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Abstract 
Global cropland monitoring is important when considering tactical strategies 
for achieving food sustainability. Different global land cover (GLC) datasets 
providing cropland information have already been published and they are 
used in many applications. The different data input methods, classification 
techniques, class definitions and production years among the different GLC 
datasets make them all independently useful sources of information. This 
study attempted to produce a cropland agreement level (CAL) analysis based 
on the integration of several cropland datasets to more accurately estimate 
cropland area distribution. Estimating cropland area and how it has changed 
on a national level was done by converting the level of cropland agreement 
into percentages with an existing cropland fraction map. A pre-analysis showed 
that the four GLC datasets used in the 2005 and 2010 groups had similar year 
input data acquisitions. Therefore, we placed these four datasets (GlobCover, 
MODIS LC, GLCNMO and ESACCI LC) into 2005 and 2010 year-groups and 
selected them to process dataset integration through a CRISP approach. The 
results of this process proposed four agreement levels for this CAL analysis, 
and the model correlation was converted into percentage values. The cropland 
estimate results from the CAL analysis were observed along with FAO data 
statistics and showed the highest accuracy, with a 0.70 and 0.71 regression 
value for 2005 and 2010 respectively. In the cropland area change analysis, this 
CAL change analysis had the highest level of accuracy when describing the 
total size of cropland area change from 2005 and 2010 when compared to 
other individual original GLC datasets. 
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1. Introduction 

Global trends of the last 25 years show that for the developing world as a whole, 
the share of undernourished people among the total population has decreased 
significantly. Some important factors that have affected this reduction have been 
stability in economic growth and the massive development of irrigation systems, 
which have caused an escalation in agricultural productivity [1]. Sustainable de-
velopment goals (SDGs), as part of the development of a global pledge, are tar-
geting to eradicate hunger by 2030 and ensure sustainable food production sys-
tems [2]. To achieve this target, the availability of accurate information about 
global and regional cropland distribution that can be monitored periodically is 
becoming important for the construction of strategies for achieving food sustai-
nability targets [3]. Satellite-derived cropland dataset can be one alternative 
source of information since it directly correlates with food resource distribution 
[4] and water requirements [5].  

Over the last two decades, many institutions have published different global 
land cover (GLC) datasets that provide cropland class information. Since the 
first one released in 1993, the trend in the improvement of the production of 
GLC datasets has been in an increase of spatial resolution and accuracy [6]. 
However, each GLC dataset has a different production year, data input method, 
classification technique, class definition and accuracy distribution value [7] [8]. 
These datasets are released as independent datasets, which make them incom-
parable, especially for a multitemporal analysis [9]. 

To evaluate the differences between each GLC dataset, researchers have tried 
to analyze land cover class agreement using a relative pixel comparison ap-
proach. The results of this kind of analysis produce a spatial agreement analysis 
that is effective for determining regions with levels of high confidence as a ref-
erence [10] [11]. Previous pixel comparison analyses were carried out by com-
paring GLC datasets, which does not take into consideration when the data was 
collected. This condition makes the differences that result from a comparison 
analysis ambiguous as the differences may be a result of real physical changes to 
the cropland area during that period of time (not because of the different cha-
racteristics or classification system of the dataset). Therefore, the method for se-
lecting GLC datasets for a comparison analysis must be reliable and consider 
time. 

The goal of this research was to integrate the combined cropland classes from 
current GLC datasets to produce a 1 km cropland agreement level (CAL) analy-
sis and its changes (year 2005 and 2010) through two main processes of dataset 
harmonization and pixel comparison. This study also focused on analyzing the 
potential use of a cropland agreement level for cropland area estimate and crop-
land change phenomena. 

The presented model of cropland agreement was, to our knowledge, the first 
study to compare the four current versions of GLC datasets (GlobCover, MODIS 
LC, GLCNMO and ESA CCI LC) that were focused on worldwide cropland 
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classes while taking into consideration data collection time. There was no pre-
vious GLC dataset comparison [12] [13] that considered data collection time and 
used similar two-year term GLC datasets. It was the first study to estimate total 
cropland area on a national level by converting the levels of agreement into per-
centage values using a correlation model between the CAL analysis and an 
IIASA cropland fraction map. 

