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Abstract 
We examine from first principles the implications of the 5th Randall Sundrum 
Brane world dimension in terms of setting initial conditions for chaotic infla-
tionary physics. Our model pre-supposes that the inflationary potential pio-
neered by Guth is equivalent in magnitude in its initial inflationary state to 
the effective potential presented in the Randall-Sundrum model. We also con-
sider an axion contribution to chaotic inflation (which may have a tempera-
ture dependence) which partly fades out up to the point of chaotic inflation 
being matched to a Randall-Sundrum effective potential. If we reject an expli-
cit axion mass drop off to infinitesimal values at high temperatures, we may 
use the Bogomolnyi inequality to re-scale and re-set initial conditions for the 
chaotic inflationary potential. One of the potential systems embedded in the 
Randall-Sundrum brane world is a model with a phase transition bridge from 
a tilted washboard potential to the chaotic inflationary model pioneered by 
Guth which is congruent with the slow roll criteria. If, as written up earlier, 
the axion wall contribution is due to di-quarks, which is equivalent to tying in 
baryogenesis to the formation of chaotic inflation initial conditions, with the 
Randall-Sundrum brane world effective potential delineating the end of the 
dominant role of di-quarks, and the beginning of inflation. 
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1. Introduction 

This investigation is attempting to show that the fifth dimension postulated by 
Randall-Sundrum theory helps give us an action integral which leads to a mini-
mum physical potential we can use to good effect in determining initial condi-
tions for the onset of inflation. The 5th dimension of the Randall-Sundrum brane 
world is of the genre, for π θ π− ≤ ≤  
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5x R θ≡ ⋅                            (1) 

This leads to an additional embedding structure for typical GR fields, assum-
ing as one may write up a scalar potential “field” with ( )0 xφ  real valued, and 
the rest of it complex valued as [1]  

( ) ( ) ( ) ( )0
1

1, exp . .
2 π n

n
x x x i n C C

R
µφ θ φ φ θ

∞

=

 = ⋅ + ⋅ ⋅ ⋅ +   ⋅ ⋅  
∑       (2) 

This scalar field makes its way to an action integral structure which will be 
discussed later on, which Sundrum used to forming an effective potential. Our 
claim in this analysis can also be used as a way of either embedding a Bogomo-
lyni inequality, perhaps up to five dimensions [2] or a straight forward reduction 
in axion mass due to a rise in temperature [3] helping reduce effective potential 
in this structure, with the magnitude of the Sundrum potential forming an initial 
condition for the second potential of the following phase transition. Note that 
we are referring to a different form of the scalar potential, which we will call φ , 
which has the following dynamic [4]. 

( ) ( )
1 2

increase 2 π decrease 2 π

P P

V V

t t t t t
φ φ

δ

→

≤ × → ≤ ×

≤ → ≥ + ⋅

 

                (3) 

The potentials 1V , and 2V  were described in terms of S-S’ di-quark pairs 
nucleating and then contributing to a chaotic inflationary scalar potential sys-
tem. Here, ( )4 41 100 Pm M≈ ⋅  

( ) ( )( ) ( )
4 4 2

1 1 cos
2 2

PM mV φ φ φ φ∗= ⋅ − + ⋅ −               (3a) 

( ) ( )2

2
1
2 CV φ φ φ∝ × −                     (3b) 

We should keep in mind that Cφ  in Equation (3a) is an equilibrium value of 
a true vacuum minimum of Equation (3a) after tunneling. In the potential sys-
tem given as E Equation (3a) we see a steadily rising scalar field value which is 
consistent with the physics of Equation (3a) and Equation (3b) which qualita-
tively adhere to what we want for Equation (3). In the potential system given by 
Equation (3b) we see a reduction of the “height of a scalar field which is consis-
tent with the chaotic inflationary potential overshoot phenomena”. We should 
note that φ∗  in Equation (3a) is a measure of the onset of quantum fluctua-
tions. Appendix I is a discussion of Axion potentials which we claim that is part 
of the contribution of the potential given in Equation (3a). Note that the tilt to 
the potential given in Equation (3a) is due to a quantum fluctuation. As ex-
plained by Guth for quadratic potentials [5],  

