Size-Resolved Water-Soluble Ionic Composition of Ambient Particles in an Urban Area in Southern Poland

Wioletta Rogula-Kozłowska¹, Izabela Sówka², Barbara Mathews¹, Krzysztof Klejnowski¹, Anna Zwoździak², Kornelia Kwiecińska²

¹Institute of Environmental Engineering, Polish Academy of Sciences, Zabrze, Poland; ²Ecologistics Division, Institute of Environmental Protection Engineering, Wroclaw University of Technology, Wroclaw, Poland. Email: wioletta@ipis.zabrze.pl

Received February 10th, 2013; revised March 12th, 2013; accepted April 10th, 2013

Copyright © 2013 Wioletta Rogula-Kozłowska et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

The ambient concentrations of PM-related anions (Cl^- , NO_3^- , SO_4^{2-}) and cations (Na^+ , NH_4^+ , K^+ , Ca^{2+} , Mg^{2+}), total and contained in the PM fractions, were investigated in a typical urban area within the Silesian Agglomeration. A DEKATI low pressure impactor (DLPI) was used to sample PM and separate it into 13 fractions. The PM concentrations were determined gravimetrically, the ion content of the PM water extracts—by means of ion chromatography (Herisau Metrohm AG ion chromatograph). In general, sulfate, nitrate, and ammonia had the greatest ambient concentrations. PM₁ contained over 60% of the PM-related sulfate and nitrate mass and 90% of the ammonia mass. Also the majority of Na⁺ and Cl⁻ were bound onto fine particles. Instead, more of the PM-related K⁺, Ca²⁺ and Mg²⁺ mass were in PM_{2.5-10} than in PM_{2.5}. In the fine particles (sub-fractions of PM_{1.6}) sulfate and nitrate might also occur as K₂SO₄, CaSO₄, Ca(NO₃)₂ or NaNO₃.

Keywords: Ambient Aerosol; DEKATI; Mass Size Distribution; SIA; Ammonium Sulfate; Ammonium Nitrate; Neutralization Ratio; Upper Silesia

1. Introduction

To assess the impact of atmospheric aerosol on the environment, including air quality, ecosystems, human health and climate change, it is necessary to know its concentration, chemical composition and mass size distribution of PM (ambient particulate matter) components [1-8]. Knowledge of the mass size distribution of PM components is helpful in determining mechanisms of aerosol formation, as well as physical and chemical changes, it is subjected to on a given area [9-13].

Besides the obvious and relatively well-recognized relation between the content of various toxic compounds in ambient dust and human health [14-17], another example of a dust chemical composition impact on the environment, is the effect of some water-soluble inorganic compounds on the acidity and conductivity of aerosols. Under certain conditions, the water-soluble sulfur and nitrogen compounds contained in the dust, contribute to acidification of precipitation and/or deposition, whereas the deposition of particles rich in the water-soluble calcium, magnesium, potassium or sodium compounds, increases the alkalinity of the environment [18-21].

Water-soluble ions, next to elemental carbon and organic matter, dominate the mass of PM. In urban areas, mass of sulfates (SO_4^{2-}) and nitrates (NO_3^{-}) associated with particulate matter is even ~80% of all water extracted ions (**Table 1**, [22]) and ~15% - 50% of the total mass of PM_{2.5} (fine particles, with aerodynamic diameters not exceeding 2.5 µm) [23-26].

Sulfates, nitrates and ammonia are used to determine the share of secondary inorganic aerosol (SIA) in the mass of ambient dust. Oxidation of SO₂ in the air, then a binary nucleation of H₂SO₄-H₂O and ternary H₂SO₄-H₂O-NH₃, results in the formation of dust particles, mostly smaller than 1 μ m [19,21,27,28]. These particles, together with nitrate (V) ammonium emerging in the analogous reaction of nitric acid (V) with ammonia, form

City (Country); description of the measuring point; [references]	Averaging period	Fraction	Cl	NO_3^-	$\mathrm{SO}_4^{2\text{-}}$	Na^+	NH_4^+	K^+	Ca ²⁺	Mg ²
Bern (Switzerland); kerbside in the		PM _{2.5}	102	3000	2800	94	1600	180	132	8.5
city center; [33]	04.1998-03.1999	PM _{2.5-10}	1012	1100	700	746	0	48	1420	37
		PM _{2.5}	145	3100	4100	111	2000	218	71	13
Basel (Switzerland); suburban; [33]	04.1998-03.1999	PM _{2.5-10}	111	700	100	128	100	28	279	26
		PM _{0.11}	-	1	48	-	40	46	-	-
		PM _{1.05}	-	64	2590	_	1139	198	-	-
K-puszta (Hungary); rural site; [34]	Summer 1999	PM _{2.60}	-	95	2655	_	1173	240	_	_
		PM _{10.77}	-	133	2667	-	1194	286	_	_
		PM ₁₀	- 1259	862	-	-	1329	-	-	-
Bemantes (Spain); seaside background; [35]	Whole year 2001	$PM_{2.5}$	555	302 399	-	-	1329	-	-	-
		PM ₁₀	-	7200	_	_	3900	_	_	_
Barcelona (Spain); impact of industry; [36]	Whole year 2001	PM _{2.5}	-	5200	_	-	3700		_	_
T (C 1) 1		PM ₁₀	-	6000	_	_	2200	_	_	-
Tarragona (Spain); impact of road traffic; [36]	Whole year 2001	PM _{2.5}	-	3800	-	-	1600	_	_	-
		PM _{2.5}	11.9	303	1850	61.6	791	47.1	24.1	9.3
Helsinki (Finland); urban background; [37]	08.2002-09.2002	PM _{2.5-10}	124	445	146	122	20.8	15.4	191	27.
	Spring 2003	PM _{2.5}	260	8120	4760	-	2340	120	80	20
	Summer 2003	PM _{2.5}	250	4170	3230	-	1920	130	60	20
Menen (Belgium); suburban; [38]	Autumn 2003	PM _{2.5}	370	4100	3700	-	1740	210	50	30
	Winter 2003	PM _{2.5}	890	5280	4990	-	1880	250	70	30
	1999/2000	PM_{10}				-	-	-	-	-
	2000/2001	PM_{10}				-	-	-	-	-
	2001/2002	PM_{10}				-	-	-	-	-
Zagreb (Croatia); residential-industrial-traffic site; [39]	2002/2003	PM_{10}								
esidentiai-industriai-traine site, [59]	2003/2004	PM_{10}								
	2004/2005	PM_{10}								
	2006/2006	PM_{10}				-	-	-	-	-
		PM_{10}	160	-	-	300	-	120	140	50
	Summer season (2004-2008)	PM _{2.5}	50	-	-	110	-	80	80	20
Melpitz (Germany);	()	PM_1	30	-	-	40	-	60	50	10
rural background; [40]		PM_{10}	570	-	-	430	-	180	110	70
	Winter season (2004-2008)	PM _{2.5}	240	-	-	160	-	140	70	30
		PM_1	120	-	-	40	-	100	50	10
near Chania (Crete, Greece);	08.2007	PM_{10}	3295	4946	18,725	3397	720	668	511	130
urban background; [41]	07.2008	PM_{10}	2649	1620	6353	4432	1466	669	2459	314
		PM_1	567	715	1284	157	775	163	146	36
Zabrze (Poland); urban background; [this study]	08-12.2008	PM _{2.5}	684	880	1706	220	956	184	210	51
oackground, [this study]		PM_{10}	775	1046	1927	273	962	191	345	79

