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Abstract 

Agricultural expansion is one of the prime driving forces of global land cover change. Despite the 
increasing attention to the factors that cause it, the patterns and processes associated with indi-
genous cultivation systems are not well understood. This study analyzes agricultural change asso-
ciated with subsistence-based indigenous production systems in the lower Pastaza River Basin in 
the Ecuadorian Amazon through a spatially explicit dynamic model. The model integrates multiple 
logistic regression and cellular automata to simulate agricultural expansion at a resolution con-
sistent with small scale agriculture and deal with inherently spatial processes. Data on land use 
and cultivation practices were collected through remote sensing and field visits, and processed 
within a geographic information system framework. Results show that the probability of an area 
of becoming agriculture increases with population pressure, in the vicinity of existing cultivation 
plots, and proximity to the center of human settlements. The positive association between prox-
imity to cultivation areas and the probability of the presence of agriculture clearly shows the spil-
lover effect and spatial inertia carried by shifting cultivation practices. The model depicts an ideal 
shifting cultivation system, with a complete cropping-fallow-cropping cycle that shows how agri-
cultural areas expand and contract across space and over time. The model produced relatively 
accurate spatial outputs, as shown by the results of a spatial comparison between the simulated 
landscapes and the actual one. The study helped understand local landscape dynamics associated 
with shifting cultivation systems and their implications for land management. 
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1. Introduction 

Land use and land cover changes (LUCC) are the prime driving forces of transformations in the Earth system [1]. 
The focus of LUCC studies is generally on the identification of cause-effect relationships to uncover patterns of 
land uses and land covers and the processes of their change [2]. LUCC studies that concentrate on cause-effect 
relationships usually point at economic drivers [3] [4], population dynamics [5] [6], suburban sprawl factors [7] 
[8], household developmental cycles [9]-[11], transportation infrastructure [12]-[14], tenure security [15] [16], 
environmental conditions [17] [18], and patterns of commercial agriculture and subsistence swidden land use 
[14] [19] [20] as major forces impacting the landscape. 

Until a couple of decades ago, computational capacity constrained the operation of spatially explicit tech-
niques to characterize human-environment interactions [21]. Advances in spatially oriented techniques that inte-
grate spatially explicit data, as derived from remote sensors and geographic information analysis, provide new 
opportunities to truly incorporate innovative approaches to address fundamental questions about the relation-
ships between social and ecological systems [22] [23]. These relatively new approaches allow researchers to 
identify key environmental and social variables that shape the landscape, and also to dynamically (as opposed to 
statically) model inherently spatial complex processes. Spatially explicit land use change models are not only 
capable of estimating the quantity of change and where these changes will occur over relatively long periods of 
time, but also useful to unravel multifaceted pattern-process relationships at different spatial and temporal scales. 
This study follows such an approach to analyze LUCC associated with agricultural expansion and subsis-
tence-based production systems in tropical environments. 

Spatially explicit approaches, such as cellular models, have been successful in analyzing complex spatial 
phenomena given their relative simplicity and flexibility. In cellular automata (CA), for instance, each cell in a 
spatial array exists in one of a finite set of states (e.g. a type of land cover or land use), and future states (e.g. the 
transition from one type of land use/land cover to another) depend on transition rules based on a local spa-
tio-temporal neighborhood. A CA system is homogenous in the sense that the set of possible states is the same 
for each cell and the same transition rules apply to each cell. Time advances in discrete steps, and updates in the 
state of each cell may be synchronous (i.e. cells are all updated to their new state simultaneously) or asynchron-
ous (i.e. cells are updated to their new state at different times) [24]. LUCC studies have used CA models to 
study frontier settlement dynamics [25], fire spreading [26], forest dynamics [27], and urban growth [28] [29] 
[30] [31]. Most of these studies assume that the probability of change from one state to another at a time step n + 
1 depends on two conditions: 1) the current state at time n and not on the sequence of states that preceded it, and 
2) the transition potential of cells is determined by the influence that the spatio-temporal neighborhood exerts on 
a particular location. These two conditions make CA a robust framework to capture the intrinsic spatial and dy-
namic nature of evolving human-environment interactions.    