1 1
3 24 4

1 1
2 2

3 3 1
16 π 16 π

P
P

M M
m m

φ∗    ≡ ⋅ ⋅ → ⋅   ⋅ ⋅   
            (3c) 

This in the context of the fluctuations having an upper bound of  

60 3.1 3.1
2 π P PM Mφ > ≈ ≡
×



                   (3d) 
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Here, Cφ φ> . Also, the fluctuations Guth had in mind were modeled via [6] 

12 π
m t

G
φ φ≡ − ⋅

⋅ ⋅


                       (3e) 

In the potential system given by Equation (3b) we see a reduction of the 
“height” or magnitude of a scalar field which is consistent with the chaotic infla-
tionary potential overshoot phenomena mentioned just above. This leads us to 
use the Randal-Sundrum effective potential [1] in tandem with tying in baryo-
genesis [7] to the formation of chaotic inflation initial conditions for Equation 
(3b), with the Randall-Sundrum brane world effective potential delineating the 
end of the dominant role of di-quarks, due to baryogenesis, and the beginning of 
inflation. The role of the Bogomolnyi inequality is to introduce, from a topolog-
ical domain wall standpoint, a mechanism for the introduction of baryogenesis 
in early universe models. The combination of that analysis, plus matching con-
ditions with the Randal-Sundrum effective potential, sets us up for chaotic infla-
tion. 

2. How to Form the Randall-Sundrum Effective Potential 

The consequences of the fifth dimension mentioned in Equation (1) above show 
up in a simple warped compactification involving two branes, i.e. a Planck world 
brane, and an IR brane. This construction with the physics of this 5 dimensional 
system allow for solving the hierarchy problem of particle physics, and in addi-
tion permits us to investigate the following five dimensional action integral [1]. 

( ) ( ) ( )
2π

24 25
5 5 5

π

1d d π
2 2M

m
S x R K x x Rθ φ φ φ δ δ

−

   = ⋅ ⋅ ⋅ ⋅ ∂ − ⋅ − ⋅ ⋅ + − ⋅    
∫ ∫   (4) 

This integral, will lead to the following equation to solve 

( ) ( )2
2
52

π
m K K

R RR
µ θ

µ

δ θ δ θ
φ φ φ

−∂
−∂ ∂ + − = ⋅ + ⋅            (5) 

Here, what is called 2
5m  can be linked to Kalusa Klein “excitations” [1] via 

(for n > 0)  
2

2 2
52n

nm m
R

≡ +                          (6) 

This uses [8] (assuming l  is the curvature radius of AdS5)  
2

3
5

PMm
l

≡                           (6a) 

This is for a compactification scale, for 5
1m
R

 , and after an ansatz of the 

following is used: 

( ) ( )( )5 5exp exp πA m R m Rφ θ θ ≡ ⋅ ⋅ ⋅ + ⋅ ⋅ −              (7) 

We then obtain after a non trivial vacuum averaging [8] 

( ) ( ),xφ θ θ= Φ                        (8) 

( )( )4
5 eff physdS x V R x= − ⋅∫                    (9) 
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This is leading to an initial formulation of  

( )( ) ( )( )
( )( )

2
5 phys

eff phys
5 5 phys

1 exp π

2 1 exp π

m R xKV R x
m m R x

+ ⋅ ⋅
= ×

× − ⋅ ⋅
         (10) 

Now, if one is looking at an addition of a 2nd scalar term of opposite sign, but 
of equal magnitude [1] 

( )( ) ( )( )4 4
5 eff phys eff physd dS x V R x x V R x= − ⋅ → − ⋅∫ ∫           (11) 

This is for when we set up an effective Randall-Sundrum potential looking like 
[1] 

( )( ) ( )( )
( )( )
( )( )
( )( )

2
5 phys

eff phys
5 5 phys

2
5 phys

5 5 phys

1 exp π

2 1 exp π

1 exp π

2 1 exp π

m R xKV R x
m m R x

m R xK
m m R x

+ ⋅ ⋅
= ×

× − ⋅ ⋅

− ⋅ ⋅
+ ×

× + ⋅ ⋅









         (12) 

This above system has a Meta stable vacuum for a given special value of 
( )physR x  We will from now on use this as a ‘minimum’ to compare a similar ac-

tion integral for the potential system given by Equation (3) above.  