2. Materials 
2.1. Global Land Cover (GLC) Datasets 

During this study, we explored all existing GLC datasets in the low spatial reso-
lution category (300 - 1000 m) and distributed those GLC datasets according to 
data collection time. After distributing the GLC datasets on a timeline, we 
grouped the data based on the proximity of data collection time and got five 
groups of GLC datasets. Figure 1 shows the five groups of data in the timeline of 
GLC datasets. This grouping strategy made those datasets more comparable for 
pixel comparison and integration analysis. Within each group, the maximum 
difference in data collection time was two years. The reason for setting two years 
as the maximum time difference was to minimize any extreme changes that 
could occur in cropland fields over long periods.  

To create this CAL analysis, the GLC datasets were put through two processes, 
which were a harmonization and pixel comparison. In the harmonization 
process, we standardized the analysis depth for all GLC datasets within five 
groups. Those five groups consisted of 14 GLC datasets from the seven GLC da-
taset versions listed below: 

1) IGBP GLCC v 2.0 (1993 dataset) using the International Geosphere-Biosphere  
Programme (IGBP) classification system produced by the United States Geolog-
ical Survey (USGS) [14]; 

2) UMd (1993 dataset) using the simplified IGBP classification system devel-
oped by the University of Maryland [15]; 
 

 
Figure 1. Timeline of the GLC datasets in five groups of data, based on the closeness of time collection, making 
the pixel comparison process more reliable in regards to time. 
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3) GLC2000 (2000 dataset) using the Land Cover Classification System 
(LCCS) of Food and Agricultural Organizations (FAO) generated by the Euro-
pean Commission’s Joint Research Center (EC-JRC) [16]; 

4) GlobCover V 2.2 and V 2.3 (2005 and 2009 datasets) using the FAO LCCS 
created by the European Space Agency (ESA) [17]; 

5) MODIS LC (MCD12Q1) collection 5.1 (2001, 2005, 2010 and 2013 datasets) 
using the IGBP classification system produced by Boston University [18]; 

6) GLCNMO V.1 and V.2 (2003 and 2008 datasets) using the FAO LCCS 
created by Chiba University [19] [20]; 

7) ESA CCI-LC v 2.5 (2000, 2005 and 2010 datasets) using the FAO LCCS 
generated by the ESA [21], in 2017 ESA have published CCI-LCmaps from 1993- 
2015 that can be useful for long year monitoring of land cover change. 

For the pixel comparison process, we used datasets from the 2005 and 2010 
groups from the same GLC dataset versions. These GLC datasets were the 
GlobCover, MODIS LC,GLCNMO and ESA CCI LC datasets. The same GLC 
datasets from each group were paired to produce two CAL analyses for further 
analysis of cropland change. Table 1 shows the characteristics of each of the 
GLC datasets in the 2005 and 2010 groups that were used in the pixel compari-
son process. 

2.2. Reference Data 

This study used a relative accuracy assessment, which was the use as a reference 
of another dataset that was considered to use accurate datasets. We explored the 
reference data in order to convert agreement levels into percentage values. As 
reference data, a 1 km global IIASA-IFPRI cropland percentage map with a 2005 
baseline year [22] was developed by integrating a number of individual global 
and regional cropland maps. This IIASA-IFPRI cropland percentage map was 
validated by high-resolution satellite imagery via Geo-Wiki  
(http://www.geo-wiki.org) [23] with an overall accuracy result of 82.4%. The 
reason for choosing the IIASA data was because this dataset was a recent one 
that gave a highly accurate overview of cropland area distribution in percentage 
values. 