In the past couple of decades, statistical methods such a multiple logistic regression (MLR) have been increa-
singly used in land cover transformation studies to analyze forest dynamics and fire dispersal [32], agricultural 
and land use change [20] [33] [34], and deforestation [12] [13] [35]. Generally, this kind of statistical studies are 
based on empirically parameterized static models that compute land cover change probabilities, indicating the 
likelihood of occurrence of a specific land use at a specific location [36]. MLR identifies the explanatory power of 
factors on the probability of the presence or absence of a phenomenon (e.g. agriculture), which is generally de-
fined as a categorical variable [37]. If the observations used to generate the MLR model are spatially explicit (i.e. 
geolocated), the technique yields coefficients that can be used to generate maps depicting the probability of a 
particular location to change to a certain state or remain un-changed.  

The integration of techniques such as MLR and CA, within a geographic information system (GIS) frame-
work, is an efficient option to dynamically and spatially model LUCC. This type of synergism is suited for de-
veloping LUCC scenarios, which are themselves models of how a spatial system functions and, like other types 
of models, they allow explorations of understanding. At fine spatial resolutions, this type of integration allows 
quantifying and predicting land cover changes associated with local level spatial processes [43]. MLR/CA mod-
els of LUCC, for instance, have been successfully applied to model urban growth [38], land changes in coloni-
zation frontiers [39], and land use allocation in rural areas [40]-[42]. Despite the increasing popularity of 
MLR/CA models to study landscape dynamics, there has been only very limited research on the patterns and 
processes associated with subsistence based cultivation systems using this approach. Thus, this study tries to fill 
this gap in research and addresses the following research question: What are the patterns and processes asso-
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ciated with agricultural expansion in subsistence-based cultivation systems in the lower Pastaza River Basin in 
the Ecuadorian Amazon (PRBEA)? The emphasis is on the analytical model, presented here as an efficient al-
ternative to simulate local landscape scenarios at fine resolutions and to illustrate its application and interpreta-
tion.  

2. Study Area 

This study focuses on the lower PRBEA region in Western Amazonia, which is predominantly occupied by in-
digenous populations. The modeling framework is applied to the case of the lowland Jívaros (the Achuar) and 
the Jívaro-Kichwa (the Shiwiar). Their territories encompass approximately a combined area of 930,000 ha 
(Figure 1) with an average population density of 0.7 persons per km2. The annual population growth rate is ap-
proximately 3.6 percent [44]. Agricultural production is limited to an area of less than 5% of the total territory 
and is mostly oriented towards subsistence purposes. The rate of agricultural expansion in the PRBEA is ap-
proximately 0.2 percent per annum (Figure 2, Table 1). Patterns of land use and land cover are consistent with 
traditional resource management practices. Indigenous families congregate around airstrips to form small 
semi-permanent villages. Landing strips are the only type of accessibility infrastructure in the area and constitute 
the centers of the communities where most families reside. Residential areas are followed by cultivation, forag-
ing, and hunting zones [45]. The lower PRBEA is a mega bio diverse region and is currently located in the cen-
ter of a variety of conservation and development projects given the region’s rich natural and cultural resources. 
 

 
Figure 1. Study area—The Pastaza River Basin in the Ecuadorian Amazon.                                           
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Figure 2. Post-classification comparison of agricultural and forested areas between years 1987 and 2002.      

 
Table 1. Change detection matrix between years 1987 and 2002. Land cover changes are reported in km2 and percentages.    

Km2 (%) Foresta Agriculturea Totala 

Forestb 11,926 (97%) 73 (74%) 12,000 (100%) 

Agricultureb 307 (3%) 221 (75%) 528 (100%) 

Totalb 12,234 (100%) 295 (100%) 12,529 (100%) 

a: year 1987; b: year 2002; Annual conversion rate from forest to agriculture = 0.2%. 