3. How to Compare the Randall-Sundrum Effective Potential 
Minimum with an Effective Potential Minimum Involving 
the Potential of Equation (3) above 

We are forced to consider two possible routes to the collapse of a complex po-
tential system to the chaotic inflationary model promoted by Guth [5].  

The first such model involves a simple reduction of the axion wall potential 
[9] as given by, especially when N = 1  

( ) ( ) ( )( )22 1 cosa PQ PQV a m f N a f N = × × −              (13) 

The simplest way to deal with Equation (13) is to set ( )2
a Tm T ε +

→∞→ , 
when Kolb [9], writes  

( ) ( ) ( )3.7
axion axion0.1 0 QCDm T m T T≅ × = × Λ             (14) 

i.e. to declare that the axion “mass” vanishes, and to let this drop off in value 
give a simple truncated version of chaotic inflationary potentials along the lines 
given by a transition from Equation (3a) to Equation (3b) We should note that 

QCDΛ  is the enormous value of the cosmological constant which is 12010  larger 
than what it is observed to be today [10] [11] [12], and for now we are side 
steeping the question of if or not the negative valued Randall-Sundrum cosmo-
logical constant [8] 

5 2

6
l

Λ = −                           (15) 

has a bearing on this situation. Not to mention the problems inherent in several 
proposed fixes to the cosmological constant problem [13]. 

Now if we want an equivalent explanation, which may involve baryogenesis, 
we need to look at the component behavior of each of the terms in Equation (13) 
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without assuming ( )2
a Tm T ε +

→∞→ . Then, we need to re define several of the 
variables presented above. Now, in the typical theory presented by  

( )( ) ( ) ( )( )
4 221 cos 1 cos

2
P

a PQ PQ
M m f N a f Nφ  × − ∝ × × −  

      (16) 

We then have to present a varying in magnitude value for the ‘scalar’ φ  in-
volving ultimately the Bogolmolnyi inequality. I have done several of these for 
condensed matter current problems, but for our cosmology situation, we first 
have to work with  

( )PQa f N φ  ≈ 
                       (17) 

There has been credible work with instantons in higher dimensions, starting 
with Hawkings 1999 article [14] this, however, addresses a way of linking an in-
stanton structure with baryogenesis, dark energy, and issues of how Ran-
dall-Sundrum brane structure can be used to formation of initial conditions of 
inflationary cosmology.  

Clarifying what can be done with an instanton style quantum nucleation in 
multiple dimensions [15] may help us with more acceptable models [7] [16] as 
to estimating, roughly, a quantum value for the cosmological constant, as an 
improvement in recent calculations.  

( ) ( )3 4
space Euclidianexp d d exp dE Ex L x LτΨ ∝ − ≡ − ⋅∫ ∫          (18) 

( ) { } ( ) { }
2 2

0 00

1 1
2 2E Q

L Q φ φ φ φ
→

≥ + ⋅ − → ⋅ − ⋅         (18a) 

where 

{ } gap2 E= ×∆×                       (18b) 

This leads, if done correctly to the quadratic sort of potential contribution as 
given by [16]. At the same time it raises the question of if or not when there is a 
change from the 1st to the 2nd potential system, we have a consistent model. Let 
us now view a toy problem involving use of a S-S’ pair which we may write as 
[17] 

( ) ( )π tanh tanha bb x x b x xφ  ≈ ⋅ − + − 
               (19) 

This is for a di-quark pair along the lines given when looking at the first po-
tential system, which is a takeoff upon Zhitinisky’s color super conductor model 
[18]. 

4. Comparison of Initial Conditions for a Nucleating Universe 

Now for the question the paper is raising, Can we realistically state the following 
for initial conditions of a nucleating universe? If so, then what are the conse-
quences? 

( )( ) ( ) ( )4 3 4
5 eff phys space Euclidiand d d dE ES x V R x x L x Lτ= − ⋅ ∝ − ≡ − ⋅∫ ∫ ∫     (20) 

The right hand side of Equation (20) can be stated as having 
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( ) { }
2

0
1
2EL φ φ≥ × − × .                    (21) 

We can insist that this gapE∆  between a false and a true vacuum minimum 
[19], that  

{ } gap2 E≡ ×∆                         (22) 

So, this leads to the following question. Does a reduction of axion wall mass 
for the first potential system given in Equation (3a) being transformed to Equa-
tion (3b) above give us consistent physics, due to temperature dependence in 
axion “mass”, or should we instead look at what can be done with S-S’ instanton 
physics and the Bogolmyi inequality [20] in order to perhaps take into account 
Baryogenesis? Also, can this shed light upon the Wheeler De Witt’s equations 
[21] modification by Ashtekar [22] in early universe quantum bounce condi-
tions?  