3. Methods 

To achieve the study’s first goal, there were two main methods for producing the 
CAL analysis, which were the harmonization and pixel comparison processes. 
The different characteristics and classification systems for each dataset made 
these two processes important for getting reliable CAL analysis results. During 
the harmonization process, we standardized all GLC datasets to produce com-
parable cropland classes for the pixel comparison process. The result of the 
cropland harmonization process was evaluated by comparing the result to each 
group. A balanced distribution verified that the data was standardized and 
comparable. Finally, datasets within the same group were overlaid using the 
CRISP approach for a pixel comparison processes to produce the CAL analysis  
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As the fourteen GLC datasets from each group had different mapping stan-
dards, we applied the following cross-walking methods to get comparable 
products: 

3.1. Re-Projection 

To facilitate different projections, these data sets were co-registered and re-pro- 
jected to a geographic (latitude-longitude) image with map datum WGS 84, 
which is a pseudocylindrical equal-area map projection [24]. This projection has 
been used in many GLC datasets. GlobCover, GLCNMO and ESA CCI-LC are 
GLCs that have used this projection. Its use was also supported by the use of this 
projection system in similar studies of GLC datasets comparisons [25].  

3.2. Rescaling Method 

The resampling process had an important role in standardizing the different 
pixel resolutions of the GLC datasets because during the comparison process the 
GLC datasets needed to have the same pixel size. Different rescaling processes 
were a special concern in this study as a mistake in the resampling process could 
have caused changes in the class area. When considering the goals of this study, 
which was to resample all GLC datasets to a 1 km resample target, this study at-
tempted to adopt and combine some important parts of the resampling process 
from another study with an aim of minimizing errors from the resampling 
process. 

For the cropland rescaling process, we used two resampling processes, which 
were the nearest neighbor and maximum area methods. We used these two 
techniques because both would not change the value of cells. For datasets that 
have coarser resolutions, direct resampling using the nearest neighbor method 
might have caused a non-ignorable disagreement between the original and the 
rescaled dataset [9]. This is based on the fact that the footprint of the sensor is 
not at the same location during each revisit [26]. The maximum area method, 
however, has been proven a more powerful approach for aggregating discrete 
land cover data [27]. Furthermore, it also tends to give a smoother result than 
the nearest neighbor method because the new value resulting from this approach 
is obtained based on the most common values around the pixel. The GLC data-
sets that already have a 1 km resolution did not need a rescaling process, which 
minimized the changes from resampling the results data [26].  

Taking into consideration the facts from this previous explanation, the steps 
that were taken in the rescalling process during this study were as follows: 1) 
Global land cover datasets that have a large resolution, such as the GlobCover 
and ESA CC-LC (300 m), MODIS LC (500 m), and GLMNO 2008 V.2 (500 m) 
datasets, were resampled on a grid with a 250 m resolution using the nearest 
neighbor method. 2) After that, the entire GLC 250 m grid was aggregated using 
a majority area method to 1 km for all datasets. 3) For GLMNO 2003 v1 since 
they were already in a 1 km spatial resolution, the datasets were kept in their 
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original resolution without a rescaling process. 

3.3. Legend Harmonization 

For this study, legend harmonization played a crucial role because the focus of 
this study was on analyzing cropland classes among several GLC datasets. Dif-
ferences in the definitions and characteristics of each class correlating with the 
cropland in each individual GLC would produce ambiguities among the com-
parisons of the GLC datasets. To overcome this problem, we evaluated all the 
classes used by the different GLC datasets and then analyzed those classes to de-
termine how they correlated with a standardized cropland classification sys-
tem, which was the Land Cover Classification System (LCCS). The rationale 
for choosing LCCS rather than IGBP was: 1) LCCS was developed after an 
analysis of existing relevant FAO nomenclature documents [26] that can ex-
plain some categories of cropland classes in detail. 2) MODIS LC v 6, one of the 
GLC products that use IGBP, would soon change to LCCS with their next data-
set [18].   