3. Methods and Materials 

3.1. Data Collection and Processing 

To characterize current spatial conditions in the area, a series of RGB images with a spatial resolution of < 1 m 
and video graphy were collected in year 2006 with the aid of an aircraft, a GPS enabled digital camera, and a 
video mapping system (VMS 2.0). These data were processed using digital remote sensing techniques such as 
image geometric correction, mosaicking, interpretation, and on-screen digitizing. With these data, a land 
use/land cover geo data base of 101 production units was generated that comprised residential, agricultural, and 
foraging areas of seven communities in the region (Figure 1). From this set, 66 were surveyed in the field to 
obtain not only socio-economic and demographic attributes, but also information about the structural characte-
ristics of the production system (e.g. fallow periods, land allocation practices, production strategies). These data 
were processed within a GIS framework (ArcGIS v. 9.3), linking household surveyed and land use and land 
cover information. The vector data were transformed to raster grids and resampled to a spatial resolution of 20 m 
(i.e. a fourth of the minimum agricultural plot in the surveyed communities) to characterize the cultivation sys-
tem. Official maps at scales of 1:25000 and 1:50000 from the Ecuadorian Military Geographic Institute were 
used to help describe spatial conditions (i.e. hydrography and the presence of infrastructure) in the area. Topo-
graphic conditions were derived from ASTER Global Digital Elevation Map (GDEM) data [46]. Transition rates 
from forest to agriculture for the region were obtained from classifications of Land sat TM and ETM satellite 
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images of years 1987 and 2002 respectively. The data were analyzed through the integration of MLR and CA to 
explain landscape patterns due to variations in population numbers and environmental conditions.  

3.2. A MLR/CA Land Use Change Modeling Framework 

This study employs two main modeling techniques. First, it employs a MLR approach to model the presence (1) 
or absence (0) of agriculture in the region based on a stratified random sample of 2948 cells separated at least 60 
m from each other (i.e. three times the cell resolution). A random sample may help minimize issues associated 
with spatial autocorrelation and obtain more efficient coefficients [13]. The model accounts for agricultural va-
riability (La) that could be explained by a series of environmental and demographic factors [20]. The MLR 
model is formalized as: 
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where Logit (Pa(x, y)) is the logit of the probability (Pa) of the presence of agriculture at location (x, y), α is the 
intercept, and βn are the slope parameters estimated via a maximum likelihood iterative procedure. The slope 
parameters represent how variations of the predictor affect the propensity towards agriculture. Soil is a dummy 
variable that depicts “good” or “bad” soil conditions and estimated from soils maps created by Ecuador’s Minis-
try of the Environment [47] and soil observations from the field. PopPre is the ratio between total household 
size and total cultivated land and estimated from household surveys and land use maps. DstLdn is the Euclidean 
distance from the edge of the closest landing strip to any site. NstNbr is the Euclidean distance to the nearest 
agricultural area. Slope is an estimate of on-site conversion costs and depicts terrain steepness or flatness and 
determined based on a 30 m resolution digital elevation model of the area. CstDstHo is the least accumulative 
cost of moving through different surfaces and terrain conditions.  

Second, this study relies on a CA mechanism that simulates a decision making process, in which key and 
random unknown factors affect personal decisions on whether or not to expand agriculture. Some events appear 
to be random because agricultural expansion is a complex phenomenon and not all driving factors are known. 
Since all the variables are spatially explicit, the coefficients of the MLR model are used to generate a probability 
raster (employing Equations (1) and (2)) that is the basis for the CA model. The probability map depicts the li-
kelihood of the presence of agriculture at every location. The CA rules determine which cells will transition 
from forest to agriculture based on the cell’s probability and of its eight closest neighbors. The CA algorithm 
was implemented in ArcGIS using Python language and is formally defined as follows: 
Line 1: If ( ) ( ),  ,   T

x yx yPa Pa≥  then ( )
1

, 1T
x yPa + =  else ( ) ( )

1
, , 

T T
x y x yPa Pa+ =  

Line 2: 
3

1, 1 9
ij

ij
i j

Pa
N

= =

= ∑  

Line 3: If ( ),  x yijN Pa≥  then ( )
1

, 1T
x yPa + =  else ( )

1
, 

T
ijx yPa N+ =  

Line 4: Go to Line 2 
where Pa(x, y) is the propensity towards agriculture at location x,y at time T and estimated through MLR and 
extrapolated to other cells via map algebra; ( ),  x yPa  is the average probability of observed agricultural areas;  