Finally, does this process of baryogenesis, if it occurs lend then to the regime 
where there is a bridge between classical applications of the Wheeler De Witt 
equation to the quantum bounce condition raised by Ashtekar [22]?  

5. Tie in with the Wheeler De-Witt Equation 

Abbay Ashtekar’s quantum bounce [22] gives a discretized version of the Whee-
ler De Witt equation. Let us first review classical De Witt theory which ties in 
with inflationary n = 2 scalar potential field cosmology. This will be useful in 
analyzing consequences of the wave functional so formed in Equation (18) and 
suggest quantum bounce analogies we will comment upon later. 

In the common versions of Wheeler De Witt theory a potential system using a 
scale radius ( )R t , with 0R  as a classical turning point value [21] 

( )
2 2 43

0

0 0

3 π
2

c R R RU R
G R R

      × × ×
 = × −     ×        

            (23) 

Here we have that 

36
0 0

3~ ~ 7.44 10  metersPR c t l c −⋅ ≡ ≡ ⋅ ×
Λ

           (23a) 

As well as 

443 2.48 10  secPt
−≡ ∼ ×

Λ
                   (24) 

Now, Alfredo B. Henriques [16] presents a way in which one can obtain a 
Wheeler De Witt equation based upon  

( ) ( ) ( )2 2 21ˆ
2

H A p B mµ φ µφ φ φ ⋅Ψ = × ⋅ + ⋅ ⋅ ⋅Ψ  
           (25) 

Using a momentum operator as give by 

p̂ iι φ
∂

= − ⋅ ⋅
∂ ⋅

                        (26) 

This is assuming a real scalar field φ  as well as a ‘scalar mass ‘ m ’ based 
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upon a derivation originally given by Thieumann [23]. The above equation as 
given by Thiemann, and secondarily by Henriques [16] lead directly to consi-
dering the real scalar field φ  as leading to a prototype wave functional for the 

2φ  potential as given by 

( ) ( )2expµ µ µψ φ ψ α φ≡ ⋅ ⋅                    (27) 

As well as an energy term  

E A B mµ µ µ= ⋅ ⋅ ⋅                     (27a) 

B A mµ µ µα = ⋅ ⋅                     (27b) 

This is for a “cosmic” Schrodinger equation as given by  

( ) ( )Ĥ Eµ µψ φ φ⋅ =                      (27c) 

This has 

( )0 0

61 2 1 2
9

4
9

pl

pl

m
A V V

lµ µ µ µ µ+ −

×
= × −

×
                (27d) 

and 

( )3
pl

pl

m
B V

lµ µ= ⋅                        (27e) 

Here Vµ  is the eigenvalue of a so called volume operator[16] and the inter-
ested readers are urged to consult with the cited paper to go into the details of 
this, while at the time noting plm  is for Planck mass, and pll  is for Planck 
length, and keep in mind that the main point made above, is that a potential op-
erator based upon a quadratic term leads to a Gaussian wave functional with an 
exponential similarly dependent upon a quadratic 2φ  exponent. We do ap-
proximate solitons via the evolution of Equation (27) and Equation (27c) above, 
and so how we reconcile higher order potential terms in this approximation of 
wave functional is extremely important. 