One step in the legend harmonization process was to convert the original class 
numbers to LCCS-labels. Table 2 shows the conversion results for some of the 
original class numbers to cropland LCCS-labels. The class definition followed the 
LCCS hierarchy based on the dichotomous phase and the modular-hierarchical 
phase [28]. As in Table 2, the cropland class of the MODIS LC, LCCS-label is 
“A11-A3”. A11 is the dichotomous phase of “Cultivated and Managed Land” 
and A3 is the modular-hierarchical phase of “Herbaceous Crop”. The fact that 
the original class descriptions from the GLC datasets had a great impact on 
choosing the type of dichotomous phase and modular-hierarchical phase, we 
adopted the descriptions of the original classes from the GLC datasets from a 
previous study [29] [30]. For this conversion, we grouped all classes that corre-
late with cropland into a new cropland class, including mosaic vegetation crop-
land that had a smaller cropland percentage when compared to vegetation. Since 
all the GLC datasets in the five year groups would be harmonized for compari-
son proposes, Table 2 shows information about the type of class that was cate-
gorized as “cropland” based on the LCCS-label conversion status of seven GLC 
datasets. 

4. Result and Discussion 
4.1. Thematic Similarity 

Following the M. C. Hansen and B. Reed [31] strategy, we evaluated the harmo-
nization results for the cropland classes by analyzing cropland pixel similarity in 
each dataset group. A successful result in the harmonization process would 
produce a balanced proportion among the GLC datasets in the same groups of 
GLC data. Figure 2 shows the proportion of the cropland classes from the  
harmonization results and Figure 3 shows the spatial distribution of harmo-
nized cropland area. 

https://doi.org/10.4236/jep.2017.812093


A. D. Sakti et al. 
 

 

DOI: 10.4236/jep.2017.812093 1516 Journal of Environmental Protection 
 

Table 2. The conversion results for the original cropland classes converted to LCCS-labels for all GLC datasets. 

Global Datasets (Number of class) LCC Level LCC Label 

A. GLCC v.2/ IGBP DIS (IGBP) 

Croplands (12) A11-A3 Herbaceous Crop(s) 

   

Cropland/Natural Vegetation Mosaic (14) 
A11-A3 Herbaceous Crop(s) 

A12 Natural and Semi-natural Primarily Terrestrial Vegetation 

B. UMd (IGBP) 

Croplands (11) A11-A3.B5 Continuous Field(s) Of Herbaceous Crop(s) 

C. GLC2000 (LCCS) 

Cultivated and managed areas (16) 
A11 Cultivated and Managed Terrestrial Area(s) 

A23 Cultivated Aquatic or Regularly Flooded Area(s) 

Mosaic: Cropland/Tree Cover/Other Natural 
Vegetation (17) 

A11 Cultivated and Managed Terrestrial Area(s) 

A12-A3.A20.B2 Closed to Open Trees 

A12 Natural And Semi-natural Primarily Terrestrial Vegetation 

Mosaic: Cropland/Shrub and/or Herbaceous 
cover (18) 

A11 Cultivated and Managed Terrestrial Area(s) 

A24-A4.A20 Closed to Open Shrubland (Thicket) 

A12-A2.A20 Herbaceous Closed to Open Vegetation 

D. MODIS LC (IGBP) 

Croplands (12) A11-A3 Herbaceous Crop(s) 

Cropland/ Natural Vegetation Mosaic (14) 
A11-A3 Herbaceous Crop(s) 

A12 Natural and Semi-natural Primarily Terrestrial Vegetation 

E. GlobCover (LCCS) 

Post-flooding or irrigated croplands  
(or aquatic) (11) 

A11-A1XXXXD3 Irrigated Tree Crop 

A11-A2XXXXD3 Irrigated Shrub Crop 

A11-A3XXXXD3 Irrigated Herbaceous Crop 

A11-A3XXXXD2 Post Flooding Herbaceous Crop 

Rainfed croplands (14) 

A11-A2XXXXD1 Rainfed Shrub Crop 

A11-A1XXXXD1 Rainfed Tree Crop 

A11-A3XXXXD1 Rainfed Herbaceous Crop 

Mosaic cropland/vegetation  
(grassland/shrubland/forest) (20) 

A11 Cultivated and Managed Terrestrial Area(s) 

A12 Natural and Semi-natural Primarily Terrestrial Vegetation 

Mosaic vegetation (grassland/shrubland/ 
forest)/cropland (30) 