Table 1. Ambient concentrations of water-soluble ions (ng·m ⁻³)	related to various PM fractions at various sites in Europe.

the SIA. In the air poor in NH_4^+ , sulfuric acid H_2SO_4 can react with mineral dust or sea salt components, generally creating coarse particles of CaSO₄ or $(Na)_2SO_4$.

The goal of the work was to determine concentration and mass size distribution of eight water-soluble ions $(Cl^-, NO_3^-, SO_4^{2-}, Na^+, NH_4^+, K^+, Ca^{2+}, Mg^{2+})$ related to thirteen PM fractions in a typical urban area of southern Poland. Possible chemical composition of secondary inorganic aerosol in 13 dust fractions was also estimated.

2. Material and Methods

The site of experiment (Zabrze, Poland, **Figure 1**) is located in area representative of the air pollution conditions for the central part of Upper Silesia and it meets the criteria of urban background site (Directive 2008/50/EC). Conditions at this point, characterize well dust concentration in residential areas exposed to municipal and industrial emissions in the Upper Silesia [29].

Samples have been collected from August to December 2008. Fourteen measurements were carried out and each lasted about a week. Dust was collected using a thirteen stage DEKATI low pressure impactor (DLPI) [13].

Masses of dust collected on aluminum substrates, were determined by weighing substrates before and after exposure, on a Mettler Toledo microbalance (accuracy 2 μ g). Before weighing the substrates were kept in weighing room for 48 hours (temperature 20°C ± 2°C, relative air humidity 48% ± 5%). Concentrations of PM fractions were calculated by dividing each fraction's mass by the volume of air, from which it was collected. Dust samples were kept in a refrigerator in tight and lightproof containers until the analysis.

Thirteen samples were fixed for chromatography analysis - for each fraction, a collective sample from 14 weeks was prepared. Samples were placed in ROTH extraction containers. For the extraction, 50 cm³ of deionized water was added to each container and the containers were tightly capped to prevent leaking during the extraction. Extracts were then placed in an ultrasonic

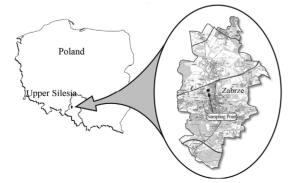


Figure 1. Location of the sampling point.

bath (60 min), at a temperature not exceeding 15° C. Then, the extraction containers were placed in a vortex mixer and shaken overnight at about 18° C and 60 cycles per minute. Extracts were then filtered through a CRONUS microporous filter with a PES membrane with a porosity of 0.2 microns.

The ion content in the extracts was determined using Metrohm ion chromatograph (Metrohm Herisau AG, Switzerland), equipped with 818 IC Pump, 819 IC Detector, 837 IC Eluent Degasser, 830 IC Interface, 820 IC Separation Center, Metrodata 2.3 programme). The method was previously validated on the basis of certified reference material (CRM Fluka products nos. 89316 and 89886, the standard recovery ranged in 92% - 109%). Detection limits were at the level of: 0.02 mg·l⁻¹ for NH₄⁺, 0.05 mg·l⁻¹ for Cl⁻, SO₄²⁻ and K⁺, 0.07 mg·l⁻¹ for NO₃⁻ and Na⁺, 0.12 mg·l⁻¹ for Ca²⁺ and Mg²⁺.

3. Results and Discussion

PM-related Cl⁻, NO₃⁻, SO₄²⁻, Na⁺, NH₄⁺, K⁺, Ca²⁺, Mg²⁺ concentrations from Zabrze, were compared with concentrations of these ions from various sites in Europe (**Table 1**). The concentration of the PM₁-related ion was calculated by summing its concentrations in following fractions: 0.03 - 0.06 μ m, 0.06 - 0.108 μ m, 0.108 - 0.17 μ m, 0.17 - 0.26 μ m, 0.26 - 0.40 μ m, 0.40 - 0.65 μ m and 0.65 - 1.0 μ m. In the case of ions associated with PM_{2.5}, additionally concentrations from fractions: 1.0 - 1.6 μ m and 1.6 - 2.5 μ m were included and in case of PM₁₀, besides previously mentioned, ion concentrations of 2.5 - 4.4 μ m; 4.4 - 6.8 μ m and 6.8 - 10.0 μ m range were summed.