Now Ashtekar in his longer arXIV article [24] make reference to a revision of 
this momentum operation along the lines of basis vectors µ  by 

28 πˆ
6

PLlpι
γ

µ µ µ
× × ×

= ×                   (28) 

With the advent of this re definition of momentum we are seeing what Ash-
tekar works with as a sympletic structure with a revision of the differential equa-
tion assumed in Wheeler-De Witt theory to a form characterized by [26] 

2

2φ
∂

⋅Ψ ≡ −Θ⋅Ψ
∂

                     (28a) 

Θ  In this situation is such that  

( )φΘ ≠ Θ                         (28b) 

Also, and more importantly this Θ  is a difference operator, allowing for a 
treatment of the scalar field as an “emergent time”, or “internal time” so that one 
can set up a wave functional built about a Gaussian wave functional defined via  
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( ) ( )max
k k

k k ∗≡
Ψ = Ψ                      (28c) 

This is for a crucial “momentum” value  

( )216 π 3p G kφ
∗ ∗= − × × × ×

                (28d) 

And 

03 16 π lnGφ µ φ∗ ∗= − × × +                   (29) 

which leads to, for an initial point in “trajectory space” given by the following 
relation ( )0,µ φ∗ =  (initial degrees of freedom [dimensionless number] ~ ei-
genvalue of “momentum”, initial “emergent time”).  

So that if we consider eignfunctions of the De Witt (difference) operator, as 
contributing toward 

( ) ( ) ( ) ( )1 2s
k k ke e eµ µ µ= ⋅ + −                  (30a) 

With each ( )ke µ  an eignfunction of Equation (12a) above, with eigenvalues 
of Equation (12a) above given by ( )kω , we have a potentially numerically 
treatable early universe wave functional data set which can be written as 

( ) ( ) ( ) ( ), d exps
kk k e i kµ φ µ ω φ

∞

−∞

Ψ = ⋅Ψ ⋅ ⋅ ⋅  ∫            (30b) 

This equation above has a “symmetry” as seen in Figure 1 of Ashtekar’s PRL 
article [6] about φ , reflecting upon a quantum bounce for a pre ceding universe 
prior to the “big bang” contracting to the singularity and a “rebirth” as seen by a 
different branch of Equation (30b) emerging for a “growing” set of values of φ . 

6. Conclusion 

We are presenting a question which may be of relevance to JDEM research. 
Namely if Ashtekar is correct in his quantum geometry [24], and the breakdown 
of early universe conditions not permits the typical application of the Wheeler 
De Witt equation, then what do we have to verify it experimentally? The axion 
wall dependence so indicated above may provide an answer to that, and may be 
experimentally measurable via Kadotas pixel reconstructive scheme [25]. 

Furthermore, we also argue that the semi-classical analysis of the initial po-
tential system as given by Equation (3) above and its subsequent collapse is de 
facto evidence for a phase transition to conditions allowing for dark energy to be 
created at the beginning of inflationary cosmology [26] [27]. This builds upon an 
earlier paper done by Kolb in minimum conditions for reconstructing scalar po-
tentials [28] [29] [30]. It also will necessitate reviewing other recent derivation 
bound to the cosmological constant in cosmology model in a more sophisticated 
manner than that has been presently done [31]. In doing so, it may be appropri-
ate to try to reconcile A. Ashtekar’s approach involving a discretization of the 
Wheeler De Witt equation with the bounce calculations in general cosmology 
pioneered by Hackworth and Weinberg [32]. Needless to say, the work so pre-
sented above leaves open the question if or not baryogenesis, is involved in in-
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volving a collapse of the first term of Equation (3a) along the lines of the Bogo-
molnyi inequality, or else we have to skip this and to adhere to the topological 
defect models pioneered by Trodden, et al. [33] [34] [35]. 
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Appendix I 

Forming an axion potential term as part of the contribution to Equation 2A  
Kolb’s book [9] has a discussion of an Axion potential given in his Equation 

(10.27) 

( ) ( ) ( )( )22 1 cosa PQ PQV a m f N a f N = ⋅ ⋅ −               (1) 

Here, he has the mass of the Axion potential as given by am  as well as a dis-
cussion of symmetry breaking which occurs with a temperature PQT f≈ . Fur-
thermore, he states that the Axion goes to a massless regime for high tempera-
tures, and becomes massive as the temperature drops. Due to the fact that 
Axions were cited by Zhitinisky in his QCD ball formation [18] this is worth 
considering, and I claim that this potential is part of Equation (6a) with the 
added term giving a tilt to this potential system, due to the role quantum fluctu-
ations play in inflation. Here, N > 1 leads to tipping of the wine bottle potential, 
and N degenerate CP-conserving minimal values. The interested reader is urged 
to consult section 10.3 of Kolb’s early universe book for additional details [9]. 
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