aspects 
of this model. However, much work needs to be done, as we have only scratched 
the surface. One task would be to catalogue black holes according to their mass 
and check if the relations for heat inflow, specified here, make sense, given the 
outside surface temperatures. Our generalized Stefan-Boltzmann equations give 
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clear predictions for d dQ t  based on radius, R, and outside surface tempera-
ture, 2T . Using Equation, (2-35), does the rate at which heat disappears into the 
black hole, conform to the ambient temperature and radius? We could check 
whether black holes expand according to Equation, (4-19). We can also investi-
gate the limits, which the model predicts, such as are indicated by Equations, 
(2-38), (2-39), and, (2-40). 

Another line of inquiry would be to consider other forms of radiation, in-
cluding fermionic components. How would their incorporation affect the results 
presented here? What about expansion? Equations, (3-10), and, (3-14), could be 
modified to include other surface tension contributions, such as dark matter, or-
dinary matter, and dark energy. They may increase, or potentially even decrease 
(in the case of dark energy), the total work done when a black hole expands in 
volume. We can define surface tension coefficients for such additional contribu-
tions, and evaluate the work done upon expansion in these instances. 

An additional area of research would be to consider the symmetries of the 
metric within our 4-dimensional black hole. Which symmetries are allowed, i.e., 
are exhibited, if we have a 4-D spatial black hole? At first sight, we can expect 
that the metric associated with this higher dimensional space will be invariant 
under specific general coordinate transformations, but this has to be investigated, 
and worked out in detail. A systematic and straightforward way to find symme-
tries of the metric in higher curved spaces is to use the Killing equation [42] [43]. 
By constructing all possible independent solutions of this differential equation, 
one can find all the symmetries associated with our 5-d metric, gµν . In general, 
we expect that the number of symmetries of a curved space-time will be no larg-
er than that of flat space, as is proved in reference [23]. For our 4-spatial dimen-
sional, spherically symmetric, blackbody, we focus on the energy-momentum 
stress tensor, T µν , where, , , 0,1, 2,3, 4µ ν =� , are the curved (world) space-time 
coordinates. We have a static situation, where, ( )400T ρ= , is the only relevant 
component of the 5-d stress tensor. The components, 0 jT , and, ijT  vanish in 
this 5-d space, because within our black hole there is no flux. Our black hole 
stores radiative mass but does not transfer it.  

Upon entering the 4-D black hole, filled with black body radiation, the ener-
gy-momentum stress tensor defined for a black body [44] changes from,  

( ) ( ) ( ) ( )3 3 4 4
00 2 00 1T Tρ ρ= → = . The relativistic mass density in three dimensional space, 
( )3
2ρ , is given in terms of temperature, 2T , whereas, in 4-D space, we have, ( )4

1ρ , 
where, 1T , is the new temperature, just inside the event horizon. This tempera-
ture change, with associated reduced pressures and densities, are direct conse-
quences of the waterfall model. Since ( )3Tµν  determines the metric, ( )3gµν , in 3-D 
space, we can assume that ( )4Tµν  will determine, ( )4gµν , within the 4-D black hole. 
The question is to investigate the role of the Killing vectors in this higher dimen-
sional space-time, and to discover the symmetries for our inherently non-vacuum 
solution. Our black holes are isotropic, but not homogeneous. Therefore, we 
cannot expect a maximally symmetric space. Is the isometry just due to the iso-
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tropy of the black body (rotations in 4-spatial dimensions), or are there other 
hidden symmetries? This is another avenue for further research. 

We can also consider the formation of black holes as a function of cosmologi-
cal time. The CMB temperature has evolved as a function of time. Thus, the 
black hole should also evolve. Does the distribution of black holes throughout 
the universe match the predictions of Equation, (2-35)? According to this equa-
tion, there should be reduced heat inflow at higher CMB temperatures for a spe-
cific outside temperature and radius. Did the black hole radius increase much 
less in the distant past for the same external conditions? Moreover, in regards to 
evolution, one might think in terms of formation. How do black holes form? For 
a water droplet to form, it takes nucleation, such a dust, about which the water 
molecules can coalesce. Does something similar happen here with black hole 
formation? What would be the conditions under which they would form, and 
could that be tied into the WMAP and Planck CMB temperature data? The most 
massive black holes are found at the centers of most galaxies. This might not be 
an accident as these are natural nucleation sites about which stars and other 
black holes could aggregate.  

An even wilder conjecture might be to consider black holes from the perspec-
tive of spatial dimension of the universe as a whole, and fragmentation. Are 
black holes dinosaurs, left over from a bygone era, when space itself might have 
been 4-D? Perhaps they are the remnants of a time when the universe was four 
dimensional, and upon cooling, underwent a phase transition into three dimen-
sions. See references, [37], and, [45], in this regard. The black holes, representing 
sufficiently dense pockets of trapped radiation, may have resisted conversion 
into three-dimensional space. These are all intriguing aspects, which could be 
studied. 

