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Abstract 
Dielectric resonator methods constitute one of the most useful techniques for the measurement of 
electromagnetic material properties in the microwave frequency range. Several geometric confi-
gurations are used for this purpose and, in the present paper, we consider the case of a dielectric 
rod enclosed in a cylindrical metallic enclosure. To carry out dielectric measurements in this sys-
tem it is necessary to know the highest permittivity constant value for which the resonance condi-
tion still can be attained into the cavity. Using an approach based on magnetic and electric Hert-
zian potentials we have derived the set of TE and TM modes for the relevant geometry described 
and, then we have calculated the valid dielectric permittivity constant range of measurements for 
low-loss materials in a cylindrical cavity using a simple resonance frequency condition. Finally, we 
present a simple application of this method in order to determine the dielectric permittivity con-
stant of heavy oil with 11 API. 
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1. Introduction 
When dielectric measurements are performed in a shielded dielectric resonator, the shift of the resonant 
frequency caused by the presence of the sample (with a given dimension and dielectric permittivity constant), 
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must be taken into account. The electromagnetic field must satisfy the boundary conditions required at the metal 
shielding (usually assumed as a perfect electric conductor) and at the material sample, thus obtaining a standing 
wave inside the cavity. The resonant frequency of this configuration decreases with respect to the resonant 
frequency of the empty cavity because the electric field increases due to the presence of a low loss dielectric 
material, so that forcing the wavelength to be smaller in order to achieve the border condition at the metal 
enclosure. For any specific combination of the diameter and the dielectric permittivity constant (see Figure 1) of 
the central material there is a cut-off frequency which below that it is possible to have a resonant condition. 
Above this frequency the cavity will exhibit a high impedance at the excitation port so that any electromagnetic 
mode practically disappears. Thereby, it is necessary to know the value of the highest dielectric permittivity 
constant which could be measured in the cavity for a given radius of the central rod. 

In this paper we employ the formalism of the Hertzian potentials to find the electromagnetic solution of this 
configuration. Then we determine the limit of the real dielectric permittivity constant by numerically solving the 
nonlinear electromagnetic equations, thus obtaining the wave number in both materials inside the cavity 
(dielectric rod and air) and independently calculating the frequency inside those volumes. 

Hertzian potentials have been used to solve different electromagnetic problems: in the study of the properties 
of aperture array systems [1], non-linear waveguides [2], Green’s functions for multilayered media [3] and 
electromagnetic wave interaction with nanodevices [4]. They have also been applied for the determination of TE 
and TM modes of circular cylindrical cavities using magnetic-type and electric-type Hertzian potentials res- 
pectively [5]. Figure 1 shows the case of a cylindrical dielectric resonator enclosed by a metal shield, where b is 
the radius of the outer cylinder, a is the inner resonator radius and d is the height (length of the structure). The 
configuration can be regarded as a cylindrical waveguide enclosing a central sample of radius a, and terminated 
by perfectly conducting planes. The general solution for the axial E field in TM modes was discussed in [6], 
proposing a general solution for the axial E field for TM modes. 

In [7] the solution of this system was obtained by solving directly Maxwell’s equations and substituting the 
corresponding zero axial component of magnetic or electric field for TE or TM mode respectively. A similar 
approach was presented in reference [8]. The aforementioned methods have the disadvantage that the cut-off 
wave number appears in the denominator of the total power flow equation implying a contradiction since it 
means that the power will vanish when the radius is very small. This contradiction is solved by including a 
factor in the numerator which depends on the cut off wave number, as proposed by [9] for a similar system. 

The electromagnetic field in the material sample (region 1) and in air (region 2) are determined by using the 
relevant Hertzian potentials in their general mathematical form. The proper boundary conditions are then applied 
to the derived equations which can then be solved numerically. In practice, the resonant frequency and the 
system quality factor are measured then to determine the electromagnetic properties of materials [6] [7] [10]- 
[12]. 