( )
1

, 
T
x yPa +  is the probability of a cell of being agriculture at location x, y at time T + 1; Nij is the average probabil- 

ity in a window of 3 × 3 pixels. At the beginning of the very first iteration (Line 1), the algorithm assigns a value 
of one (presence of agricultural area) to those cells that have a value equal or higher than the cut-off probability 
value (i.e. the average probability of observed cultivation areas [value = 0.6] and entered as a parameter in the 
model). Otherwise, the probability of the cell remains the same. If most of the area surrounding a forest patch 
has been transformed to agricultural use, it is likely that the patch of forest will also be cleared in the near future 
(based on the assumptions of the model). Line 2 takes into consideration the spatial context to update a cell’s 
probability based on the characteristics of the eight closest neighboring cells and its own. Line 3 compares the 
average probability to the cut-off probability and assigns a value of one to those cells that are equal or higher. 
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Line 4 creates a loop in the algorithm that allows agricultural areas to expand until there are no more possible 
transitions utilizing the most current set of variables. The new landscape map primarily shows the presence 
(value = 1) or absence (values < 1) of agriculture in N years (Figure 3). 

The total number of cells to change from forest to agriculture in an N-year simulation depends mostly on the 
cell’s probability (obtained from the probability map and modified by the influence of its spatio-temporal 
neighborhood) and on the transition rate from forest to agriculture for the region. Each iteration in the model 
represents a time step of one year since population and agricultural growth estimates are annual. The mechanism 
continues until there are no more possible transitions. If the extent of agriculture at a particular time step is less 
than the expected area, a new set of randomly chosen cells will go through the CA mechanism to determine the 
size and shape of agricultural areas. The system stops if the agricultural area is larger than or equal to the ex-
pected agricultural extent in N years.  

Conceptually, the variables in the model can be classified as state dynamic or static. State dynamic variables 
are those that change over time, whereas static variables (or parameters) remain the same (Figure 4). For in-  
 

  
(a)                            (b)                            (c)                           (d) 

Figure 3. Probability maps before (a) and after (d) the convolution of the cellular automata engine using an average 
probability of 0.6. (b) and (c) show intermediate steps in the transition process.                                       
 

 
   Figure 4. Conceptual logistic multipleregression/cellular automata (MLR/CA)model of shifting cultivation.          
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stance, distance to the closest cleared area (NstNbr) and population pressure per unit of agricultural area (Pop-
Pre) are dynamic because the actual spatial layers change during iteration. Population pressure values are up-
dated after each iteration based on population growth estimates for the region. Slope values (Slope) and distance 
to land strips (DstLnd) remain the same after each time step since these are constant conditions in the long term. 
After each time step, a new probability map is generated using the MLR regression coefficients and the other 
spatially explicit variables through simple map algebra functions. If the amount of cells converted to agricultural 
use in a particular time period is less than the expected agricultural extent, the system iterates and new state dy-
namic variables are calculated. The simulation stops if the agricultural extent, after a particular iteration, is larg-
er than or equal to the total expected agricultural area for a particular time period. 

Although the transition rate from agriculture to fallow was not possible to determine because of the lack of 
data at a resolution consistent with household level analysis, it is still possible to determine when such transi-
tions will occur and where. The transition from agriculture to secondary vegetation occurs after the productive 
cycle of an agricultural area (i.e. three years on average based for inter-fluvial communities and ten years for ri-
verine communities). This information is entered in the model as a constant parameter. Therefore, the modeled 
land use maps not only show where the transitions from forest to agriculture will likely take place at a specific 
time step, but also the transitions from agriculture to fallow areas.  

The outcomes of the MLR/CA model allow rigorous validation since it can be compared to the actual agri-
cultural landscape. It contains no indication as to when these land cover changes might take place, but it does 
suggest where future changes will occur if similar recent causal processes affect the region. If conditions remain 
relatively stationary (as it has been the case of the populations under study), it is possible to model future land 
cover changes based on a series of actual known factors or to trace back landscape conditions to better under-
stand landscape dynamics. 

