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ABSTRACT 

There are two methods for GIS similarity measurement problem, one is cross-coefficient for GIS attribute similarity 
measurement, and the other is spatial autocorrelation that is based on spatial location. These methods can not calculate 
subzone similarity problem based on universal background. The rough measurement based on membership function 
solved this problem well. In this paper, we used rough sets to measure the similarity of GIS subzone discrete data, and 
used neighborhood rough sets to calculate continuous data’s upper and lower approximation. We used neighborhood 
particle to calculate membership function of continuous attribute, then to solve continuous attribute’s subzone similarity 
measurement problem. 
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1. Introduction 

GIS entity has some spatial relevance in real world. To- 
ber [1] proposed the famous geography first law “The 
spatial entities are always interrelated, especially, it have 
more obvious character for closed distance entities”. Cliff 
[2] put forward spatial autocorrelation concept from this 
established law, and the concept is the information for a 
spatial unit having similarity for it’s around units as sum-
marized in Wang [3]. And the spatial autocorrelation has 
been widely used in many fields, such as regional e- 
conomy, application ecology, scene analysis, preventive 
medicine and so on [4]. Anselin [5] found the spatial auto- 
correlation has two measurement index, that is global in-
dex and local index. Global index study the spatial mo- 
de for whole region, and it use a single value to reflect 
the region’s spatial autocorrelation degree. Local index ca- 
lculate each unit degree of correlation from its neighbor 
unit for one attribute. And it has widely application do- 
main as a similarity problem tool. 

GIS subzone measurement is actually an uncertainty 
study problem. Li [6] found the uncertainty problem stu- 
dy works have attracted more and more attention by ma- 
ny study workers since entering the 21st century. There 
are many mathematic tools for study uncertainty problem, 
such as fuzzy sets, rough sets, quotient space etc. Rough 
sets have been widely used in GIS uncertainty study, 
Pawlak [7] introduced Rough sets theory and discussed 
in greater detail in Refs [8,9]. It is a technique for dealing 
with uncertainty and for identifying cause—effect rela- 

tionships in databases as a form of data mining and data- 
base design. It is as summarized in R. Slowinski [10]. 
Slowinsk found it has also been used for improved infor- 
mation retrieval. Srinivasan [11] and Beaubouef [12,13] 
found it is also used in uncertainty management in rela- 
tional databases. Theresa Beaubouef [14] used rough sets 
to describe the fuzziness, uncertainty, GIS topological rel- 
ation, 9-intersection model, egg yolk model for GIS en- 
tity and GIS data reasoning. The Pawlak rough sets took 
all the study objects as universe, and used equivalence 
relation to divide the universe into some exclusive equi- 
valence class, then took it as basic information partial in 
universe description. For discretionary concept in equiva- 
lence space, Hu [15] suggested that Pawlak rough sets 
took two equivalence class union sets: upper and lower 
approximation to approach it. But as an effective granu- 
lar computing model, Pawlak rough sets are suit for dea- 
ling with nominal variable and discrete data that because 
it is based on classic equivalence class and equivalence 
relation. Then Xie [16] found the researcher took conti- 
nuous numerical attribute into nominal variable and dis- 
crete data with discrete algorithms for rough sets method 
in processing data. Jensen [17] suggested this transforma- 
tion inevitably brings the information loss. The compute 
result is largely rest with the discretization result. To so- 
lve this problem, Duboi [18], Hu [19], Yeung [20] et al. 
[21,22] introduced fuzzy rough sets, similarity relation 
rough sets model and neighborhood rough sets. Lin [23] 
put forward neighborhood rough sets model concept, this 
model took the space neighbor point to granulating uni-
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verse, and took neighbor as basic information particle, 
then Lin [23] took it to describe others concepts in ap- 
proximation space. The math pathfinders have done ma- 
ny study works about rough sets similarity. Wu [24] gi- 
ven three forms of the differences of rough fuzzy set, and 
discussed their basic properties, they think that the num- 
ber of conditions for the difference degree of rough fuzzy 
set should have must be satisfied. Guan [25] defined the 
concept of rough similarity degree between two rough 
sets by using fuzzy sets induced by rough sets, and dis- 
cussed its properties, and compared four kinds of rough 
similarity degree in the approximation space. 

