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Abstract 
We offer evidence that the Trans Plankian hypothesis about Dark energy is 
incompatible with necessary and sufficient conditions for solving the cosmic 
ray problem along the lines presented by Magueijo et al. We can obtain 
conditions for a dispersion relationship congruent with the Trans Planckian 
hypothesis only if we cease trying to match cosmic ray data which is impor-
tant in investigating Doubly Special Relativity. This leads us to conclude that 
the Trans Planckian hypothesis is inconsistent with respect to current as-
trophysical data when modeled by Doubly Special Relativity and needs to be 
seriously revised. Or the Doubly Special Relativity Hypothesis needs to be 
abandoned. 
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1. Introduction 

We examine if an alteration of special relativity presented by Magueijo and Smo-
lin [1], assuming joining the speed of light and Planck energy as a new invariant 
permits a dispersion relationship which will set dark energy [2] from the “tail 
mode” of ultra high momentum contributions (of the universe) markedly lower 
than the total energy of the universe. We find that the answer is yes after mod-
ifying an energy equation of E = MC2 to obtain a highly non linear dispersion 
relationship. However, this dispersion relationship does NOT solve the cosmic 
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ray problem for low momentum values [1]. Our derived dispersion relationship 
( )M kω  matches the Epstein function used by Mercini et al. [2] only if we cease 

trying to fit cosmic ray data [5] which lead to Magueijo [3] proposing their alte-
ration of special relativity in the first place. We follow Mersini et al. [2] in their 
derivation of a Trans Planckian dark energy over total energy ratio. Our results 
argue that we cannot reconcile the requirements of a solution of the “cosmic ray” 
problem of special relativity in a manner congruent with Mercinis [2] ratios of 
dark matter energy to total energy being calculated via a Bogoliubov coefficient 
[4]. The dispersion relationship which we obtained which actually permitted us 
to calculate the energy of the tail modes of Trans Plankian dark energy [2] vs. 
total energy ratio [2] to have a value less than ten to the minus 30 power mimics 
the Epstein function [2] in a manner which contravenes necessary and sufficient 
conditions [1] for solving the cosmic ray problem of special relativity. Our cal-
culations imply that a Trans-Planckian dark energy depends upon initial condi-
tions which are too specialized and which do not match up with known astro-
physical data obtained as of the 1990s. This is in tandem with Lemoine, Martin, 
and Uzan [5] who dispute on the Trans Planckian hypothesis on different grounds. 

2. Description of Procedure Used to Obtain Energy Density 
Ratio 

What Mersini [2] did was to use ultra low dispersion relationship values for ultra 
high momentum values to obtain “ultra low” energy values which were and re-
main allegedly “frozen” today [2]. They found, using the Epstein function for 
frequency dispersion relationships a range of frequencies 0H≤ , where 0H  is 
the present Hubble rate of expansion. From there, they computed Trans-Planckian 
dark energy modes which are about 122 to 123 orders of magnitude smaller than 
the total energy of the universe assumed for their expansion model. Note in this 
discussion that ( )K kω  refers to the dispersion relationship Mercini [2] derived, 
while ( )M kω  will be a dispersion relationship derived from Magueijo and 
Smolin’s [3] modification of special relativity. Mersini [2] changed a standard 
linear dispersion relationship to one which has a modified Epstein function with 
a peak value for frequency given when k = kC and where we have if we can set 

Ck k  

( )2 2
K k kω ≈                             (1) 

which means for low values of momentum we have a linear relationship for dis-
persion vs. “momentum” in low momentum situations. In addition we also have 
that 

( ) ( )2 exp 0K C C kk k k kω →∞≈ − →                (2) 

We also have a specific “tail mode” energy region picked by: 

( )2 2
0K Hk Hω ≡                            (3) 

to obtain Hk . We then have an energy calculation for the “tail” modes: 
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( ) 2
2

1 d d
2 π

H

TAIL K K kK
K

k k kρ ω ω β
∞

= ⋅ ⋅ ⋅
⋅ ∫ ∫              (4) 

which is about 122 orders of magnitude smaller than 

( ) 2
2

0

1 d d
2 πTOTAL K K kK k k kρ ω ω β

∞

= ⋅ ⋅ ⋅
⋅ ∫ ∫             (5) 

allowing us to write 

( )
22

2 1220
4 2 10TAIL K H

K H
TOTAL P PK

Hk k
M M

ρ
ω

ρ
−≈ ⋅ ≈ ≈               (6) 

Here, the tail modes (of energy) are chosen as “frozen” during any expansion 
of the universe. This is for energy modes for frequency regions ( )2 2

0K k Hω ≤  so 
that we have resulting ‘tail modes’ of energy obeying Equation (5) above. 