The simulated landscapes generated by the MLR/CA model were compared with observed data (N = 13 pro-
duction units; 886 cells) of the community not included in the calibration of the statistical model. The assump-
tion in this study is that since subsistence based communities in the PRBEA region still practice traditional 
shifting slash-and-burn cultivation and the methods of production and socio-economic relationships have not 
significantly changed in the past few decades, it is possible to characterize past landscape conditions based on 
the same factors that affect agricultural expansion today. This is especially the case under current land tenure re-
gimes and social institutions that regulate the use of the land in traditional indigenous settlements.  

When models are based on a neighborhood context, such as cellular automata models, parametrical statistical 
comparisons on a pixel-by-pixel basis are not feasible [48]. Thus, this study used a series of landscape metrics and 
non-parametric measures to compare our model outputs with the observed data. Examples of studies that have 
used similar validation approaches include [49]-[52]. 

Using the MLR/CA model, 50 landscape scenarios in raster format showing agricultural (value = 1) and 
non-agricultural areas (value = 0) were generated and five key landscape characteristics used (i.e. total extent of 
agriculture, mean size of agricultural plots, distance between nearest agricultural patches, patch density, and 
fractal dimension) to compare the results of the model with the actual observed landscape and validate the accu-
racy of the predictions. These metrics were obtained using FRAGSTATS [53].  

First, comparisons were made between the averages of the five landscape metrics of the 50 simulated land-
scapes and the actual agricultural land use pattern of the community not used in the model’s calibration. The as-
sessment consisted in obtaining a series of error estimates to quantify the ratios between: 1) average total extent 
of predicted agricultural area (Sp) and the actual extent of agricultural land use in 2006 (So), 2) mean patch area 
of predicted land use (MPAp) and mean patch area in 2006 (MPAo), 3) predicted mean patch density (PDp)and 
mean observed patch density in 2006 (PDo), 4) average nearest neighbor distance of predicted agricultural 
patches (NDp) and average nearest distance of agricultural plots in year 2006 (NDo), and 5) the average perime-
ter-area fractal dimension of the simulated landscapes (FDp) and the fractal dimension of the actual landscape in 
year 2006 (FDo).  

Second, a Chi-square non-parametric procedure was used to examine on a cell-by-cell basis whether the dif-
ference in corresponding pixel values of both observed and predicted agricultural areas is more significant than 
would be expected by chance alone [54]. The null hypothesis is that there is no difference between the actual 
land use mosaic and the aggregated raster of agriculture/non-agriculture areas. To obtain a robust approximation 
of predicted agricultural areas, the simulated maps were combined into a single raster using a cell sum function 
in the GIS. If a cell was classified as agriculture in each of the model outcomes (value = 50), that cell had a 
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100% probability of conversion to agriculture. If a cell was always consistently coded as non-agriculture (value 
= 0), its probability of conversion to agriculture was zero. This combined raster was classified into agriculture 
and non-agriculture areas using the cut-off probability value (i.e. the average probability of the observed agri-
cultural areas).  

4. Results and Discussion 

This study focused on the analysis of the processes and patterns associated with shifting cultivation in tropical 
lowlands. First, the model takes advantage of the predictive capability of MLR to compute the spatial probabili-
ties of cells to transition from forest to agriculture based on a series of significant predictors. Results show that 
the probability of an area of becoming agriculture increases with population pressure (PopPre), proximity to ex-
isting cultivation plots (NstNbr), and proximity to the center of the human settlement (DstLnd), and terrain qual-
ity (Slope) (Table 2). For a more detailed discussion of the interpretation and implications of these findings 
please refer to [20]. 

Second, the MLR coefficients were used as initial slope estimates to obtain rasters in a cell-based GIS 
representing the conversion probability of a forest cell into agriculture. Since the spatial probabilities are highly 
autocorrelated (Figure 5), the model incorporates a CA mechanism to simulate the spatial spillover effect of 
agricultural land use and investigate the underlying spatial processes that lead to current landscape patterns. The 
conversion of a cell from forest to agriculture depends on the cell’s and its eight closest neighbors’ transition 
potential. The positive association between proximity to cultivation areas and the probability of the presence of 
agriculture clearly shows the spillover effect and spatial inertia carried by shifting cultivation practices; changes 
from one state to another are more likely to take place near areas where those changes have already occurred. 
Openings in the forest cover improve accessibility into forest lands and, consequently, the probability of the 
presence of agricultural land use increases. Cultivation areas expand and contract in the form of patches and the 
expansion is radial from the center of the community.   