A12 Natural and Semi-natural Primarily Terrestrial Vegetation 

A11 Cultivated and Managed Terrestrial Area(s) 

F. GLCNMO (LCCS) 

Cropland (11) A11-A3 Herbaceous Crop(s) 

Paddy field (12) A11-A4.A5 Graminoid Crops//Non-Graminoid Crops 

Cropland /Other Vegetation Mosaic (13) 

A11 Cultivated and Managed Terrestrial Area(s) 

A12 Natural And Semi-Natural Primarily Terrestrial Vegetation 

A23 Cultivated Aquatic or Regularly Flooded Area(s) 
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Continued 

G. ESA CCI-LC (LCCS) 

Cropland, rainfed (10) 

A11-A2XXXXD1 Rainfed Shrub Crop 

A11-A1XXXXD1 Rainfed Tree Crop 

A11-A3XXXXD1 Rainfed Herbaceous Crop 

Cropland, irrigated or post-flooding (20) 

A11-A1XXXXD3 Irrigated Tree Crop 

A11-A2XXXXD3 Irrigated Shrub Crop 

A11-A3XXXXD3 Irrigated Herbaceous Crop 

A11-A3XXXXD2 Post Flooding Herbaceous Crop 

Mosaic cropland (>50%)/natural vegetation 
(tree, shrub, herbaceous cover) (<50%) (30) 

A11 Cultivated and Managed Terrestrial Area(s) 

A12 Natural and Semi-natural Primarily Terrestrial Vegetation 

Mosaic natural vegetation (tree, shrub,  
herbaceous cover) (>50%)/cropland (<50%) 
(40) 

A12 Natural and Semi-natural Primarily Terrestrial Vegetation 

A11 Cultivated and Managed Terrestrial Area(s) 

 

 
Figure 2. Proportion value of cropland analyses as the result of the harmonization of the five groups. 
 

In general, four out of five groups showed a balanced proportion of cropland 
classes. The subtraction value of the highest from the lowest percentage in each 
group were 7%, 6%, 6%, 8%, 8% for 2000, 2005, 2010 and 2013 group respec-
tively. However, in the 1992 group, there was a large difference in cropland 
classes between UMd and GLCC of 38%. The absence of mosaic agricultural 
classes in the UMd datasets was the cause of this difference [15]. This shows that 
the differences in the goals and focus of an analysis caused conspicuous differ-
ences between cropland and vegetation by classifying more area as a vegetation 
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Figure 3. Spatial distribution of harmonized cropland area (cropland and mosaic crop-
land) from four selected GLC datasets in the two year-groups of 2005 and 2010. Only 
groups of GLC datasets that are located within these two year-groups are used for the 
cropland class comparison process. 
 
class. This explanation shows that the harmonization result was acceptable espe-
cially for the 2005 and 2010 groups. So, both were eligible to be analyzed in the 
next step. 

4.2. Cropland Level Agreement (CAL) Analysis 

After assigning the harmonized dataset target and proving the balance propor-
tion value, we compared and observed for pixel similarity within the four GLC 
datasets in the two year-groups by overlaying the datasets using the CRISP ap-
proach, which is based upon cross-walking between classes [9]. Since we only 
focused on one cropland class (not analyzing multiple classes), utilizing a CRISP 
approach that matches using one-to-one mapping was sufficient [12] [32]. 
Another technique is the Fuzzy approach, which can allow an overlap between 
legend definitions to be taken into consideration. It requires expert knowledge to 
quantify uncertainty in the classification and transition zones of boundaries [33] 
[34]. In the previous study explained by McCallum et al. [12], the result of this 
pixel comparison technique could indicate an agreement level among these da-
tasets. 
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The comparison result of these cropland classes produced four agreement le-
vels, which in this study were also referred to as the Cropland Agreement Level 
(CAL) analysis. The four levels that were obtained from the CAL analysis in this 
study were as follows (Figure 4): 

Level 1: No agreement for pixels with a unique aggregated class in each data 
set. 

Level 2: Low agreement for pixels where only two of the four data sets were in 
agreement. 