Most of ions' concentrations in Zabrze were comparable to concentrations noted between 1998-2008 in Europe. For example, concentration of sulfates in particulate matter in Zabrze, was comparable to the concentration recorded at two sites in Switzerland, suburban station in Menen (Belgium) and urban background station in Helsinki (Finland). Generally, higher concentrations than in Zabrze are listed in Asian countries [13,30, 31]. Concentration of Cl⁻ associated with fine dust in Zabrze was extraordinarily high comparing to values recorded in other parts of Europe and similar to concentrations of chlorine in Menen and Melpitz, recorded in these cities during the winter season (**Table 1**).

Sulfates, nitrates and ammonia associated with PM₁, PM_{2.5} and PM₁₀, had the highest concentration of the eight analyzed ions in Zabrze (**Tables 1** and **2**). Average mass shares of SO_4^{2-} and NO_3^{-} in the PM_{2.5}, are about 80% of the total mass (the sum of the masses in all 13 fractions) of sulfates and nitrates, and the average mass share of NH_4^+ is even up to 98% of the total mass of ammonia. More than 60% of sulfates and nitrates mass were related to particles with an aerodynamic diameter

Fraction	PM	Cl	NO_3^-	SO_4^{2-}	Na ⁺	NH_4^+	\mathbf{K}^+	Ca ²⁺	Mg ²⁺
1a)	0.34	19.89	20.34	33.97	5.14	28.70	1.66	28.74	3.04
, ,									
2	0.52	22.59	17.52	44.97	7.46	22.63	7.83	11.38	4.25
3	1.09	29.27	14.34	39.30	13.00	18.36	12.35	17.23	4.81
4	3.05	71.35	35.52	123.07	20.16	54.52	25.28	22.76	5.59
5	5.15	103.79	89.70	221.89	44.91	199.32	46.04	22.72	4.46
6	7.76	171.91	275.77	445.88	35.28	267.35	43.16	18.62	7.02
7	7.65	148.60	261.54	374.47	31.08	184.05	26.25	24.96	6.46
8	5.04	78.80	85.48	245.70	28.25	169.68	12.74	29.35	7.16
9	2.75	38.30	80.20	176.48	34.49	11.81	8.22	34.62	8.66
10	2.35	45.77	88.84	111.14	26.84	2.28	4.46	40.90	9.56
11	1.56	27.52	51.63	67.24	14.19	1.00	2.67	40.68	8.00
12	1.28	16.77	25.46	43.02	12.65	2.39	<i>bld</i> b)	52.82	10.01
13	1.54	29.30	44.16	97.43	8.06	1.37	2.67	35.55	6.16

Table 2. Ambient concentrations of PM ($\mu g \cdot m^{-3}$) and PM-related ions ($ng \cdot m^{-3}$) from 13 original DLPI fractions of PM at the urban background site.

a. 1—0.03 - 0.06 μm; 2—0.06 - 0.108 μm; 3—0.108 - 0.17 μm; 4—0.17 - 0.26 μm; 5—0.26 - 0.40 μm; 6—0.40 - 0.65 μm; 7—0.65 - 1.0 μm; 8—1.0 - 1.6 μm; 9—1.6 - 2.5 μm; 10—2.5 - 4.4 μm; 11—4.4 - 6.8 μm; 12—6.8 - 10.0 μm; 13—>10.0 μm; b. below limit of detection.

 $\leq 1 \ \mu m$. As to NH_4^+ , it was close to 90%. SO_4^{2-} , $NO_3^$ and NH_4^+ concentrations were highest in the range of 0.26 - 1 μm . Very similar, bimodal mass size distribution of SO_4^{2-} and NO_3^- , with a maximum occurring between 0.4 - 1 μm (**Figure 2(a)**), means that these ions are parts of the same compounds in the dust. The main mechanism of their formation are presumably the transformation processes of PM gaseous precursors occurring in the atmosphere. PM-related NH_4^+ had multimodal mass size distribution, with a one maximum occurring in the range of 0.4 - 1 μm and two maxima between 1.6 - 10 μm (**Figure 2(b**)).

On the areas where sea spray or sea water evaporation (marine aerosols) and road salt are main sources of sodium and chloride, ambient concentrations of Na⁺ and Cl⁻ related to PM_{2.5-10} (coarse dust, ambient particles with aerodynamic diameters exceeding 2.5 and not greater than 10 µm) are generally higher than the concentrations of PM₁- and PM_{2.5}-related Na⁺ and Cl⁻ (Ta**ble 1**). It is clear that in Zabrze, Na⁺ and Cl⁻ are related mostly with fine dust particles [26,32]. PM_{2.5}-related Na⁺ and Cl⁻ were respectively 80 and 85% of their total concentration in the air of Zabrze. The highest concentrations of PM- related Na⁺ and Cl⁻, occurred in similar particle sizes range, as in the case of highest SO_4^{2-} , NO_3^- and NH_4^+ concentrations (Table 2). Both, Na^+ and Cl-, were characterized by unimodal mass size distribution and its maximum occurred in the range of 0.4 - 1 μm (Figures 2(a) and (b)). This indicates the anthropogenic origin of these ions (combustion processes). It is most likely that Na⁺ and Cl⁻, occur in the dust mainly as a sodium chloride.

The concentration of K⁺, Mg²⁺ and Ca²⁺ associated with each of 13 fractions, did not exceed 53 ng m⁻³ (**Table 1**). Masses of these cations were distributed differently among PM fractions. More than 95% of the total mass of K⁺ was concentrated in the PM_{2.5}, over 25% of which were PM_{0.26-0.4} and PM_{0.4-0.65}. Distribution of Ca²⁺ and Mg²⁺ masses among 13 fractions was more variable, although the share of PM_{2.5-10}-related ions' mass, was much bigger than their contribution in the fine dust particles amount, and was more than 50% of total mass of these ions in the Zabrze air.