Each simulation started with the conversion from forest to agriculture at two locations representing the set-
tlement of two families with 7 members each (i.e. the average household size of the sample) around the center of 
the community. This is typically the manner in which new family clusters and villages originate in the region. 
These locations are selected depending on initial spatial conditions (i.e. topography and distance to landing 
strips).Results show that at the beginning of the iterative process, forest dominates the landscape, the extent of 
agricultural land use is enough to support the current population, and there is no secondary vegetation (Figure 6). 
It is expected that agricultural areas expand at first since landholders practice extensive or labor-efficient agri-
culture to sustain the initial requirements of the household. As production pressure increases to supply the de-
mand for food, agriculture is expanded throughout the communal area. When this occurs, secondary vegetation 
is minimal since all agricultural areas are active and under production. The simulation shows that agricultural 
area increases until food demand can no longer be met with this option, then extensification stops. Henceforth, 
agriculture is intensified in land already under cultivation as shown by the agricultural extensification graphs on 
both Figure 6 and Figure 7. As expansion rates decrease, the extent of land under cultivation in lands of varying 
quality follows a sequence opposite to expansion. Lands of low quality are taken out of production and left as 
fallows prior to lands of optimal quality because they require greater inputs to produce comparable yields. 
Hence, the extent of secondary vegetation increases. As demand increases because of population growth addi-
tional land is put into production. Lands that have been recuperated by means of fallow will be preferred to 
old-growth forest areas if they produce comparable yields. Areas closer to access infrastructure (i.e. landing 
strips) will be preferred than areas farther away since clearing this areas may be easier than old-growth forest 
due to lower conversion costs (e.g. lack of large trees and topographic conditions). Thus, at the end of the cycle 
(e.g. a 20-year process, which is age of the community that was not used in the calibration of the MLR model) 
the extent of secondary forest decreases and cultivation areas will again expand outwards from the center of the 
community (Figure 7). In the model, the extents of cultivation and secondary vegetation depend on the cropping 
and fallow periods, which are obtained from field surveys and introduced in the model as input parameters. At 
the end, the model depicts an ideal shifting cultivation system, with a complete cropping/fallow/cropping cycle 
that shows how agricultural areas expand and contract across space and over time.  

Fifty simulated agricultural scenarios were created, quantitatively characterized, and compared with the actual 
landscape structure of the community not included in the calibration of the statistical model. The result of each  
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Table 2. Results of the MLR procedure and test of significance. Source: [20].                                         

Variable B S.E. Wald df P value Exp(B) 

Constant −0.6496 0.38 2.95 1.00 0.09 0.52 

PopPre 8.1526 1.02 63.37 1.00 0.00a 3472.48 

Slope 0.1154 0.05 4.76 1.00 0.03b 1.12 

NstNbr −0.0665 0.01 63.42 1.00 0.00a 0.94 

DstLnd 0.0005 0.00 3.24 1.00 0.07c 1.00 

CstDstHo −0.0051 0.02 0.06 1.00 0.81 1.00 

Soild −0.1492 0.49 0.09 1.00 0.76 0.86 

Cox & Snell R Square: 0.40; Nagelkerke R Square: 0.88; a: Correlation is significant at a 0.001 level; b: Correlation is significant at a 0.05 level; c: 
Correlation is significant at a 0.1 level; d: Categorical variable: differential effect of n-1 levels of the variable. 
 