We close by remarking that there is a follow-up paper, which builds upon the 
ideas presented here. In the follow-up paper, we develop a model to help explain 
the internal structure of a black hole. We focus on how the radiation is layered 
within the black hole, and calculate important quantities such as total mass, en-
tropy, gravitational force, gravitational potential, etc. There, we will obtain some 
results, which are even more surprising. Without further elaboration, we en-
courage the reader to view this work as well. 
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Appendix A: Non-Spherically Symmetric Black Hole and  
Gravitational Quadrupole Radiation 

In this section, we consider our generalized Stefan-Boltzmann law in light of a 
non-spherically symmetric black hole. We show that this leads to gravitational 
quadrupole radiation.  

Gravitational quadrupole radiation is given by the formula [A1]  

( )2d d 5 jk
GW jkE t G c I I= ��� ���                   (A-1) 

where, d GWE , stands for the gravitational radiation given off in time, dt, and 

ijI  is the quadrupole moment, defined by, 

( ) ( )2 31 3 di jij ijI x x r x xδ ρ′ ′ ′ ′ ′≡ −∫
�                 (A-2) 

The dot over a quantity denotes a derivative with respect to time. For gravita-
tional quadrupole radiation we recognize that, 1) a non-spherically symmetric 
distribution of mass is needed, and 2) a time dependent quadrupole moment is 
necessary with non-vanishing 0jkI ≠��� . 

A simple extension of spherical symmetry is to assume an oblate spheroid for 
the externally viewed 3-D black hole, where the equatorial axis is larger than the 
polar axis. A rotating body assumes this shape, and we will consider black body 
radiative inflow into this type of black hole. The surface is characterized by the 
equation,  

2 2 2 2 2 2 1x a y a z b+ + =                   (A-3) 

where the polar radius, b, is less than the equatorial radius, a. The 3-D volume is, 

24π
3

V a b= , and the 3-D surface area is specified by [A2], 

   

( )3 2 2

2 4 6
2 2

12π π  ln
1

2π 2π 1
2 5 7

eA a b e
e

e e ea b

+ = +  − 
 

= + + + + + 
 

�
             (A-4) 

In this equation, the eccentricity is defined as 
2

2
21 be

a
 

≡ − 
 

. We will also 

make use of the oblateness, or flattening parameter, f, defined as, 1 bf
a

 ≡ − 
 

. 

For this oblate spheroid, we focus on the 33I  moment, which is the relevant 
moment for this kind of geometry. 

To keep the discussion simple, we will assume a mass distribution which has 
constant density. In actual fact, in our model, the radiative mass density,  

( ) rrρ ρ ρ= =  is a function of 4-D radius where dr r rρ ρ +>  within the black 
hole. This will lead to a 33I  value which will be different than the one which we 
are about to use. However, since we are interested in an order of magnitude es-
timate, and a proof of concept, we treat the easier case of a constant mass density. 
Our ( ) rrρ ρ ρ= =  distribution is anyways, to begin with, very model depen-
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dent. We also state that, even though Equation, (A-4), is given in 3-D terms, it is 
valid for our model with a 3-D/4-D interface. If one sits outside the black hole, 
we can think of the black hole as a 3-D construct. It is only when one penetrates 
to within the black hole that we see its 4-D structure. From the outside, we can 
therefore treat the constant density as an effective density. 

For a constant mass density, it can be shown that [A3], 

  ( ) ( )2 2 2 2 2
33 8π 45 2 15I a b b a M b aρ= − = −         (A-5) 

In the last line, we notice that, 24π
3

M V a bρ ρ= = , is the mass of the spheri-

cally deformed black hole. The above moment can also be rewritten as, 

( )5 2
33  8π 45 1I a f eρ=− −                    (A-6) 

In this equation, we have used our definitions for eccentricity, 2e , and ob-
lateness, f, defined previously. For spherical symmetry, both, 2e , and, f vanish. 
Either of these parameters determines the shape of the black hole. 

We will assume that as the black hole expands, the shape stays constant. The 
black hole is pulling in black body radiation uniformly from all sides, and at an 
equal rate, surface area wise. Therefore, when we take the time derivative of Eq-
uation, (A-6), with respect to time, we obtain, 

( )4 2
33  8π 45 5 1I a a f eρ=− −� �                    (A-7) 

Taking further time derivatives allows us to write, after some simplification, 

    
( ) ( )

( ) ( )

2 2 3 3 4
 33

3 2
33

8π 45 1 60 60 5

60 60 5

I f e a a a aa a a

I a a aa a a a

ρ

 

= − − + +

= + +

��� � ��� ���

� ��� ���
         (A-8) 

We are interested in a linear approximation. Therefore, we set, 0a a= =�� ���  on 
the right hand side of Equation, (A-8). We consider here a rate of expansion 
which is assumed a-priori small, and the accelerating components will be ig-
nored. For a burst of quadrupole gravitational radiation, the second and third 
terms on the right hand side will, undoubtedly, be important, and, in this situa-
tion, cannot be ignored.  