So it has many studies about similarity measurement 
for discrete value and continuous value in mathematics. 
There are two Similarity measurement correlations met- 
hods in GIS, one is cross-coefficient, and the other is spa- 
tial autocorrelation that based on spatial location. These 
two methods can not measure similarity of GIS subzone. 
This paper use rough sets measurement method to mea- 
sure two subzone’s similarity problem, simultaneously 
study the subzone’s similarity based on one universe set. 

2. Spatial Autocorrelation and 
Cross-Coefficient 

2.1. Global Spatial Autocorrelation 

Global spatial autocorrelation is an attribute value descri- 
ption of whole region spatial character. And it estimated 
global spatial autocorrelation statistic for global Moran’s 
I and global Geary’s C, to analyze total region spatial 
correlation and spatial discrepancy. And global Moran’s 
I is used commonly, it is defined as follows: 
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where xi is the observed value for observed spatial cell, 

x  is the average value for each observed value, S0 is the 
sum of all element spatial weight matrix (W), and it can 
obtained from the follows formula: 
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ij is the spatial weighting matrix, and the value of ij  
can obtain from follows formula: 
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where n is the number for spatial cell. And if the i cell 
and the j cell are neighborhood, then ij = 1, otherwise 

ij = 0. And one cell is neighborhood for itself, namely 

ij = 1. It can use Z test to statistic test its result after 
computing Moran’s I, it can obtain from follows formula 
(4): 
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It is frequently took Moran’s I as cross-coefficient, and 
the value of Moran’s I is between –1 and 1. In given 
level of significance, when Moran’s I is obviously posi- 
tive, it indicates each observed value has positive correla- 
tion, and higher observed value is cluster to higher obser- 
ved value, lower observed value is cluster to lower obser- 
ved value, it presents higher to higher cluster or lower to 
lower cluster. when Moran’s I is obviously negative, it 
indicates each observed value has negative correlation, 
and higher observed value is cluster to lower observed 
value, it presents dispersed pattern. When the Moran’s I 
trends to 0, it express that it has no spatial autocorrelation, 
it is random patterns for spatial observed value. 

Example 1 considering the example seen in Figure 1, 
there are nine polygons, the number ID from left to right, 
top to down is {1, 2, 3,9}. The label of each polygon 
in Figure 1 is the value of each polygon. We can see the 
value of each polygon is continuous spatial value. Then 
we can calculate the global Moran’s I value is 0.028508, 
Z value is 0.636673. So the distribution of Figure 1 is a 
dispersed and random spatial pattern. 

2.2. Local Spatial Autocorrelation 

Global Moran’s I is an overall statistic index, and it only 
illustrated the average degree of region and adjacent re- 
gion. Local spatial disparities may expand, when the 

 

 

Figure 1. Autocorrelation value map (the number in the po- 
lygons are attribute value of each polygon). 
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whole region express a region’s spatial disparities trend 
we need to use ESDA local analysis method. Anselin 
(1994) proposed the local spatial relation index LISA 
(Local Indicators of Spatial Association), it can show the 
spatial autocorrelation characteristic for local and each 
spatial cell. It apportioned global Moran’s I to each re- 
gion, and the i statistic for each region is: 

i ij i jI z z                (5) 

where zi, zj is standardization average value, ij  is spa- 
tial weighting matrix. 

In given significance level, if Ii is obviously positive 
and zi is greater than 0, and it indicates that the observed 
value of position I and neighborhood are relatively hig- 
her, it is higher to higher cluster, if it is obviously posi- 
tive and zi is less than 0, and it indicated that the ob- 
served value of position I and neighborhood are rela- 
tively lower, it is lower to lower cluster, if it is obviously 
negative and zi is greater than 0, and it indicates that the 
neighborhood value is far lower to position I, it is higher 
to lower cluster, if it is obviously negative and zi is less 
than 0, and it indicates that the neighborhood value is far 
higher to position i, it is lower to higher cluster. 