In this paper we first present a brief introduction to Hertz’s potentials, and then we apply this theory to the 
classical case of a cylindrical waveguide [5]. We then discuss the waveguide which includes the central 
cylindrical sample. Finally we discuss the usable range of this experimental arrangement in the determination of 
dielectric and magnetic properties. 

2. Hertzian Potentials  
In a charge free region with constant permittivity, the divergence of E is zero, thus implying that this field can  

 

 
Figure 1. Shielded dielectric resonator.                                     
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be expressed as the curl of an auxiliary vector potential. This is the base for Hertz potential formulation [13]. For 
a homogeneous, isotropic, and charge-free region, E can be determined from the curl of an auxiliary vector 
potential mΠ  defined as magnetic-type Hertzian potential. Thus, 

mωµ= − ∇×E j Π                                        (1) 

Then from Maxwell’s equations, 

2
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where mφ  is an auxiliary scalar potential, and 2 2k ω µε= . 
Now, we can use jωµ∇× = −E H , and substituting (1), we obtain: 

m= ∇×∇×H Π                                        (3) 

Using the following identity 2∇×∇× = ∇∇⋅−∇  and combining (2) and (3), we obtain: 
2 2

m m m mk φ∇∇⋅ −∇ = +∇Π Π Π                                 (4) 

Since mφ  is an auxiliary scalar potential we can select mφ = ∇ Π , obtaining the following Helmholtz 
equation, 

2 2 0m mk∇ + =Π Π                                      (5) 

A second Helmholtz equation can be obtained from the fact that the divergence of H is always zero. This fact 
can be expressed in terms of the curl of another vector potential eΠ  called electric-type Hertzian potential. As 
in the previous case, the same analysis applies for the TM modes where the electric-type Hertzian potential 
should be used [13]. The magnetic field can be expressed as, 

ejωε= ∇×H Π                                       (6) 

Using Maxwell’s equations and combining with (6), we obtain, 
2 ,e e ek φ= ∇×∇× = +∇E Π Π                                 (7) 

where eΠ  satisfies the Helmholtz wave equation, 
2 2 0e ek∇ + =Π Π                                      (8) 

3. TE and TM Modes for the Cylindrical Cavity Resonator   
3.1. Solution for TE Modes 
In the case of TE modes, if we observe the magnetic-type Hertzian potential, the only way to generate a zero 
component in longitudinal axis of E field is that the Hertzian potential has zero components in radial and 
azimuthal direction. It means that magnetic-type Hertzian potential can be expressed like: 

( ) ( ) ˆ, sinm m zzψ ρ φ β= aΠ                                  (9) 

In the case of resonators the perfect conductor boundary conditions at 0z =  and z d= , the solution in 
terms of a stationary ( )sin zβ  dependence can satisfy such boundary conditions when β  takes the discrete 
values given by 

πp dβ =                                        (10) 

Due to this fact, when the cavity geometry coincides with the coordinate system, we can use the separation 
variable method in order to achieve the boundary conditions [14]. Then, 

( ) ( ) ( ),m R Pψ ρ φ ρ φ=                                   (11) 

Substituting (11) in (5), we obtain the Bessel differential equation 
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A possible P dependence with φ  is spatially harmonic: e jkφ− . This implies that kφ  is an integer: n. 
Therefore, Equation (12) becomes, 

( )
2

2 2 2 2
2 0c
R R R k nρ ρ ρ

ρρ
   ∂ ∂

+ + − =   ∂∂   
                          (13) 

The differential equation shown above is known as the Bessel Differential Equation, whose general solution 
is, 

( ) ( ) ( ) ,n c n cR BJ k CY kρ ρ ρ= +                               (14) 

where, nJ  is the Bessel function of first kind and nY  is the Bessel function of second kind (or Newman 
function). The real constants B and C arise as the most general solution for R. The solution for the magnetic-type 
Hertzian potential in region the second region is, 

( ) ( ) ( ) ( ) ( ) ˆ, , cos sinm n c n c zz BJ k CY k n zρ ϕ ρ ρ φ β = +  aΠ                  (15) 