 
Figure 5. Semivariogram of probability values showing a strong spatial dependence at diffe- 
rent scales.                                                                     

 
simulation is a spatial layer representing an anthropogenic landscape showing agricultural and non-agricultural 
areas in a 20-year period (i.e. the age of the community). The analysis of the structural characteristics of the si-
mulated landscapes show that, the total extent of agriculture, as predicted by the model, is about 33 haon aver-
age, with agricultural plots of 0.82 ha, and a density of 3.66 patches per km2 (Table 3). The results of the com-
parison (Table 4) indicate that the model predicted, on average, slightly less cultivated area (0.94 < 1) than the 
amount obtained from the interpretation of aerial images. Cultivation plots were generally smaller than the ob-
served average size (0.74 < 1), more regular (0.89 < 1), and their density significantly higher than the observed 
density (1.79 > 1). The model also predicted a more clustered arrangement of patches in comparison to the ob-
served landscape (0.82 < 1). The differences in size of cultivation areas, patch area, and patch density are likely 
effects of the CA procedure. These estimates can be improved by relaxing the set of rules or by changing the 
cut-off probability value that determines the transition from “forest” to “agriculture”. In addition, sliver areas 
that are not necessarily agricultural plots, but artifacts of the CA mechanism, should not be considered in the fi-
nal evaluation. The application of a filtering technique, such as a modal algorithm at the end of the iterative 
process, could help minimize these effects, reduce the amount of patches, and provide a better estimate of the 
extent of agriculture. 

To quantify the spatial correlations between the simulated landscapes and the observed one, the 50 simulated 
land use layers were combined into one layer that depicts the conversion certainty of each cell (Figure 8). The 
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Figure 6. Results of a simulation after one year. Agricultural extensification increases (bottom-right corner graph) as the de- 
mand for food increases due to steadily population growth.                                                       
 
Table 3. Descriptive statistics of five landscape metrics use to evaluate the performance of the MLR/CA model.            

 Min Max Mean Std. Dev. 
Agriculture Extent (Sp) (in ha) 24.24 39.96 33.26 3.93 

Mean Patch Area (MPAp) (in ha) 0.60 1.13 0.82 0.12 
Patch Density (PDp) (in # patches per km2) 2.58 5.25 3.66 0.52 

Average Nearest Neighbor Distance (NDp) (in m) 89.45 145.35 113.17 16.28 
Average Perimeter/Area Fractal Dimension (FDp) (none) 1.22 1.36 1.27 0.03 

N = 50. 
 
Table 4. Results of the analysis of the structural characteristics of the simulated landscapes. Descriptive statistics and mean 
errors of the ratios between observed and predicted landscape metrics.                                             

Ratioa Mean Std. Dev. Max. Min. 
Sp/So 0.94 0.11 1.13 0.68 

             Error −0.06 0.11 0.13 −0.32 
MPAp/MPAo 0.74 0.07 0.90 0.61 

             Error 0.26 0.07 0.39 0.10 
PDp/PDo 1.79 0.26 2.57 1.26 

             Error 0.79 0.26 1.57 0.26 
NDp/NDo 0.82 0.12 1.05 0.65 

             Error 0.18 0.12 0.35 −0.05 
FDp /FDo 0.89 0.02 0.95 0.85 

             Error −0.11 0.02 −0.05 −0.15 

a: Ratios between average predicted values of 50 MLR-CA model outcomes and observed values of the community not used in the MLR model esti-
mation. 
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Figure 7. Results of a simulation after 20 years. The simulation shows an expansive behavior of agricultural land use at 
initial phases of village formation. As population grows there is a transition from extensive to intensive practices. Inten- 
sification may occur by producing higher yields per unit of area or by shortening fallow periods.                         
 
results of the Chi-square procedure show that a significant statistical relationship exists between both the ob-
served and predicted distributions at significance level of 0.05, however this relationship is weak (Cramer’s Phi 
Statistic = 0.03) (Table 5). Thus, the non-parametric evaluation shows that the model predicted the location of 
cultivation areas reasonably well. However, since the surface depicting the accumulated simulations shows all 
possible locations and only a fraction of these actually match the observed cultivation areas, the strength of the 
correlation is low. 

5. Conclusions 

This study focused on the analysis of agricultural expansion in subsistence based production systems through the 
implementation of a MLR/CA model. The MLR procedure showed that population pressure is the most impor-
tant predictor of the presence of agriculture in the region; larger families demand more land resources for food 
production. At a local level, the effect of population pressure on land cover is intertwined with other factors such 
topographic conditions and the spatial structure of the land use system. This finding is consistent with other stu-
dies in indigenous areas that show similar associations between LUCC, demographics, and ecological factors 
[55]-[57].  