3. Forming a Dispersion Relationship from Magueijo and 
Smolins Energy Values and Then Subsequently Modifying 
It 

We shall next determine what sort of dispersion relationship we can obtain by 
the revision of special relativity Magueijo [3] proposed. Magueijo [3] states that 
the energy of an independent particle will not exceed PE  in value, which is the 
Planck energy. This Planck energy is the inverse of the Planck length defined by 

3 4410Pl G c −= ⋅ ≈  cm, where G is the gravitational constant and c is the 
speed of light. Specifically, Magueijo and Smolin [3] state that PARTICLE PE E=  if 
and only if the rest mass of a particle obtains an infinite value. If we set 

1c= = , we have [ ] [ ]P PM M E= =  as an upper bound. This upper bound 
with respect to particle energy is consistent with respect to four principles eluci-
dated by Magueijo and Smolin [3], which are as follows: 

1) Assume relativity of inertial frames: When gravitational effects can be neg-
lected, all observers in free, inertial motions are equivalent. This means that 
there is no preferred state of motion. 

2) Assume an equivalence principle: Under the effect of gravity, freely falling 
observers are all equivalent to each other and are equivalent to inertial observers. 

3) A new principle is introduced: The observer independence of Planck energy. 
i.e. that there exists an invariant energy scale which we shall take to be the 
Planck energy. 

4) There exists a correspondence principle: At energy scales much smaller 
than PE , conventional special and general relativity are true: that is that they 
hold to first order in the ratio of energy scales to PE . We ask now how can these 
principles be fashioned into predictions as to energy values, which we shall use 
to obtain dispersion relationships. Magueijo and Smolin [3] obtained a modified 
relationship between energy and mass: 

2
0

0 2
01

P

m cE
m c

E

⋅
=

⋅
+

                          (7) 
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which if 0m mγ= ⋅  and c set = 1 becomes: 

1
P

mE m
E

=
+

                          (8) 

We found it useful to work with, instead: 

11 1

1 P

P

m mE
Em

E
β

 
= − 
   
+ ⋅ 

 

                       (9) 

with a power of 11 put in the denominator due to string theory dimensions 
which gives us preferred numerical values we are seeking for the ratio of dark 
energy over total cosmological energy. If PARTICLE PE E<  and m kα= ⋅ , then  

1
P P

m k
E k

≡ <  permits are write of Equation (9) above as (if 1000β ≡ ): 

( ) 11 1

1
M

P

P

k kk
kk

k

α
ω

β

 ⋅
= ⋅ − 
   
+ 

 

               (10) 

where we used 1c= =  and [ ] [ ] ( )KE kω ω= ⋅ =     which if Pk k  will 
lead to the same result as spoken of with the modified Epstein function [2], as-
suming that 2 1α ≅ , so: 

( )2 2
M k kω ≈                          (11) 

Furthermore, if Pk k ε+→ − , Equation (10) will give us 

( )2
M Pkω ε ε+ +− ≅                        (12) 

which if ( ) ( )1 Mk kω ω≡  gives the values seen in Figure 1 below. 

Note how the cut off value of momentum Pk  is due to 1
P

k
k

 
− 

 
 as a quan- 

tity in dispersion behavior leads to the results seen in Figure 1. 
 

 
Figure 1. Graph of 1st dispersion relationship ( )M kω  against momentum. This gives the 

desired behavior in line with the Trans Planckian dark energy hypothesis. However,
310β ≡ ! 
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We can contrast this dispersion behavior with: 

( )1 211

1

exp

1 P

P

k kk
kk

k

α
ω β

β

 ⋅
= ⋅ − ⋅ 
   
+ 

 

                (13) 

We set 1 1β ≡  and 2 100β ≡ , leading to Figure 2 as given below. Note, if 

1 1000β ≡  and 2 0β ≡  we recover Equation (9). 
So we used a tail mode energy expressions as given by 

( ) 2
2

1 d d
2 π

P

H

K

TAIL M M kM
K

k k kρ ω ω β= ⋅ ⋅ ⋅
⋅ ∫ ∫           (14) 

and 

( ) 2
2

0

1 d d
2 π

PK

TOTAL M M kM k k kρ ω ω β= ⋅ ⋅
⋅ ∫ ∫             (15) 

so we obtain [2] a “frozen” tail mode energy vs. total energy ratio of 

( )

( )

2

30 122

2

0

d d
10 and 10

d d

P

H

P

K

M M k
KTAIL M
K

TOTAL M
M M k

k k k

k k k

ω ω β
ρ
ρ

ω ω β

− −

⋅ ⋅

= < ≠
⋅ ⋅

∫ ∫

∫ ∫
     (16) 

when we are using 
2
P

H
kk ≤ . Equation (16) has a lower bound 12210−≈  as  

stated by Mersini [2] in Equation (6) if we use ( ) 0M Hk Hω ≈ . Detuning the 
sensitivity of this ratio to exact ( )H Pk M k≤ ⋅  for any 1M <  is extremely im-
portant to the viability of our physical theory about how dark matter plays a role 
in inflationary cosmology. 