Potassium and calcium were characterized by unimodal mass distribution with a maximum-as in the case of SO_4^{2-} NO₃, Na⁺ and Cl⁻—in the range of 0.26 - 0.65 μm (Figure 1(b)), whereas magnesium was determined with multimodal size mass distribution, without clearly dominant maximum. Highest potassium concentrations occurred for particles in the range of 0.17 - 1 µm (Table 2). However, higher Mg^{2+} and Ca^{2+} concentrations occurred for particles with an aerodynamic diameter larger than 2.5 μ m. Therefore, it seems that K⁺ and Ca²⁺ may be present in the compounds with SO_4^{2-} , NO_3^- , Na^+ and Cl⁻ ions, and their most probable source in Zabrze air are combustion processes. Relatively high proportion of Mg^{2+} in the coarse fraction of particulate matter, proves that mechanical processes, including re-suspension of the soil and road dust could have had an influence on these ions concentration levels.

To assess the neutralizing capacity of occurring simultaneously in the air sulfates and nitrates by ammo-

375

nium ion, neutralizing ratio (NR) was calculated for each fraction of particulate matter. NR is the ratio of NH_4^+ concentration (in normal equivalent, neq·m⁻³) and the sum of NO_3^- and SO_4^{2-} concentrations (in neq·m⁻³)—**Table 3**.

For particles not greater than 1.6 μ m, NR values ranged from ≈ 1 (PM_{0.65-1}, PM_{0.17-0.26}, PM_{0.108-0.17} and PM_{0.06-0.108}) to 1.82 (PM_{0.26-0.4}). It means that the amount of NH⁴₄ related to these dust fractions, was sufficient to neutralize sulfuric and nitric acid completely. This result also proves that ambient fine dust (PM_{1.6}) in Zabrze is alkaline (NR \geq 1).

Stoichiometric ratio for $(NH_4)_2SO_4$ of SO_4^{2-}/NH_4^+ is 2.67. In all fractions of particles $\leq 1.6 \ \mu\text{m}$, the ratio of SO_4^{2-} and NH_4^+ (in neq·m⁻³) is much lower than 2.67. It confirms the previous deduction, that $PM_{1,6}$ -related

 $\rm NH_4^+$ in Zabrze occurred in a greater amount than needed to react with the $\rm PM_{1.6}$ -related $\rm SO_4^{2-}$ completely. Also the condition $\rm NH_4^+ > SO_4^{2-}$ (in neq·m⁻³) is satisfied. Therefore, the concentration of (NH₄)₂SO₄ may be estimated from the formula:

$$\left[\left(\mathrm{NH}_{4}\right)_{2}\mathrm{SO}_{4}\right] = 1.38\left[\mathrm{SO}_{4}^{2-}\right] \tag{1}$$

The concentration of $(NH_4)_2SO_4$ associated with particles $\leq 1.6 \ \mu m$, fit within the limits of 615.31 $ng \cdot m^{-3}$ $(PM_{0.4 \cdot 0.65})$ to 46.88 $ng \cdot m^{-3}$ for $PM_{0.03 \cdot 0.06}$. The amount (concentration) of NH_4^+ , remaining after reaction with SO_4^{2-} (ammonium ion excess $\left[ex \cdot NH_4^+\right]$) and ammonium nitrate concentration associated with each fractions of particles $\leq 1.6 \ \mu m$, was calculated from the following formulas:

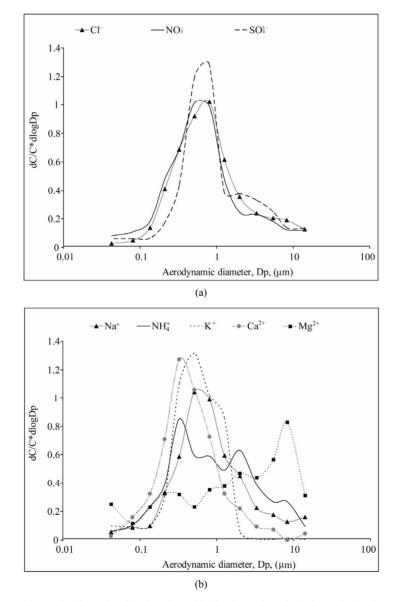


Figure 2. Mass size distribution of PM-related ions in Zabrze, Poland.

Fraction	$\Sigma_{ m cations} / \Sigma_{ m anions}$	$NR=NH_4^+/(SO_4^{2-}+NO_3^{-})$	SO ²⁻ /NH [‡]	$NH_4^+ > SO_4^{2-}$ or $NH_4^+ < SO_4^{2-}$	[(NH ₄) ₂ SO ₄]=1.38[SO ² ₄] if NH ⁺ ₄ >SO ²⁻ ₄	[ex-NH ⁺]=[NH ⁺]-0.27[(NH ₄) ₂ SO ₄]	[NH4NO3]=4.44[ex-NH4]	[SIA]=[NH [‡]]+[NO ⁻ ₃]+[SO ²⁻]	(NH ₄) ₂ SO ₄ + NH ₄ NO ₃)/SIA×100%	[(NH ₄) ₂ SO ₄]=3.67[NH [‡] ₁] if NH [‡] ₄ <so<sup>2₄</so<sup>	[ex-SO ² _]=[SO ² _]-0.73[(NH ₄) ₂ SO ₄]	$[ex^{1}-SO_{4}^{2}]=[ex-SO_{4}^{2}]-0.55[K_{3}SO_{4}]^{4}$	[ex"-SO ² _1]=[ex'-SO ² _1]0.71[CaSO ₄] ^{b)}
	neq.m ⁻³	neq.m ⁻³	neq.m ⁻³	neq.m ⁻³	ng.m ⁻³	$ng m^{-3}$	ng.m ⁻³	ng.m ⁻³	%	ng.m ⁻³	ng.m ^{−3}	ng.m ^{−3}	ng.m ⁻³
>10	0.76	0.03	26.76	<	-	-	-	-	-	5.01	93.79	90.5	-0.76
6.8 - 10	2.25	0.1	6.75	<	-	-	-	-	-	8.77	36.64	36.64	-0.30
4.4 - 6.8	1.11	0.02	25.21	<	-	-	-	-	-	3.67	64.57	61.29	-0.52
2.5 - 4.4	0.83	0.03	18.28	<	-	-	-	-	-	8.37	105.05	99.56	-0.85
1.6 - 2.5	0.79	0.13	5.6	<	-	-	-	-	-	43.34	144.95	134.84	-1.18
1 - 1.6	1.49	1.45	0.54	>	339.06	169.68	753.38	500.86	218.11	-	-	-	-
0.65 - 1	0.92	0.89	0.76	>	516.76	44.52	197.69	820.06	87.12	-	-	-	-
0.4 - 0.65	1.02	1.08	0.63	>	615.31	101.22	449.4	988.99	107.66	-	-	-	-
0.26 - 0.4	1.75	1.82	0.42	>	306.2	116.64	517.91	510.91	161.3	-	-	-	-
0.17 - 0.26	1.19	0.97	0.85	>	169.83	54.52	242.07	213.1	193.29	-	-	-	-
0.108 - 0.17	1.68	0.97	0.8	>	54.23	18.36	81.52	72	188.55	-	-	-	-
0.06 - 0.108	1.45	1.03	0.74	>	62.05	22.63	100.4772	85.12	190.95	-	-	-	-
0.03 - 0.06	2.22	1.54	0.44	>	46.88	28.7	127.43	83.01	209.98	-	-	-	-