The Helmholtz wave Equation (5) is valid for both regions of the shielded resonator, with the requirement that 
in the enclosed section ( )0 aρ≤ ≤  the solution for the magnetic-type Hertzian potential only the Bessel 
function nAJ  is allowed (where A is another real constant), because nY  in the center of the cavity goes to 
infinity. This enclosed section is characterized by a permittivity constant 1ε  and a permeability 1µ . For the 
second region ( )a bρ≤ ≤  the permittivity constant is 0ε , the permeability is 0µ , and the E and H fields are 
given by Equations (2) and (3) . 

It is important to note that 1 2 πp dβ β= = . Therefore, the cut-off wave numbers are given by, 
2 2 2
1 1 1 1 ,ck ω µ ε β= −                                    (16) 

2 2 2
2 2 0 0 .ck ω µ ε β= −                                    (17) 

The boundary conditions of the tangential electric field at bρ =  and aρ =  and the continuity of the 
tangential magnetic field at bρ =  provide the following equations 

( ) ( ) ( ) ( )2 2 1 2 2 2 1 2 0.n c c n c n c c n c
n nB J k b k J k b C Y k b k Y k b
b b+ +
   − + − =      

                 (18) 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 0 2 2 1 2 0 2 2 1 2n c c n c n c c n c n c c n c
n n nA J k a k J k a B J k a k J k a C Y k a k Y k a
a a a

µ µ µ+ + +
     − = − + −          

   (19) 

( ) ( ) ( )2 2
1 1 2 2 2c n c c n c n cAk J k a k BJ k a CY k a = +                              (20) 

Solving for B and C in (18), substituting it in (19) and (20), and then dividing side by side these two ex- 
pressions, we can obtain the following relation, 
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By making 1 2ω ω ω= = , from Equations (16) and (17) we obtain the following relation: 



E. J. Paez et al. 
 

 
193 

2 2
1 1 1

2 2
0 02

.c

c

k
k

β µ ε
µ εβ

+
=

+
                                     (23) 

Equations (21) and (23) give the relation between the electromagnetic parameters of the unknown medium 
and the resonant frequency. The cut off wave number can be determined if the dielectric permittivity constant is 
known or viceversa. This system is solved numerically using the Matlab function fsolve. The solution given in 
Equation (21) reduces to the simple form given in [15] and [6] when 0n = . The possible sources of uncertainty 
present in this configuration are the exact dimensions of the cavity, losses in the wall’s finite conductivity and 
resolution of the measurement equipment [16]-[20]. Equations (21) and (23) reduce to the limit case of a simple 
cavity resonator filled with a single material when a b=  or when the electromagnetic parameters of both 
mediums are equal. Because the frequency variable was canceled in Equations (21) and (23), some solutions 
could be added or eliminated. The solution obtained should be checked by using 1 2ω ω= . 

3.2. Solution for TM Modes 
The treatment is similar for TM modes but using electric-type Hertzian potential as was presented on page 3. 
The general solution for this potential is in principle the same as in (15). E and H fields can be obtain using (6) 
and (7) and after applying the electromagnetic edge conditions, it gives, 
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n c
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Y k b
J k b

α = −                                     (25) 

It is also worth pointing out that for this given circular symmetry of the set of E and H fields, which is easily 
appreciable in the corresponding Hertzian potentials (15), we can expect pure TE and TM as stated in [21]. 

4. Convergence Range for Dielectric Measurements 
Previously, we have mentioned that the frequency in both regions (air and dielectric) must be equal in order to 
represent a real resonant condition. However since we set 1 2ω ω=  in Equations (16) and (17), this condition 
should be verified after obtaining the parameters from the Equations (21) and (23). The previous argument is the 
final condition to probe that the numerical solution satisfies the resonance condition inside the cavity, otherwise, 
it represents a non-real solution and it is not possible to support a resonant mode inside the cavity. 