It is weighted average product for observed value of 
position i and neighborhood. So global Moran’s I and 
local Moran’s Ii have follows relation: 

1 n

i ij j
i j i

I z z
n




 
 

 
  

j

           (6) 

The formal condition of LISA statistic and local Mo- 
ran’s Ii is: 
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We can use Moran scatter plot to describe LISA. All 
observed value is cross shaft, and all spatial lag value (Wx) 
is on ordinate axis. All spatial lag value for each region’s 
observed value is the weighted average value of neigh- 
borhood’s observed value. It concretely defined by stan- 
dardized spatial weighting matrix. The Moran scatter plot 
can be divided into four quadrants, it is respectively cor- 
responding to four spatial different region spatial type. 
The right upper quadrant (HH) is the level for region and 
its neighborhood are higher, and the spatial disparities 
degree of both is on the small side. The left upper quad- 
rant (HL) is the region’s level is lower than its neighbor- 
hood, and the spatial disparities degree of both are com- 
paratively large. The left lower quadrant (LL) is the spa- 
tial level for region and its neighborhood are higher, and 
the spatial disparities degree of both is on the small side. 
The right lower quadrant (LH) is the region’s spatial 
level is higher than its neighborhood, and the spatial dis- 
parities degree of both is comparatively large. 

Example 2 we can compute local Moran’s I of Figure 

2, then we can obtain local autocorrelation map, that can 
be seen in Figure 2. 1) is low and high cluster, 2) is high 
and high cluster, 3 is high and low cluster in Figure 2. 

We can obviously obtain some properties of spatial au- 
tocorrelation as below: 

1) Patial autocorrelation can only compute continuous 
attribute value, and can not compute discrete categorical 
data. 

2) Spatial autocorrelation can only compute similarity 
problem of the whole or each unit’s element, and it can 
not compute for the similarity between subzones that are 
composed of several units in whole region. 

2.3. Cross-Coefficient 

The cross-coefficient r is frequently used to measure li- 
near correlation dimension of two variables in statistics, 
when ix  is not all zero and yi is not all zero, the formula 
of cross-coefficient can obtain from follows formula (8): 
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where r is the cross-coefficient of variables y and x. x  
and y  are respectively to the average value of order ix  
and i . We can obviously obtain some properties of 
cross-coefficient as below: 

y

1) Cross-coefficient can only compute continuous at- 
tribute value, and can not compute discrete categorical 
data. 

2) The length order of ix  and  must be the same, if 
not, it can not compute it. 

iy

 

 

Figure 2. Local autocorrelation map (the number in the po- 
lygons are Local Moran’s I value of each polygon). 
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3. Introduction of Rough Sets Theory 

3.1. Concept of Rough Sets 

Rough sets theory is a mathematical tool for dealing with 
uncertainty and vague knowledge. And it is a good tech- 
nique for dealing with uncertainty and fuzzy of GIS data, 
it is also a good technique for spatial entity relations. 
There are many references for studying uncertainty and 
fuzzy of spatial entity, such as Zhang [26,27]. 

Definition 1. Given knowledge base K = (U, R), for ea- 
ch subset X U and an equivalence relation  R ind k , 
we can define two subsets as follows: 

 
 

RX Y U R Y X

RX Y U R Y X 

   
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         (9) 

where, RX , RX are respectively called lower appro- 
ximation and upper approximation of set X. This defini- 
tion is Pawlak rough sets. If set R is subset of universe, 
then definable set R is R precise set. If R is a not defin-
able set, then R is a rough set. If it has a polygon object X 
seen in Figure 3, if we used Pawlak describe it, the poly-
gon object X is a fuzzy object in Figure 3. RX is defi-
nitely belongs to X, RX  is possibly belongs to X. 

Example 3. The classification map of Moran’s I can 
divide into {{1, 3, 7}{2, 4, 5, 8, 9}{6}} according to e- 
quivalence class in fig 2. Now it has a subzone X cover- 
ing {2, 3, 4, 6}, then we can obtain the lower approxima- 
tion of subzone X is {6}, upper approximation is universe 
U. All element’s value must be discrete value when we 
use Pawlak rough sets partition and compute, but GIS ob- 
ject attribute’s value is continuous value in practice, such 
as slope, population density and so on. Then we should 
use neighborhood rough sets to compute continuous at- 
tribute value. 

3.2. GIS Spatial Data Distance Measurement 

Geng (2009) suggested We should measure different att- 
ribute’s distance in spatial cluster. dij is the distance of 
attribute level Xi and Xj. The frequently used distance fo- 
rmulas are Minkowski distance, Mahalanobis distance, 
Canberra distance [28]. We used Mahalanobis distance to 
define distance of two examples: 
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when q = 1，that is Absolute distance: 
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when q = 2，that is Euclidean distance: 
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Then, we can obviously see diamond is absolute dis-
tance, roundness is Euclidean distance, square is Cheb- 
yshev distance in Figure 4. 