Table 3. Proportions of the ionic equivalent concentrations and probable composition of secondary inorganic aerosol in 13
original DLPI fractions of PM at the urban background site in Zabrze, Poland.

^{a.}[K_2SO_4]=1.8[$ex-SO_4^{2-}$]; ^{b.}[CaSO₄]=1.42[$ex'-SO_4^{2-}$].

$$\left[\operatorname{ex-NH}_{4}^{+}\right] = \left[\operatorname{NH}_{4}^{+}\right] - 0.27 \left[\left(\operatorname{NH}_{4}\right)_{2} \operatorname{SO}_{4}\right]$$
(2)

$$\left[\mathrm{NH}_{4}\mathrm{NO}_{3}\right] = 4.44\left[\mathrm{ex}\cdot\mathrm{NH}_{4}^{+}\right]$$
(3)

 NH_4NO_3 concentration ranged from 753.38 ng m⁻³ (for PM_{1-1.6}) to 81.52 ng m⁻³ (for PM_{0.108-0.17}).

 $(\rm NH_4)_2\rm SO_4$ and $\rm NH_4\rm NO_3$ concentrations sum share, in a total SIA concentration

 $([SIA] = [NH_4^+] + [NO_3^-] + [SO_4^{2-}])$ for fractions of particles $\leq 1.6 \ \mu\text{m}$, is shown in **Table 3**. For the fraction with $((NH_4)_2SO_4+NH_4NO_3)/SIA$ value exceeding 1, the share is overestimated. Still, stoichiometric calculations that have been carried out, show that these two compounds constitute the entirety of SIA in ambient particles not greater than 1.6 μ m. The most probable distribution of $(NH_4)_2SO_4$ and NH_4NO_3 concentrations between the sum of these compounds concentrations were obtained for $PM_{0.65-1}$ and $PM_{0.4\cdot0.65}$, where the share of $((NH_4)_2SO_4$ + $NH_4NO_3)$ in the SIA did not exceed 100%. There are also these two fractions, in which the predominant part in the SIA takes ammonium sulfate, while the concentrations of these two dust fractions in the air are the highest of all 13 (Table 2).

NR for particles greater than 1.6 μ m, was much smaller than 1 (**Table 3**). However, it doesn't mean that ions associated with these particles are not fully neutralized. The concentration sum ratio of anions to cations ($\Sigma_{\text{cations}}/\Sigma_{\text{anions}}$, in neq·m⁻³) is in the range of 1, for all fractions.

In all fractions of particles greater than 1.6 µm, the concentration ratios of SO_4^{2-} and NH_4^+ (in neq·m⁻³) is considerably higher than 2.67. Also the relation $NH_4^+ < SO_4^{2-}$ is satisfied (concentrations in neq·m⁻³). It means that in these PM fractions, NH_4^+ could neutralize some part of SO_4^{2-} , forming $(NH_4)_2SO_4$ but there was not enough of NH_4^+ to react the whole SO_4^{2-} . Thus, there was not enough of NH_4^+ to form ammonium nitrate. Therefore, the $(NH_4)_2SO_4$ concentration for particles greater than 1.6 µm, can be calculated from the for mula:

$$\left[\left(\mathrm{NH}_4 \right)_2 \mathrm{SO}_4 \right] = 3.67 \left[\mathrm{NH}_4^+ \right] \tag{4}$$

The concentration of $(NH_4)_2SO_4$ associated with particles greater than 1.6 μ m, ranged from 3.67 ng·m⁻³ (PM_{4.4-6.8}) to 43.34 ng·m⁻³ for PM_{1.6-2.5}.

It is impossible to determine precisely concentrations of all compounds constituting the secondary inorganic aerosol in Zabrze, still, estimating on the basis of stoichiometric relations. However, it can be shown that the amount of SO_4^{2-} in the particles greater than 1.6 μ m is enough to react the whole NH_4^+ .