We substitute our linearized version of Equation, (A-8), into Equation, (A-4), 
and obtain 

( )65 2
33d d 720GWE t G c I aa= �                   (A-9) 

Our goal is to provide an estimate for this expression. This will demonstrate 
that black body radiative inflow can, and will, generate gravitational waves if the 
black hole is, a-priori, non-spherically symmetric. 

We first focus on the 2
33I  term. To be specific, let us assume that, 2 0.01e = . 

This implies that 
2 20.1, 0.99, 0.005e b a f= = =              (A-10) 

With this assignment, we are assuming very little deviation from a perfect 
spherically symmetric black hole. Second, let us assume that the equatorial ra-
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dius, a, assumes the value, 2954a =  meters. This would correspond to a 
Schwarzschild radius where the black hole has a mass equal to that of the sun. 
Our black hole will have a mass slightly less, due to our slightly reduced volume. 
For the eccentricity chosen, 

2

Black Hole sun sun sun
3

4 π
3 0.995
4 π
3

a b
bM M M M
aa

 
    = = =    
 
 

        (A-11) 

This is close, but not equal to the mass of the sun, 30
sun 1.989 10 kgM = × . For 

these values, Equation, (A-5), gives 

( )2 2 34 2
33

2 2.303 10 kg m
15

I M b a= − = − × ⋅              (A-12) 

Substituting this into Equation, (A-9), renders 

( )619d d 1.048 10GW aE t a= × �                   (A-13) 

The emitted gravitational radiation is measured in Watts since we are using 
MKS units throughout this paper for numerical evaluations. 

We next focus on the ( )6a a�  term in Equation, (A-13). First, let us consider 
spherical symmetry. From section III, we know that the work needed to expand 
the black hole is given by 

( ),radiation ,d d dST ST ST GW F R F F R= = +               (A-14) 

In this equation, STF  stands for the total surface tension, which will consist 
of a radiative component, ,radiativeSTF , and a gravitational component, ,ST GF . For 
most situations, ,radiativeSTF  is negligible when compared to, ,ST GF . The excep-
tion is when we are dealing with a fantastically massive black hole  

( )7
sun10BHM M> , where the surrounding black body surface temperature is al-

so very high ( )10
2 10 KT > . For our very modest black hole, this is not the case, 

and therefore, we will ignore the radiative contribution, ,radiativeSTF . Second, we 
can estimate/calculate ,ST GF  for a black hole having the mass of the sun. This is 
nothing but the gravitational force acting at its surface. For a radius,  

2954 mR = , we find 43
, , 7.30 10ST G G RF F= = ×  Newtons. See the second paper, 

which was submitted simultaneously with this one, where we perform the calcu-
lation in detail. This result is model dependent, i.e., we have assumed a particu-
lar mass distribution within the black hole. Since we are interested in an order of 
magnitude estimate, we will use this number. Third, the work needed to expand 
the black hole is 1/10 the total radiative energy inflow assuming this is the only 
influx (assumed here). This, in turn, is 1/5 the total radiative heat inflow. See 
section II in the text. Therefore, 

, ,
1d d d d d d d d
5 ST G G RW t Q t F R t F R t= = =              (A-15) 

This is the work required per unit time to expand the black hole assuming 
spherical symmetry. 
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Our generalized Stefan-Boltzmann law reads (see section II), 
( ) ( )3 41 d d 4 5R Rc Q t F F= −                   (A-16) 

where, ( )3
RF  is the 3-D radiative force on the 3-D side, just outside the event 

horizon at temperature, 2T . And the quantity, ( )4
RF , is the 4-D radiative force 

just inside the event horizon, where the temperature is 1T . The quantity, 
d dQ t , stands for the net radiative heat inflow. Because of our 4-D/3-D model, 
we have as a direct consequence, d d 0Q t ≥  into the black hole. We require a 
dynamical situation, and so, we will assume, a priori, that, d d 0Q t > . Another 
way to write the above equation is, 

( ) ( )3 2 4 4
21 d d 4 3 4π 2.725c Q t a R T= −              (A-17) 

In this equation, ( ) ( )3 16 4 37.5657 10 Joules K ma −= ⋅× . In Equation, (A-17), 
we have recast the 4-D quantities in terms of 3-D quantities, observed outside 
the black hole. See Equation, (2-35), in the text, where this equation is derived 
from Equation, (A-16). Equation, (A-17), assumes spherical symmetry. 