Level 3: Medium agreement for pixels where three of the four data sets were in 
agreement. 

Level 4: Full agreement where all the four data sets within a pixel were in 
agreement. 

Since we focused on analyzing cropland class similarity within four GLC da-
tasets in two groups of data from 2005 and 2010, we produced two CAL analyses 
from those years. 

To study this CAL analysis more deeply, we divided the study area into sev-
en test sites according to size. Those study areas were South America, North 
America, Europe, Africa, Australia, Russia and Asia. Table 3 shows the per-
centage calculation result for four CAL analysis levels for seven test sites. 
Four GLC datasets were used and the underlined value shows the highest per-
centage value whereas the bolded value shows the lowest percentage for the 
site area. 

Comparison results for the seven sites in the two years of analysis showed that 
Europe was indicated as the area with highest full agreement level whereas 
 

 
Figure 4. Cropland Agreement Level (CAL) analysis 2005, based on pixel comparison analysis between four selected recent GLC 
datasets. 
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Table 3. Agreement percentage of the CAL analysis across the seven test sites in 2005 and 
2010. 

Test Sites 
No Agreement 2 of 4 Agree 3 of 4 Agree Full Agreement 

2005 2010 2005 2010 2005 2010 2005 2010 

South America 0.32 0.27 0.24 0.23 0.25 0.24 0.19 0.26 

Nort America 0.44 0.32 0.26 0.28 0.20 0.26 0.10 0.15 

Europe 0.21 0.18 0.19 0.16 0.24 0.19 0.36 0.47 

Africa 0.40 0.39 0.29 0.26 0.22 0.19 0.08 0.16 

Australia 0.60 0.49 0.17 0.21 0.17 0.21 0.06 0.09 

Russia 0.32 0.26 0.20 0.19 0.22 0.17 0.27 0.38 

Asia 0.33 0.27 0.21 0.20 0.19 0.19 0.27 0.34 

 
Australia, Russia and Africa had the three highest no agreement level areas. A 
short time period for cultivation and a small cropland area combined with a 
large area of vegetation were the causes of a mix in cropland classes. This trig-
gered different classification results in each GLC dataset. Besides this, there 
were also random changes in levels two and three of the 2005 and 2010 CAL 
analyses. 

4.3. Correlation Factor between CAL and Existing Cropland  
Fraction 

To obtain a correlation model between the CAL analysis and cropland percen-
tage, first we analyze the trend correlation between the CAL analysis with the 
original cropland classes from the four selected GLC datasets (Table 4). The 
dominant distribution of “cropland” classes (class numbers 10 and 20 for ESA 
CCI-LC, numbers 11 and 14 for GlobCover, numbers 11 and 12 for GLCNMO 
and number 12 for MODIS LC) is in level 4, compared with the “mosaic crop-
land” that is dominant in level 1 and level 2, indicating that the four levels in the 
CAL analysis correlate with the amount of actual cropland area in one pixel. 

To investigate the meaning of each CAL analysis level in percentage values, we 
analyze the pixel correlation between the CAL analysis and the IIASA-IFPRI 
cropland percentage map by using a 2D Scatter Plot (Figure 3). Results show 
that level 4 of the CAL analysis mainly corresponds with 80% of cropland frac-
tion and with the same approach, the following correlations were also obtained: 
level 3 with 40%, level 2 with 20% and level 1 with 10% (Table 5). Figure 5 
shows a comparison between the CAL model and IIASA-IFPRI map using a 2D 
Scatter Plot. To estimate cropland area from the CAL analysis, the pixel area 
from each agreement level is multiplied by the correlation percentage. 

4.4. Comparison of Cropland Area Estimates from CAL with the  
FAO Data 

To evaluate cropland estimation results on the national level, cropland areas de-
rived from the CAL analysis are compared to the cropland area estimates from  
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Table 4. Trend correlation between the CAL analysis with the original cropland classes 
from the four selected GLC datasets. 