The rest of the SO_4^{2-} (sulfate ion excess $[ex-SO_4^{2-}]$) could react i.a. with potassium and calcium ions, forming K_2SO_4 and $CaSO_4$. This would prove specific, similar to SO_4^{2-} , mass size distributions of K^+ , Ca^{2+} (**Figures 2(a)** and **(b)**). The concentration of the rest of SO_4^{2-} , that remained after:

- reaction with NH_4^+ forming $(NH_4)_2SO_4$; $\left(\left[ex-SO_4^{2-1}\right]\right)$,
- reaction with NH⁺₄ forming (NH₄)₂SO₄ and K⁺ forming K₂SO₄; ([ex'-SO²⁻₄]),
- reaction with NH⁺₄ forming (NH₄)₂SO₄, K⁺ forming K₂SO₄ and Ca²⁺ forming CaSO₄; ([ex "-SO₄²⁻])

can be calculated (in $PM_{1.6-2.5}$, $PM_{2.5-4.4}$, $PM_{4.4-6.8}$, $PM_{6.8-10}$, $PM_{>10}$) from the following formula:

$$\left[\operatorname{ex-SO_4^{2-}}\right] = \left[\operatorname{SO_4^{2-}}\right] - 0.73 \left[\left(\operatorname{NH}_4\right)_2 \operatorname{SO}_4\right]$$
(5)

$$\left[\text{ex}' - \text{SO}_{4}^{2^{-}} \right] = \left[\text{ex} - \text{SO}_{4}^{2^{-}} \right] - 0.55 \left[\text{K}_{2} \text{SO}_{4} \right]$$
(6)

$$\left[\text{ex "-SO}_{4}^{2^{-}} \right] = \left[\text{ex '-SO}_{4}^{2^{-}} \right] - 0.71 \left[\text{CaSO}_{4} \right]$$
(7)

Using values listed in **Table 3**, it can be concluded that for $PM_{>1.6}$, there was not enough sulfate ion to complete reaction of calcium ions $(\left\lceil ex "-SO_4^{2-} \right\rceil < 0)$.

Therefore, it can be concluded, that thé secondary inorganic aerosol in Zabrze, in the case of compounds occuring in particles greater than 1.6 μ m, is mainly composed of ammonium sulfate, potassium sulfate and calcium sulfate. Certainly, there are also nitrates in these particles, however, in contrast to particles not greater than 1.6 μ m, there is no ammonium nitrate but probably NaNO₃ and/or Ca(NO₃)₂.

4. Conclusions

Most of ions' concentrations in Zabrze were comparable to concentrations presented in the literature. Generally, higher concentrations than in Zabrze are listed in Asian countries, this concerns particularly to SO_4^{2-} , NH_4^+ , K^+ , Mg^{2+} and Ca^{2+} . Concentration of Cl^- associated with fine dust in Zabrze was extraordinarily high, comparing to values recorded in other parts of the world.

Sulfates, nitrates and ammonium had the highest concentration of the eight analyzed ions in Zabrze. More than 60% of SO_4^{2-} and NO_3^- and 90% of NH_4^+ mass, was concentrated in particles with an aerodynamic diameter ≤ 1 micron. Na⁺ and Cl⁻ were also mostly associated with fine dust particles. Ions mentioned above, as well as K⁺ and Ca²⁺, had similar mass size distributions, and generally, maxima of these distributions were in the same particle size ranges. This indicates the anthropogenic origin of seven of eight analyzed ions (combustion processes), associated with dust in Zabrze.

Relatively high proportion of Mg^{2+} in the coarse fraction of particulate matter, proves that mechanical processes, including re-suspension of the soil and road dust could have had an influence on Mg^{2+} concentration in the air.

In particles not greater than 1.6 μ m, the amount of ammonium ion is sufficient to neutralize sulfuric and nitric acid, therefore, in dust precursors gas conversions, ammonium sulfate and nitrate are formed. In fractions of particles greater than 1.6 μ m, the amount of ammonium ion is not sufficient to neutralize the nitric acid. Therefore, in these fractions, inorganic aerosol is composed of ammonium sulfate and other compounds, including K₂SO₄ and CaSO₄, and also NaNO₃ and/or Ca(NO₃)₂.

5. Acknowledgements

The work was partially supported by grant No. N N523 564038 from the Polish Ministry of Science and Higher Education.

REFERENCES

- J. Schwartz, "Air Pollution and Daily Mortality: A Review and Meta-Analysis," *Environmental Research*, Vol. 64, No. 1, 1994, pp. 36-52. <u>doi:10.1006/enrs.1994.1005</u>
- [2] K. R. Spurny, "Chemical Mixtures in Atmospheric Aerosols and Their Correlation to Lung Diseases and Lung Cancer Occurrence in the General Population," *Toxicology Letters*, Vol. 88, No. 1-3, 1996, pp. 271-277. doi:10.1016/0378-4274(96)03749-6
- [3] C. A. Pope and D. W. Dockery, "Health Effects of Fine Particulate Air Pollution: Lines that Connect," *Journal of the Air & Waste Management Association*, Vol. 56, No. 6, 2006, pp. 709-742. doi:10.1080/10473289.2006.10464485
- [4] G. Majewski and W. Przewoźniczuk, "Study of Particulate Matter Pollution in Warsaw Area," *Polish Journal of Environmental Studies*, Vol. 18, No 2, 2009, pp. 293-300.
- [5] P. Huszar, K. Juda-Rezler, T. Halenka, H. Chervenkov, D. Syrakov, B. C. Krueger, P. Zanis, D. Melas, E. Katragkou, M. Reizer, W. Trapp and M. Belda, "Effects of Climate Change on Ozone and Particulate Matter over Central and Eastern Europe," *Climate Research*, Vol. 50, No. 1, 2011. pp. 51-68. doi:10.3354/cr01036
- [6] M. Kowalska, M. Skrzypek, F. Danso and J. Kasznia-Kocot, "Relative Risk of Total and Cardiovascular Mor-

tality in the Eldery as Related to Short-Term Increases of PM_{2.5} Concentrations in Ambient Air," *Polish Journal of Environmental Studies*, Vol. 21, No. 5, 2012, pp. 1279-1285.