Example 4. Now we consider it has a GIS map level 
that composed of nine basic units in Figure 5, B and C 
stand for different attribute. Then it should use absolute 
distance for measure distance x1 and x2 in attribute B, that 
we can compute d(x1, x2) = 0.2. It should use Euclidean 
distance for measure distance x1 and x2 in attribute B, C, 
that we can compute d(x1, x2) = 0.45. We should dispose 
source data first in practice, for lack of space, the details 
will not be dealt with here. 

 

RX

RX

X

 

Figure 3. Rough description of area object. 
 

 

Figure 4. Neighborhood granules in 2-D spaces. 
 

 
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Figure 5. Polygon’s data attribute value map. 
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3.3. GIS Continuous Data Granulation and 
Neighborhood Rough Sets 

Li [28] suggested granulation and approximation is the 
basic problem in rough sets and granular computing. Hu 
[15] found that Pawlak rough sets are based on the equi- 
valence class for discrete value space, and the universe 
partition from equivalence class can divide into univer- 
se space. But for real number space, the attribute value is 
continuous, such DEM value etc. Obviously, discrete nu- 
merical attributes may cause information loss because the 
degrees of membership of numerical values to discrete va- 
lues are not considered. Neighborhood structure and or- 
der structure are important structure for real number spa- 
ce, so we should work based on neighborhood structure 
in this paper. 

3.3.1. Neighborhood Granulation 
There are two methods to define neighborhood, one is 
defined by the numbers of neighborhood, such as classic 
k-nearest neighbor methods, the other is defined by dis-
tance from one measurement central point to boundary. 
We used the second method in our work. 

Definition 2. Given a N dimension real number space 
Ω, we call d is a measurement of RN, it usually satisfy 
follows properties: 

1) d(x1, x2) ≥ 0, d(x1, x2) = 0, if and only if x1 = x2，

1 2, Nx x R  ； 
2) d(x1, x2) = d(x2, x1), 1 2, Nx x R  ; 
3) d(x1, x3) ≤ d(x1, x2) + d(x2, x3), 1 2 3, , Nx x x R  . 
Then we called (Ω, d) is real number space. And Euc- 

lidean distance is a common measurement tool for real 
number space. 

Definition 3. Given a non-null limited set U{x1, x2, x3, 
xn} in real number space, for every object xi in U, 

then the δ-neighborhood definition is as follows: 


    , ,ix x x U d x xi          (14) 

where δ > 0,  ix  is δ neighborhood information 
granulation from xi, it for short called as xi neighborhood 
granulation. 

From the measurement properties, we can get three 
properties about neighborhood information granulation: 

1) , because of  ix    i ix x ； 

2)    j i i ix x x x     

3)  ix U   

So Given a measurement space (Ω, d) and a non-null 
limited set U{x1, x2, x3,xn}, if δ1 ≤ δ2, then we can 
get these properties: 

1)    1 2:i i ix U x x     

2)  1 2N N
Obviously, neighborhood relations are a kind of simi-

larity relations, which satisfy reflexivity and symmetry 

properties. Neighborhood relations draw the objects toge- 
ther for similarity or indistinguishability in terms of dis- 
tances and the samples in the same neighborhood granule 
are close to each other. 

Example 5. Nine polygons are seen in Figure 2, U = 
{x1, x2, x3, , x9}, and B and C are respectively stand for 
two attribute level value (such as slope, aspect etc), when 
we choose value in one dimension attribute, we can use 
absolute distance. We use f (x, b) to express the value in 
attribute B for example x , then we can get f (x1, b) = 1.6，
f (x2, b) = 1.8, , f (x9, b) = 2.1. if we assigned the nei- 
ghborhood threshold is 0.2, because of |f(x1, b) – f(x2, b)| 
= 0.2 ≤ 0.2, then 

   2 1 1, 2x x x x   . In this case, we can get 

   1 1 2 5 6 7, , , ,x x x x x x  ,    2 1 2 7 8, , ,x x x x x  , 

   9 3 4 8 9, , ,x x x x x  . 

when we get value in two dimension attribute, we should 
use Euclidean distance, we used f (x, b) to express the 
value for attribute B, C for example x, if the neighbor-
hood threshold is 0.3. Then we can compute each poly-
gon’s neighborhood in two dimension space, 

   1 1 5 7, ,x x x x  ,    2 2 , 3x x x  , 

   3 2 3 4, , , 9x x x x x  ,    4 3 4 9, ,x x x x  , 

   5 1 5,x x x  ,    6 6x x  , 

   7 1 5 7 8, , ,x x x x x  ,    9 3 4, , 9x x x x  . 