                          CAL analysis 
GLC cropland classes 

Level 1 
Level 

2 
Level 3 Level 4 

GlobCover 
    

11 Post-flooding or irrigated croplands (or aquatic) 0.2 0.5 1.4 5.7 

14 Rainfed croplands 2.5 4.3 8.4 14.8 

20 Mosaic cropland/vegetation 3.0 4.9 7.8 10.9 

30 Mosaic vegetation/cropland 6.5 10.2 11.1 7.7 

MODIS LC     

12 Croplands 2.1 7.4 18.3 34.3 

14 Cropland/Natural Vegetation Mosaic 6.5 10.6 11.7 9.0 

GLCNMO 
    

11 Cropland 12.5 13.9 19.2 28.6 

12 Paddy field 0.3 0.3 0.7 2.2 

13 Cropland/Other Vegetation Mosaic 6.4 5.2 4.8 5.8 

ESA CCI-LC     

10 Cropland, rainfed 3.7 11.4 22.3 27.3 

20 Cropland, irrigated or post-flooding 0.4 0.9 1.9 5.5 

30 Mosaic cropland (>50%)/natural vegetation 
(<50%) 

1.9 4.0 4.6 3.6 

40 Mosaic natural vegetation (>50%)/cropland 
(<50%) 

3.1 4.6 3.2 1.5 

 
Table 5. Correlation factor between CAL analysis and IIASA cropland fraction. 

CAL analysis 
IIASA cropland fraction 

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Level 1 41.1 25.5 16.4 11.1 7.9 4.7 2.5 2.3 4.9 16.4 

Level 2 34.4 35.1 29.1 24 18.6 12.8 7.5 5.8 9.2 26.6 

Level 3 19.6 28.1 34.6 37 35.1 31.6 25.6 19 21.7 27.5 

Level 4 5 11.3 19.8 27.9 38.3 50.9 64.4 72.9 64.2 29.5 

Total 100 100 100 100 100 100 100 100 100 100 

 
FAO-stat 2005 as a statistical data reference. Based on the definition from FAO 
statistics, cropland is defined as “arable land and permanent crops” [35]. Overall 
correlation also is observed for 2005 and 2010 respectively and shows some 
proximity between the CAL analysis and the FAO with a 0.70 and 0.71 regres-
sion value (Figure 6). 

We also analyze the accuracy of the four selected GLC datasets to FAO statis-
tics. We divide countries into two groups based on the subtraction value of the 
cropland area. The groups are 1) small, which have a cropland area from 5000 to 
140,000 km2, and 2) medium to large, which have cropland area from 180,000 to  
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Figure 5. Comparison between the CAL analysis and IIASA cropland fraction using scatter plot. 

 
1,700,000 km2 (Figure 7). In this framework, the regression value and relative 
error to the FAO (%) have been observed as 0.574; 42.2 for small cropland area 
countries and 0.858; 29.8 for medium to large cropland area countries between 
FAO-stat and the CAL analysis (Table 6). Those values promote the CAL analy-
sis as the most accurate dataset compared to FAO-stat within all datasets in es-
timating cropland area. Good correlation of the results to FAO statistics is still 
not enough for quality assessment of the product. To provide accurate validation 
it is worth to compare the product with some more precise country level crop-
land map which have higher resolution. Globland30 [36] and Unified Cropland 
layer [37] as one of the alternative for the analysis in next study. 

4.5. Cropland Agreement Level (CAL) Change Analysis 

The CAL change analysis is used to study the potentiality of cropland area 
changes monitored between 2005 and 2010. Figure 8 shows global cropland 
agreement level change. The area that experience the increase and decrease in  
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Figure 6. Regression model of cropland area estimates derived from two years of the CAL 
analysis with FAO cropland area statistics. 
 
CAL change analysis especially around southern Africa actually categorized as 
mixed cropland with pasture area. It can be happened since some GLC men-
tioned that area as mosaic cropland class (Figure 3). 

Almost all of the CAL analysis and the four GLC datasets are not able to pro-
duce similar cropland area change data comparable to the cropland change sta-
tistical data from the FAO. However, the CAL analysis has the highest proximity 
of cropland change compared to the other GLC datasets. 