- [7] E. López-Villarrubia, C. Iñiguez, N. Peral, M. D. García and F. Ballester, "Characterizing Mortality Effects of Particulate Matter Size Fractions in the Two Capital Cities of the Canary Islands," *Environmental Research*, Vol. 112, 2012, pp. 129-138. <u>doi:10.1016/j.envres.2011.10.005</u>
- [8] M. Tainio, K. Juda-Rezler, M. Reizer, A. Warchałowski, W. Trapp and K. Skotak, "Future Climate and Adverse Health Effects Caused by Fine Particulate Matter Air Pollution: Case Study for Poland," *Regional Environmental Change*, 2012 (in Press).
- [9] K. T. Whitby, "The Physical Characteristics of Sulfur Aerosol," Atmospheric Environment, Vol. 12, No. 1-3, 1978, pp. 135-139. doi:10.1016/0004-6981(78)90196-8
- [10] D. Grosjean and J. H. Seinfeld, "Parametrization of the Formation Potential of Secondary Organic Aerosols," *Atmospheric Environment*, Vol. 23, No. 8, 1989, pp. 1733-1147. doi:10.1016/0004-6981(89)90058-9
- [11] E. R. Whitby and P. H. McMurry, "Modal Aerosol Dynamics Modeling," *Aerosol Science and Technology*, Vol. 27, No. 6, 1997, pp. 673-688. doi:10.1080/02786829708965504
- [12] W. C. Hinds, "Aerosol Technology. Properties, Behavior, and Measurement of Airborne Particles," 2nd Edition, John Wiley & Sons, Inc., New York, 1998.
- [13] K. Klejnowski, J. S. Pastuszka, W. Rogula-Kozłowska, E. Talik and A. Krasa, "Mass Size Distribution and Chemical Composition of the Surface Layer of Summer and Winter Airborne Particles in Zabrze, Poland," *Bulletin of Environmental Contamination and Toxicology*, Vol. 88, No. 2, 2012, pp. 255-259. doi:10.1007/s00128-011-0452-3
- [14] B. Ostro, W. Y. Feng, R. Broadwin, S. Green and M. Lipsett, "The Effects of Components of Fine Particulate Air Pollution on Mortality in California: Results from CALFINE," *Environmental Health Perspectives*, Vol. 115, 2007, pp. 13-19. <u>doi:10.1289/ehp.9281</u>
- [15] N. Englert, "Fine Particles and Human Health—A Review of Epidemiological Studies," *Toxicology Letters*, Vol. 149, No. 1-3, 2004, pp. 235-242. doi:10.1016/j.toxlet.2003.12.035
- [16] R. Rückerl, A. Schneider, S. Breitner, J. Cyrys and A. Peters, "Health Effects of Particulate Air Pollution: A Review of Epidemiological Evidence," *Inhalation Toxicology*, Vol. 23, No. 10, 2011, pp. 555-592. doi:10.3109/08958378.2011.593587
- [17] W. Zhang, T. Lei, Z. Q. Lin, H. S. Zhang, D. F. Yang, Z. G. Xi, J. H. Chen and W. Wang, "Pulmonary Toxicity Study in Rats with PM₁₀ and PM_{2.5}: Differential Responses Related to Scale and Composition," *Atmospheric Environment*, Vol. 45, No. 4, 2011, pp. 1034-1041. doi:10.1016/j.atmosenv.2010.10.043
- [18] J. H. Seinfeld, "Atmospheric Chemistry of Physics of Air Pollution," Wiley, New York, 1986.
- [19] A. Jaecker-Voirol and P. Mirabel, "Heteromolecular Nu-

cleation in the Sulphuric Acid-Water System," *Atmospheric Environment*, Vol. 23, No. 9, 1989, pp. 2053-2057. doi:10.1016/0004-6981(89)90530-1

- [20] J. G. Watson, J. C. Chow, F. Lurmann and S. Musarra, "Ammonium Nitrate, Nitric Acid, and Ammonia Equilibrium in Wintertime Phoenix, AZ," *Journal of the Air & Waste Management Association*, Vo. 44, No. 4, 1994, pp. 261-268.
- [21] P. Korhonen, M. Kumala, A. Laaksonen, Y. Viisanen, R. McGraw and J. H. Seinfeld, "Ternary Nucleation of H₂SO₄, NH; and H₂O in the Atmosphere," *Journal of Geophysical Research*, Vol. 104, No. D21, 1999, pp. 26349-26353. doi:10.1029/1999JD900784
- [22] G. J. Sun, L. Yao, L. Jiao, Y. Shi, Q. Y. Zhang, M. N. Tao, G. R. Shan and Y. He, "Characterizing PM_{2.5} Pollution of a Subtropical Metropolitan Area in China," *Atmospheric and Climate Sciences*, Vol. 3, No. 1, 2013, pp. 100-110. doi:10.4236/acs.2013.31012
- [23] M. Sillanpää, R. Hillamo, S. Saarikoski, A. Frey, A. Pennanen, U. Makkonen, Z. Spolnik, R. Van Grieken, M. Braniš, B. Brunekreef, M. C. Chalbot, T. Kuhlbusch, J. Sunyer, V. M. Kerminen, M. Kulmala and R. O. Salonen, "Chemical Composition and Mass Closure of Particulate Matter at Six Urban Sites in Europe," *Atmospheric Environment*, Vol. 40, Suppl. 2, 2006, pp. S212-S223. doi:10.1016/j.atmosenv.2006.01.063
- [24] T. Lee, X.-Y. Yu, B. Ayres, S. M. Kreidenweis, W. C. Malm and J. L. Collett Jr., "Observations of Fine and Coarse 5 Particle Nitrate at Several Rural Locations in the United States," *Atmospheric Environment*, Vol. 42, No. 11, 2008, pp. 2720-2732. doi:10.1016/j.atmosenv.2007.05.016
- [25] Y. Zhao and Y. Gao, "Mass Size Distributions of Water-Soluble Inorganic and Organic Ions in Size-Segregated Aerosols over Metropolitan Newark in the US East Coast," *Atmospheric Environment*, Vol. 42, No. 18, 2008, pp. 4063-4078. doi:10.1016/j.atmosenv.2008.01.032
- [26] W. Rogula-Kozłowska, K. Klejnowski, P. Rogula-Kopiec, B. Mathews and S. Szopa, "A Study on the Seasonal Mass Closure of Ambient Fine and Coarse Dusts in Zabrze, Poland," *Bulletin of Environmental Contamination and Toxicology*, Vol. 88, No. 5, 2012, pp. 722-729. doi:10.1007/s00128-012-0533-y
- [27] Z. Y. Meng and J. H. Seinfeld, "On the Source of the Submicrometer Droplet Mode of Urban and Regional Aerosols," *Aerosol Science and Technology*, Vol. 20, No. 3, 1994, pp. 253-265. <u>doi:10.1080/02786829408959681</u>
- [28] R. F. Pueshel, "Stratospheric Aerosols: Formation, Properties, Effect," *Journal of Aerosol Science*, Vol. 27, No. 3, 1996, pp. 359-382.
- [29] K. Klejnowski, W. Rogula-Kozłowska and A. Krasa, "Structure of Atmospheric Aerosol in Upper Silesia (Poland)-Contribution of PM_{2.5} to PM₁₀ in Zabrze, Katowice and Częstochowa in 2005-2007," *Archives of Environmental Protection*, Vol. 35, No. 2, 2009, pp. 3-13
- [30] D. K. Deshmukh, Y. I. Tsai, M. K. Deb and P. Zarmpas, "Characteristics and Sources of Water-Soluble Ionic Species Associated with PM₁₀ Particles in the Ambient Air of Central India," *Bulletin of Environmental Contamination*