We next relax this requirement. If the surface is not spherically symmetric, as 
in Equation, (A-4), which holds for an oblate spheroid, then we must substitute 
(A-4), in place of 24πR , in Equation, (A-17). Everything else stays the same. It 
is easy to imagine this kind of black hole receiving heat uniformly from its sur-
roundings. We can evaluate Equation, (A-4), for an oblate spheroid having 

2 0.01e = , and 2954a =  meters, which are the conditions considered pre-
viously. The result is, 

( ) ( )3 8 2 21.093 10 m oblate spheroid; 0.01A e= × =         (A-18) 

This is to be compared to, ( )3 2 8 24π 1.097 10 mA R= = × , which holds for a 
perfect sphere. Our oblate spheroid has a lessor surface area due to its slightly 
deformed shape. 

We also note that with our new shape, Equation, (A-10), should be rewritten 
as, 

,
1 d d d d
5 G aQ t F a t=                     (A-19) 

where, ,G aF  is the gravitational pull at the equator of the oblate spheroid. 
Another way to rewrite Equation, (A-19), is to utilize Equation, (A-17). This will 
allow us to write, 

( ) ( )3 (3) 4 4
2 ,

4 2.725 d d
5 3 G a
c a A T F a t− =              (A-20) 

As mentioned, 43
, 7.30 10G aF = ×  Newtons, for 2954 ma = , a model specific 

estimate. The surface area is as indicated in Equation, (A-18). And for the tem-
perature, 2T , let us assume a specific value. We will take this temperature to 
equal, 9

2 10 KT = , a relatively large blackbody temperature, just outside the event 
horizon. We want substantial radiative heat inflow into our non-spherically 
symmetric black hole. Evaluating the expansion rate in the equatorial plane us-
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ing Equation, (A-20), gives, under these conditions 
89.06 10 m sa −= ×�                        (A-21) 

This amounts to an increase of only 2.86 meters per year, if the outside black-
body temperature remains steady. Clearly electromagnetic radiation, on its own, 
will not cause dramatic increases in size. 

Moreover, we can now evaluate the gravitational radiation thrown off by this 
slightly non-spherically symmetric black hole. Using Equation, (A-13), we find, 

( )( )
( )

619 8

45 2
sun

d d

1.048 10 9.06 10 2954

8.72 10 Watts Oblate Spheroid 0.01; 0.995

GW

BH

E t

e M M

−

−

= × ×

= × = =

  (A-22) 

This is a very, very small amount of gravitational radiation, and yet, it is 
non-zero. We have thus shown that quadrupole gravitational radiation does ex-
ist within our model if we have a dynamic inflow situation, and the mass is not 
distributed in a perfectly spherically symmetric manner within the black hole. 

If we carry out a similar analysis for a much more massive black hole, having 
mass, 6

sun0.5 10BHM M= × , with eccentricity, 2 0.75e = , we obtain a much 
larger value for the gravitational quadrupole radiation. Here, 0.5b a = , and we 
still take the outside black body temperature to equal, 9

2 10 KT = , for the sake of 
argument. The relevant surface gravity at the equator has also been worked out, 
and equals, 43

, 6.36 10G RF = ×  Newtons. Using these inputs, and following the 
same steps as before, we find 

( )30 2 6
sun

d d

3.13 10 Watts Oblate Spheroid 0.75; 0.5 10
GW

BH

E t

e M M= × = = ×
  (A-23) 

This is greater than what we obtained in Equation, (A-22), but still relatively 
unimpressive given the size of the object under consideration, the eccentricity, 
and the external temperature. This gravitational luminosity is approximately 
equal to 10,000 times the luminosity of the sun. 

In our model, instreaming black body radiation will increase the radiative 
mass of the black hole if the outside black body temperature exceeds the CMB 
temperature. Even for substantial outside temperatures, we have seen that the 
rate of increase is not large. Under extreme conditions, such as coalescence, 
black hole mergers, in-fall of a star, etc., the black hole mass will increase much 
more dramatically. And as a consequence, the gravitational radiative bursts will 
be much more impressive. These are also dynamical and non-spherically sym-
metric situations, but ones where black body radiation will, almost certainly, 
play a secondary role. It is difficult to imagine how instreaming radiative inflows 
can compete with these other inflows, under such circumstances. 

We close by remarking that almost all of the inflowing radiative black body 
radiation will increase the size of the black hole. In a spherically symmetric situ-
ation, it appears that all of it will be used up to increase the binding energy of the 
black hole. It is just that, if inflow is asymmetric, a tiny amount will be siphoned 
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off as gravitational radiation. This will escape to the outside world. The asym-
metry does not seem to allow for a perfect 100% utilization, i.e., a perfect 100% 
increase in radiative mass. 
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