4. The Bogoliubov Function Used in This Paper 
We followed Mercinis [4] assumption of negligible deviations from a strictly 

 

 
Figure 2. Graph of 2nd dispersion relationship ( )1 kω  against momentum which has too 

broad a width to be useful. 
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thermal universe, and we proved it in our bogoliubov coefficient calculation. 
This lead to us picking the “thermality coefficient” [4] B to be quite small. In ad- 

dition, the ratio of confocal times as given by 
C

η
η

 had little impact upon Equ-

ation (16). Also, 0 1
P

kx
k

= ≤ . Therefore, 

( )

2 2

2

2 2

1 πsinh π cos 1 4 e
2 2

1 1sinh π 2 sinh π
2

OX

C
k

C C

B B
k

BB
k k

η
η

β
η η
η η

−   ⋅ ⋅ ⋅ + ⋅ − ⋅ ⋅       ≡
   

⋅ − ⋅ − ⋅ ⋅ ⋅      
   

     (17) 

We derive this expression in the 1st appendix entry. In addition, we note that Baste-
ro-Gil, in 2008 in the IDM conference, of 2008 in Stockholm, brought up a discussion 
of the results of [6], as useful research results, and then adopted using the results of the 
document given in [6]. Then, Bastero-Gill when using the results of [6] subsequently 
delineated the size of tail energy density from Dark matter as 122 410X PMρ −≈  which 
is consistent with our findings that our Bogoliubov function as given by Equation (17) 
may be often approximated by a constant with small effects on calculating the ratio of 
energy for the tail vs. total energy [2] given in Equation (6) above. 

5. Analytical and Numerical Evaluation of Equation (16) 

We evaluate ( ) ( )dM Mk kω ω⋅  in light of Equation (12) in our Equation (16) 
integrand. We then obtain: 

( ) ( )

2

2 2

22 22 23

1 1 1
d 11 d

1 1 1

P P P
M M

P P

P P P

k k kk
k k kk kk k k

k kk k k
k k k

ω ω

β β β

      
 ⋅ − − −     
      ⋅ = − ⋅ − ⋅ ⋅ 
      + + +            

(18) 

and set up a numerical parameterization of 

( ) 2d d
PK

M M k
A

k k kω ω β⋅ ⋅∫ ∫                      (19) 

with kβ  chosen by considerations presented in Mercini’s [4] 2nd paper. 

6. Why We Still Were Unable to Match Cosmic Ray Data and 
Found Our Dispersion Relationship Not Physically  
Tenable 

1000β ≡  in Equation (10) was picked so kH could have a wide range of values.  

This permitted TAIL M

TOTAL M

ρ
ρ

 to be bounded below by a value 3010−≤  for 

2
P

H
kk ≤  in line with de tuning the sensitivity of the ratio results if we use  

1000β ≡  in the Equation (10) dispersion relationship. We obtain Mercini’s 
main result [2] at the expense of not matching cosmic ray data [1]. We should 
note that Equation (13) lead to a far broader dispersion curve width as given in 
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Figure 2, which also necessitated a far larger kH value needed to have the fre-
quency ( ) 0M Hk Hω ≈  as used by Mercini [2]. This in turn leads to a much 
bigger value for a lower bound for Equation (16) than what would obtain nu-
merically if we used Equation (10) for dispersion. Detuning the sensitivity of this 
ratio to be ( )H Pk M k≤ ⋅  for any 1M <  is extremely important to the viability 
of our physical theory about how dark matter plays a role in inflationary cos-
mology. We find that this result is still not sufficient to match the cosmic ray 
problem [1] since Equation (10) gives us: 

( )
31

PM K K

P

kk
k
k

ω
β

→
 
+ 

 



               (20) 

The 3
3 11 10β +≅ ×  whereas we would prefer to find 10

3 11 10β −≅ × . 

7. Can 10
3 11 10β −≅ ×  with a Modified Dispersion  

Relationship? 