and Toxicology, Vol. 89, No. 5, 2012, pp. 1091-1097. doi:10.1007/s00128-012-0806-5

- [31] N. Chuersuwan, S. Nimrat, S. Lekphet and T. Kerdkumrai, "Levels and Major Sources of PM_{2.5} and PM₁₀ in Bangkok Metropolitan Region," *Environment International*, Vol. 34, No. 5, 2008, pp. 671-677. doi:10.1016/j.envint.2007.12.018
- [32] W. Rogula-Kozłowska and K. Klejnowski, "Submicrometer Aerosol in Rural and Urban Backgrounds in Southern Poland—Primary and Secondary Components of PM₁," *Bulletin of Environmental Contamination and Toxicology*, Vol. 90, No. 1, 2013, pp. 103-109. doi:10.1007/s00128-012-0868-4
- [33] C. Hüeglin, R. Gehrig, U. Baltensperger, M. Gysel, C. Monn and H. Vonmont, "Chemical Characterization of PM_{2.5}, PM₁₀ and Coarse Particles at Urban, Near-City and Rural Sites in Switzerland," *Atmospheric Environment*, Vol. 39, No. 4, 2005, pp. 637-651. doi:10.1016/j.atmosenv.2004.10.027
- [34] D. Temesi, A. Molnár, E. Mészáros, T. Feczkó, A. Gelencsér, G. Kiss and Z. Krivácsy, "Size Resolved Chemical Mass Balance of Aerosol Particles over Rural Hungary," *Atmospheric Environment*, Vol. 35, No. 25, 2001, pp. 4347-4355. doi:10.1016/S1352-2310(01)00233-3
- [35] P. Salvador, B. Artíñano, X. Querol, A. Alastuey and M. Costoya, "Characterisation of Local and External Contributions of Atmospheric Particulate Matter at a Background Coastal Site," *Atmospheric Environment*, Vol. 41, No. 1, 2007, pp. 1-17. doi:10.1016/j.atmosenv.2006.08.007
- [36] M. Viana, X. Querol and A. Alastuey, "Chemical Char-

acterisation of PM Episodes in NE Spain," *Chemosphere*, Vol. 62, No. 6, 2006, pp. 947-956. doi:10.1016/j.chemosphere.2005.05.048

- [37] M. Sillnapää, S. Saarikoski, R. Hillamo, A. Pennanen, U. Makkonen, Z. Spolnik, R. Van Grieken, T. Koskentalo and R. O. Salonen, "Chemical Composition, Mass Size Distribution and Source Analysis of Longe-Range Transported Wildfire Smokes in Helsinki," *Science of the Total Environment*, Vol. 350, No. 1-3, 2005, pp. 119-135. doi:10.1016/j.scitotenv.2005.01.024
- [38] K. Ravindra, M. Stranger and R. Van Grieken, "Chemical Characterization and Multivariate Analysis of Atmospheric PM_{2.5} Particles," *Journal of Atmospheric Chemistry*, Vol. 59, No. 3, 2008, pp. 199-218. doi:10.1007/s10874-008-9102-5
- [39] M. Čačković, V. Vađić, K. Šega and I. Bešlić, "Acidic Anions in PM₁₀ Particle Fraction in Zagreb Air, Croatia," *Bulletin of Environmental Contamination and Toxicology*, Vol. 83, No. 2, 2009, pp. 188-192. doi:10.1007/s00128-009-9641-8
- [40] G. Spindler, E. Brüggemann, T. Gnauk, A. Grüner, K. Müller and H. Herrmann, "A Four-Year Size-Segregated Characterization Study of Particles PM₁₀, PM_{2.5} and PM₁ Depending on Air Mass Origin at Melpitz," *Atmospheric Environment*, Vol. 44, No. 2, 2010, pp. 164-173. doi:10.1016/j.atmosenv.2009.10.015
- [41] I. Kopanakis, N. Lydakis-Simantiris, E. Katsivela, D. Pentari, P. Zarmpas, N. Mihalopoulos and M. Lazaridis, "Size Distribution and Chemical Composition of Airborne Particles at Akrotiri Research Station, Crete, Greece," *Global Nest Journal*, Vol. 12, No. 1, 2010, pp. 54-62.