If it has many attributes, we can compute the distance for 
examples, and computed the neighborhood for examples. 

3.3.2. Neighborhood Approximation 
Definition 4. Given a set of objects U{x1, x2, x3, ,xn} 
and a neighborhood relation R, called D = {U, R} is a 
neighborhood approximation space [29]. 

Definition 5. Given D = {U, R} and X ⊆ U. For any 
X ⊆ U, two subsets of objects, it is called lower and up- 
per approximations of X in D= {U, R}, that are defined 
as follows: 

  
  

,

,

i i i

i i i

aprX x U x X x U

aprX x U x X x U
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   

   (15) 

Obviously, aprX X aprX  .The positive region 
of X   pos X , negative region of X   neg X  and 
boundary region of X in the approximation space are de-
fined as follows: 

 
 

 
~

pos X aprX

neg X aprX

bn X aprX aprX

 
 
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            (16) 

A sample in the decision system belongs to either the 
positive region or the boundary region of decision. The- 
refore, the neighborhood model divides the samples into 
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two subsets: positive region and boundary region. Posi- 
tive region is the set of samples which can be classified 
into one of the decision classes without uncertainty, whi- 
le boundary region is the set of samples which can not be 
determinately classified. Intuitively, the samples in boun- 
dary region are easy to be misclassified. In data acquire- 
ment and preprocessing, one usually tries to find a fea- 
ture space in which the classification task has the least 
boundary region. It is as summarized in Zhang [26]. 

Example 6. We given two sets X = {x1, x2, x3, x5, x7} 
and Y={x2, x4, x6} in Figure 5, one sets stand for a group 
continuous value. Then we can get pos (X) ={x1, x2, x5}, 
pos (Y) ={x6}, accordingly, we can get the negative re- 
gion and boundary region for two sets. 

Then we can get a map that shown binary classifica- 
tion in a 2-D numerical space in Figure 6, it took it as 
the first example with “×” label, took it as the second 
example with “+” label. So we can see x1 is belongs to 
the lower approximations of the first example, x3 is be- 
longs to the lower approximations of the second example 
because of its neighborhood are from the second number, 
x2 is boundary example because of its neighborhood is 
belongs to the first example and the second example too. 
The definition is according to our intuitive recognition 
for classification problem in real world. 

4. Rough Measurement Concept 

Definition 7. U is universe, R is equivalence relation of U, 
A U  , the rough membership for element x U  of 

set A [30], that are defined as follows: 

  [ ]

[ ]
RR

A
R

A x
x

x



              (17) 

The rough membership of x in A is equal to rough 
membership for fuzzy set x in equivalence class [ ]Rx  
that weakly contains to A. So we can understand rough 
membership as a coefficient, it describe inaccuracy for 
x U  in A. 

The formula (17) is defined for GIS discrete value by 
Pawlak rough sets membership, but for a continuous va- 
lue, we can not get equivalence class easily, and we can 
get this membership from Definition 8. 

Definition 8. For GIS continuous value, we use nei- 
ghborhood rough sets definition for continuous value me- 
mbership, we defined as follows: 
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The rough membership of x in A is equal to rough 
membership for neighborhood information granulation 
 ix  in equivalence class [ ]Rx  that weakly contains 

to A. 
Definition 9. U is universe, R is equivalence relation of 

U, A U , then a fuzzy set can get from A and R, via: 

 
 

: 0,
R
A

U

x x

R
A 1

 , , ,U u u u 
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                       (19) 

Definition 10. Given universe 1 2 n , R is 
equivalence relation of U, A and B are two rough sets of 
universe U, i i,A B U u U u  , the rough membership 
about A, B in equivalence relation R is separately 

 Ra i A i  and u  R
i B ib u

' ',

 (i = 1, 2, , n), we can 
get the membership of A and B in equivalence relation R 
is separately A B

 
, that defined as follows: 

   ' 1
R R
A A 2

R
A n

    
1 2

' 1 2

1 2

n

RR R
B nB B

n

A
u u u

uu u
B

u u u

 
   





u
 

u u 
 

      (20) 

Then the similarity of set A and B can get from follows 
formula: [31]. 