The answer is no even after a modification of our dispersion relationship: 

( )2 11 1

1

L

L
P

P

k kk
kk

k

α
ω

β

  ⋅  = ⋅ −          +     

              (21) 

With 2L = , then 3 put in. However, even with a value of 2L =  put in Equ- 

ation (21) we obtained, for 2.25β ≡  and 
2
P

H
kk ≡  

( )

( )

2
2 2

32

22
2 2

0

d d
6.425 10

d d

P

H

P

K

k
KTAIL
K

TOTAL
k

k k k

k k k

ω ω β
ρ
ρ

ω ω β

−

⋅ ⋅

= ≤ ×
⋅ ⋅

∫ ∫

∫ ∫
      (22) 

which has a very different lower bound than the behavior seen in Equation (16). 
If we pick 1010β −≡  as suggested by T. Jacobson [1] to try to “solve” the cosmic 
ray problem, we then find that Equation (22) approaches unity which thereby 
throws into question the Trans-Planckian dark energy hypothesis. Indeed, we 
believe that the entire Trans-Plankian model of Dark energy makes initial condi-
tions, which contravene known astrophysical cosmic ray data [1] that has been 
collected in the last decade. Graphically, having even 2.25β ≡  for Equation (21) 
in Figure 3 creates a dispersion versus momentum graph, which is much greater 
in width than Figure 1 which has a much larger 310β ≡  value. Appendix entry 
2 shows us that we still could not match the beta coefficient values [1] needed to 
solve the cosmic ray problem of special relativity. 

8. Conclusion 

We found that the dispersion relationship given in Equation (10) and its limiting 
behavior shown in Equation (20) gives the lower bound behavior as noted in 
Equation (16) above for a wide range of possible H Pk M k≤ ⋅  values if 1M <   
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Figure 3. Graph of 3rd dispersion relationship ( )2 kω  against momentum which is still 

too broad in width, and has 2.25β ≡ . 
 
above. This was, however, done for a physically unacceptably large 310β ≡  
value [1] while we wanted, instead 1010β −≡  in order to solve the cosmic ray 
problem [1]. Our additional modifications of dispersion relationships as noted 
in Appendix 2 still lead to unacceptably large dark energy versus total energy 
values. We then conclude that the Trans Planckian dark energy hypothesis con-
travenes known solutions to the cosmic ray problem of special relativity and is 
thereby in need of substantial revision. And we think that this document should 
be compared against the predictions given in [7], since modification of the Dark 
Energy hypothesis may impact gravity theories. Their confirmation or rejection 
will be affecting predictions done by Corda, and require careful analysis, and are 
integral to a fuller understanding of scalar-tensor gravitational alternatives to 
General Relativity. 
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Appendix Entry 1: Deriving the Bogoliubov Coefficient for 
Section III 
Part I. Initial Assumptions 

We derive the Bogoliubov coefficient, which is used in Equation (16) of the main 
text. We refer to Mersini’s article [4] which has a Bogoliubov coefficient which 
takes into account a deviation function ( )0 ,k BΓ , which is a measure of devia-
tion from thermality [4] in the spectrum of co moving frequency values ( )n kΩ  
over different momentum values. Note that η  is part of a scale factor 
( ) Ca η η η=  and ( )k n a η=  so that “momentum” k η∝ . Also if we are 

working with the conformal case of 1 6ε =  appearing [4] in: 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 21 6n NON LIN NON LIN
aa k a k a F k
a

η ω ε η ω η− −

′′
Ω = ⋅ − − ⋅ ⋅ = ⋅ = ⋅ (1) 

then for small momentum: 

( )2 2
0 0NON LIN k kω − ≈                        (2) 

if “momentum” 0 Pk k

 , where we use the same sort of linear approximation 
used by Mercini [2], as specified for Equation (17) of their article [2] if the Eps-
tein function specified in Equation (1) of the main text has a linear relationship. 
We write out a full treatment of the dispersion function ( )F k  [4] since it 
permits a clean derivation of the Bogoliubov coefficient which has the deviation 
function ( )0 ,k BΓ . We begin with [4]: 

( ) ( )
( ) ( )

2
02 2

2 2

ˆsinh 2 π ,
ˆ ˆsinh 2 π sinh 2 π

k n

k B
β β

−

+ −

⋅ ⋅Ω + Γ
≡ =

⋅ ⋅Ω − ⋅ ⋅Ω
          (3) 

where we get an appropriate value for the deviation function ( )0 ,k BΓ  [4] 
based upon having the square of the dispersion function ( )F k  obey Equations 
(1) and (2) above for 0 Pk k

 . Note, Pk  is a maximum momentum value 
along the lines Magueijo [3] suggested for an PE  Plank energy value. 