To give a visual description of cropland area changes, we chose Bali Island, 
Indonesia as a test site. According to FAO statistics, Indonesia is a country that 
has had massive cropland area expansion (Figure 9). Bali was chosen because 
within five years (from 2005-2010) it had large changes in cropland area, both in 
regards to an expansion of cropland area and shrinkage in cropland area caused 
by changes in land use. Massive development in the tourism sector caused 
changes in land use from cropland to housing, especially in Denpasar [38]. 

Moreover, the development of three new reservoirs in Bali and East Java built 
within the 2005-2010 period expanded the cropland area around the reservoirs 
[39]. Figure 9 shows that in ESA CCI LC and GlobCover, almost all of the crop-
land area in 2005 and 2010 had no change, whereas in the MODIS data, there is 
a decline in cropland change. In contrast, GLCNMO shows an expansion in 
cropland area. Cropland change results from the CAL analysis can accommodate  

y = 0.863x + 43351
R² = 0.703

y = 0.916x + 42877
R² = 0.711

y = x

0

100

200

300

400

500

600

0 100 200 300 400 500 600

G
LC

 cr
op

la
nd

 a
re

a 
(K

m
2 )

千

FAO cropland area (Km2) 千

CAL analysis 2005 and 2010

CAL analysis 2005 

CAL analysis 2010

https://doi.org/10.4236/jep.2017.812093


A. D. Sakti et al. 
 

 

DOI: 10.4236/jep.2017.812093 1524 Journal of Environmental Protection 
 

 
                (a) 

 
                 (b) 

Figure 7. Comparison on the national level between the CAL analysis and the four original GLC datasets with crop-
land area estimates from the FAO in (a) small cropland area countries and (b) medium to large cropland area coun-
tries. 
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Figure 8. Global Cropland Agreement Level (CAL) change analysis from 2005 to 2010. 

 

 
Figure 9. Cropland change of Bali Island, Indonesia (2005 and 2010): (A) Cropland change derived from CAL change analysis, (B) 
GlobCover, (C) MODIS LC, (D) GLCNMO and (E) ESA CCI LC. 

 
Table 6. Regression value and relative error of the CAL product and the four GLC datasets to FAO statistical data. 

GLC datasets 
Small cropland area countries Medium to large cropland area countries 

R2 Relative error to FAO (%) R2 Relative error to FAO (%) 

CAL analysis 0.57 42.2 0.86 29.8 

GlobCover (v.2.3) 0.34 85.6 0.65 79.3 

MODIS LC (v.5.1) 0.37 104.2 0.79 99.2 

GLCNMO (v.2) 0.55 45.1 0.79 75.2 

ESA CCI-LC (v.2.5) 0.32 144.5 0.66 77.6 

 
the results from the four GLC datasets, and it also accommodates an area with 
an extreme level of changes. 

5. Conclusion 

This study shows that integrating recent GLC datasets can be considered for es-
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timating cropland area with the highest accuracy among original datasets. The 
CRISP approach is also used to analyze per pixel comparisons between cropland 
map datasets and produce a Crop Agreement Level (CAL) analysis by integrat-
ing four GLC datasets in the two year-groups (2005 and 2010). To calculate 
cropland area from the CAL analysis, an IIASA-IFPRI cropland percentage map 
is used. The correlation model obtained from the CAL analysis and IIASA com-
parison successfully estimated the percentage value of four agreement levels. 
When the correlation between the CAL analysis and cropland percentage is stu-
died, the result shows a good correlation where level 1 correlates with 10%, level 
2 with 20%, level 3 with 40% and level 4 with 80% cropland area. The regression 
value for the CAL analysis is 0.70 - 0.71, this value was the highest compared to 
other datasets, which are ESA CCI-LC (0.47 - 0.49), GlobCover (0.41 - 0.43), 
GLCNMO (0.43 - 0.59) and MODIS LC (0.63 - 0.65). Cropland area estimates 
for each country in 2005 and 2010 show that the CAL analysis is more accom-
modating for cropland change calculation based on FAO cropland change statis-
tical data. 
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