   

 
1

1

min ,
,

max ,

n

i i
R i

n

i i
i

a b
SimD A B

else
a b








 








1, A B  

 (21) 

We used the formula from Shi [32], it is the similari- 
ty formula, defined as follows: 

   

 
1

1

1,

2 min ,
,

n

i i
R i

n

i i
i

A B

a b
SimD A B

else
a b





  



 








 (22) 

Obviously, the higher the similarity of set A and B has, 
the bigger value  ,SimD A BR  has, vice versa. And it 
satisfied these properties: 

 

 

Figure 6. Neighborhood rough approximation in continuous 
numerical value spaces. 
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   1) , 0,1RSimD A B 

 , ,A B



; 

2) ;  R RSimD A B SimD

 , 0SimD A B 3) ,  R

 1,2,u U i n   if and only if i , one value is at least 
0 for and  R

A iu  R
B iu , and set A and B can not be 

null at the same time. 

5. Case Study 

Considering the example seen in Figure 7, it has 100 po- 
lygons, the number from left to right, top to down is {1, 2, 
3,100}. Now we have three subzone covering poly-
gons in Figure 7, that is A, B, C, each subzone covered 
16 unit polygons, how to measure these three subzone’s 
similarity, from membership formula, we can get. 

1 2 3 4 5 6 100

0.17 0.17 0.17 0.16 0.17 0.16 0.16
A

x x x x x x x
         

1 2 3 4 5 6 100

0.12 0.12 0.12 0.22 0.12 0.12 0.22
B

x x x x x x x
         

1 2 3 4 5 6 100

0.16 0.16 0.16 0.16 0.16 0.16 0.16
C

x x x x x x x
       

 

 

Then the similarity of subzone A and B is: 

 
 

 
     

100

1
100

1

2 min ,
,

2 0.12 0.12 0.12 0.16 0.12 0.16
0.8080

0.12 0.17 0.12 0.17 0.16 0.22

i i
i

R

i i
i

a b
SimD A B

a b








    
 

    








 , 0.9515SimD A C 
 , 0SimD B C 

 

In a similar way, R , 

R . So the similarity for A and B is 
less than the similarity of A and C, the similarity for B 
and C is less than the similarity of A and C. 

.8594

Considering the example seen in Figure 8, it has 100 
polygons, the number from left to right, top to down is {1, 
2, 3, , 100}. Now we randomly evaluate to every poly- 
gon’s continuous value (1 - 100), specific value seen in 
Figure 8, we have three subzone covering polygons in 
Figure 8, that is A, B, C, each subzone covered 16 unit 
polygons, how to measure these three subzone’s similar-
ity for continuous value . 

For continuous value in Figure 8, we used absolute di- 
stance formula because it only has one attribute, we give 
threshold δ = 10 for neighborhood granulation. Then we 
can get each polygon’s distance from others in turns, and 
get each polygon’s neighborhood information granula-
tion. Such as, the neighborhood information granulation 
of polygon 1 is {1, 10, 27, 28, 34, 50, 51, 65, 68, 75, 94, 
98, 99, 100}, the rough membership for subzone A is 
1/14, the rough membership for subzone B is 2/14, the 

rough membership for subzone C is 2/14. From continu-
ous value membership formula, we can get 

0.07 0.07 0 0.21 0.29 0.36 0.07
A

1 2 3 4 5 6 100x x x x x x x
         

1 2 3 4 5 6 100

0.14 0.14 0.29 0.14 0.14 0.21 0.14
B

x x x x x x x
         

1 2 3 4 5 6 100

0.21 0.07 0.07 0 0.14 0.14 0.21
C

x x x x x x x
         

 

 

Figure 7. All-around polygon classification and subzone map. 
 

 

Figure 8. All-around polygon classification and subzone map. 
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Then the similarity of subzone A and B is: 

 
 

 

 
     

100

1
100

1

2 min ,
,

2 0.07 0.07 0 0.14 0.14 0.07
0.989

0.07 0.14 0.07 0.14 0.07 0.14

i i
i

R

i i
i

a b
SimD A B

a b








    
 

    








In a similar way,  , 0.9567RSimD C  , 
71S . So the similarity for A and

less than the similarity

 the sub
si
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