Part II. Deriving Appropriate ( )0 ,k BΓ  Deviation Function Val-
ues 

We look at how Bastero-Gil [4] obtained an appropriate ( )0 ,k BΓ  value. Baste-
rero-Gil wrote: 

( ) 2
0

π, cosh 4 e 1
2

oXk B B − Γ = ⋅ ⋅ ⋅ − 
 

                (4) 

with 

0
0 1

P

kx
k

=



                           (5) 

and 

( ) ( ) ( ) ( )2 2 2 2 2
1 0 0 1 0 1,F k k k V x x k V x x k= − ⋅ + ⋅ − +            (6) 
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where 1 Pk k<  and where 1k  is in the Trans-Planckian regime but is much 
greater than 0k . We are determining what B should be in Equation (16) of the  

main text provided that ( )F k k≈  as 0
P

kx x
k

= →


 which will lead to specific  

restraints we place upon ( )0 0,V x x  as well as ( )1 0V x x−  above. Following 
Bastero-Gil [4], we write: 

( ) ( ) ( )0 0
e,

1 e 1 e 1 e O

X

X X XX

C EV x x
−

⋅
= +

+ + ⋅ +
             (7) 

and: 

( )
( )1 0 2

e

1 e O

X

X X
V x x B

−
− = − ⋅

+
                   (8) 

When 0 1
P

kx x
k

= →



 we get [2] [4] 

( )2 2 2 2 2
0 0 1 0 0( ) 1

2 4 2 4 4NON LIN
c E c E BF k k k k kω −

   ≡ ≅ − ⋅ − − + ⋅ + − ≅   
   

  (9) 

which then implies 0 1B ε+< ≈  . Then we obtain: 

( ) 2
0

π, cosh 1
2

k B iε ε ε+ + +
  Γ ≅ ≅ + ⋅ ≈  
  


            (10) 

and 

( )
( ) ( )

2
2 2

2 2

ˆsinh 2 π
ˆ ˆsinh 2 π sinh 2 π

k n

ε
β β

− +

+ −

⋅ ⋅Ω +
≡ ≅

⋅ ⋅Ω − ⋅ ⋅Ω
          (11) 

Part III. Finding Appropriate ˆ
+Ω  and ˆ

−Ω  Values 

We define, following Bastero-Gil [4] 

( )1ˆ ˆ ˆ
2 OUT IN±Ω = ⋅ Ω ±Ω                       (12) 

where we have that 

( )OUT
n

η η→∞Ω = →Ω ≡ ∞                    (13) 

and 

( )IN
n

η η→−∞Ω = →Ω ≡ −∞                    (14) 

whereas we have that 

ˆ k
k n

Ω
Ω = 



                             (15) 

where k  denotes either out or in. Also: 

1OUT INΩ ≅ Ω ≅                         (16) 

which lead to: 
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1 1 1ˆ 1 1
2 2 C C

B B
n k k

η η
η η+

   Ω ≅ − ⋅ = − ⋅ ⋅ ≅ ⋅   
   

           (17) 

as well as 

1ˆ 0
2
B

n−Ω ≅ ⋅ ≅                        (18) 

Appendix Entry 2: How Equation (16) of Text Changes for  
Varying β Values and Different Dispersion Relationships 

Starting with Equation (21) of the main text. 

If 1.05β =  and 1 2L = , 
P P

k k
k k

 
→ 

 
, then 0.371TAIL M

TOTAL M

ρ
ρ

≅  

If 1.05β =  and 1L = , 
P P

k k
k k

   
→   

   
, then 0.263TAIL M

TOTAL M

ρ
ρ

≅  

If 1.05β =  and 2L = , 
2

P P

k k
k k

   
→   

   
, then 0.115TAIL M

TOTAL M

ρ
ρ

≅  

If 10.5β =  and 1 2L = , 
P P

k k
k k

 
→ 

 
, then 51.935 10TAIL M

TOTAL M

ρ
ρ

−≅ ×  

If 10.5β =  and 1L = , 
P P

k k
k k

   
→   

   
, then 67.347 10TAIL M

TOTAL M

ρ
ρ

−≅ ×  

If 10.5β =  and 2L = , 
2

P P

k k
k k

   
→   

   
, then 86.7448 10TAIL M

TOTAL M

ρ
ρ

−≅ ×  

We need 1010β −≅  with 3010TAIL M

TOTAL M

ρ
ρ

−≤  to get our results via this 

Trans-Plankian model to be consistent with physically verifiable solutions to the 
cosmic ray problem. 
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