Since landscape change is an inherently spatial and dynamic phenomenon, the identification of factors asso-
ciated with the presence of agriculture is only the first step in the attempt to understand the processes associated 
with land cover change. Based on the identification of key variables that explain the presence of agriculture, this 
study applied a modeling framework in which time and space are explicitly incorporated into one system. How-
ever, this was not a simple task; the lack of multi-temporal spatial data with the appropriate level of detail hin- 
dered the development of a land cover change model based on spatial trajectories because these approaches rely 
on spatial information of past periods to extrapolate future changes. As an alternative, this study suggested a 
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Figure 8. Predicted cultivation areas based on the aggregation of 50 land use simulations and observed cul- 
tivation areas of the community not used in the calibration of the MLR model.                            

 
Table 5. Results of the chi-square procedure evaluating the statistical relationship between predicted and observed agricul- 
tural land use areas.                                                                                      

 Non Agriculturea Agriculturea TOTAL 
Non Agricultureb 26082 1152 27234 

Agricultureb 819 67 886 
TOTAL 26901 1219 28120 

a: Predicted by the model; b: Observed; Chi Square = 22.973; Probability (p) = 0.0001; Critical Chi Square = 3.8414; Degrees of freedom = 1; Cra-
mer's Phi Statistic = 0.03. 
 
combination of MLR and CA to simulate agricultural expansion scenarios based on the assumption that future 
changes will depend on the most current processes of agricultural expansion and not on previous ones.  

The approach concurrently synthesizes demographic, environmental, and spatial factors to adequately quanti-
fy agricultural expansion in subsistence production areas. The MLR/CA model implemented in this study is 
flexible for experimentation and further insights can be obtained on how changes in the social and spatial confi-
guration of local populations may affect landscape composition. Ultimately, the model has the ability to generate 
spatially explicit projections that allow improving our understanding of the interaction between the demand for 
land resources and the intrinsic dynamics of land cover change associated with subsistence-based shifting culti-
vation systems. The spatial model presented here produced accurate results, especially in regards to the extent of 
cultivation, and the size and shape of cultivation areas. However, some other structural landscape characteristics 
(density and clustering of the agricultural mosaic) were less accurately estimated.  

The model also presents some limitations because it is constrained by: 1) global and deterministic transition 
rules (applied to all cells and known), which results in the “homogenization” of human behavior; people made 
the same decisions about landscape utilization based on similar known pre-conditions, which hindered the re-
presentation of individual preferences, 2) constant demographic and agricultural expansion growth rates that 
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may not reflect conditions of individual households at a particular time step, and 3) the assumption of long term 
linear relationships among driving factors of LUCC. The ability of the model to add randomness into the simu-
lation process helped to deal with the first limitation. In this particular study, the introduction of randomness 
during the selection of cells accounts for the lack of complete data on human behavior (e.g. values, experience, 
ability) affecting decisions on land allocation, accounts for modeling the average case and not the individuals, 
and gives some kind of assignation to human preferences. The second and third limitations restrict the applica-
tion of the model to conditions of steadily population growth and known relationships between land-cover 
change factors. Although these issues may be problematic in the long term, in the short term the model may help 
estimate agriculture expansion with good results, as shown with the comparison procedure of the 50 spatial si-
mulations. 

In general, there are two main aspects of this research that should be highlighted. First, if populations in the 
region continue to grow as some studies have suggested [58] [59], then the area of agricultural land will increase 
until intensification occurs. This study suggests that agriculture intensification through improved management 
techniques (e.g. improved weed control, biological fertilization, agro-forestry) could be a strategy to reduce hu-
man pressure on tropical forests and help preserve their resources. Unplanned radial agricultural extensification, 
a process that characterizes the spatial dynamics of land cover change in indigenous territories in the Amazon 
basin and that was clearly depicted in this study, may reduce forest extent and forest resources in the long term 
and may not be desired. Second, the model could assist the development of a support system for land manage-
ment policy that wishes to capture the complexity of indigenous resource use strategies. Landscape scenarios, 
like the ones discussed in this study, could be integrated into comprehensive management plans and help fill 
gaps of information, especially in situations where socio-economic, demographic, and spatial data are scarce 
(like those of several indigenous territories in the Amazon basin).  
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