We now exemplify our statement with an example. Consider a resonant frequency calculation for TE and TM 
modes in a circular cylindrical cavity resonator with a central dielectric rod. In the Table 1 it is considered the 
case of two empty cavities designed for the TE011 and TM011 modes respectively with a resonant frequency of 5 
GHz, being twice the radius a of the length d. See the Figure 1. 

For a given dielectric permittivity constant/radius of the central cylinder, the resonant frequency is calculated 
as solution of the corresponding TE or TM equations set. Thus, for a selected working mode order n and a fixed 
radius of the dielectric rod, the resonant frequency decreases when we increase the dielectric permittivity con- 
stant. Then we reach a value of permittivity where the wave numbers 1ck  and 2ck  correspond to different 
frequency values according to Equations (21) and (23). When this happens we face a non-physical solution. This 
implies that the existent mode inside the cavity could correspond to higher order modes. This is the usable range 
of a particular resonant mode in a specific cavity. In the limit, the resonant frequency begins to be complex 
which really implies that it is an attenuate mode. The higher order modes for all design are given in the Table 2. 

In the following we have determined the usable range for the Cavity 1 and Cavity 2. This is shown in Figures 
2-4 for the set of modes 011, 021 and 031 respectively, where we have determined the dependence of the 
resonance frequency with respect to the dielectric permittivity constante of the central sample under mea- 
surement for a fixed radius. In the case of TE modes, Cavity 1, the cutoff relative dielectric permittivity constant 
are 1 1.6rε = , 1 4.6rε =  and 1 10.1rε =  respectively. The respective values for TM modes, Cavity 2, are  
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Table 1. Cavity design for TE modes.                                                                                

Cavity Frequency (MHz) Radius (cm) Length (cm) 
Cavity 1 5000 7.023 3.512 
Cavity 2 5000 6.420 3.210 

 
Table 2. Higher order modes of the TE/TM011 for cavity 1: 5.000 GHz and cavity 2: 5.000 GHz.                                     

Mode Cavity 1 Frequency (MHz) Cavity 2 Frequency (MHz) 
TE/TM011 5000.0 5000.0 
TE/TM021 6398.7 6215.7 
TE/TM031 8124.0 7947.9 

 

 
Figure 2. Usable range for dielectric measurement for (a) Cavity 1 TE011; (b) Cavity 2 TM011. In both cases it can be 
appreciated the breaking point of the resonant condition for this particular mode. TM011 mode has a higher measurable range 
for dielectric permittivity constant than TE011 mode.                                                                        

 

 
Figure 3. Usable range for dielectric measurement for: (a) Cavity 1 TE021; (b) Cavity 2 TM021. It can be noticed that the 
measurable range is higher than for the previous mode. In this case both ranges are of similar length.                               

 

 
Figure 4. Usable range for dielectric measurement for: (a) Cavity 1 TE031; (b) Cavity 2 TM031. The usable range for the TE 
mode is higher than the respective for the TM mode.                                                                    



E. J. Paez et al. 
 

 
195 

1 1.7rε = , 1 4.6rε =  and 1 9.6rε = , which are in general lower than the previous case of TE modes. 
Notice in general how the dielectric range increases for higher resonant modes, however compromising the 

measurement of the tangent loss due to lower quality factors because cavity losses. 
For instance, observe that it is not possible to use the TE011 mode in the cavity 1 to characterize materials with 

permittivity values higher than 1.6 using a dielectric rod of 3 cm. However this situation can be solved if the 
dielectric rod diameter is reduced and, as consequence, the permittivity constant range increases. Figure 3 
shows the new usable range using a dielectric rod of radius 2 cm for both Cavity 1 and Cavity 2. 

This method is valid for each configuration cavity-resonant mode-dielectric rod, however due to the non- 
linearity of Equations (21) and (23), or equivalently (24) and (25) for TM modes, it results difficult to predict the 
percentage of increment in the valid usable range for dielectric measurements due to a reductions in the 
dielectric rod’s diameter. 

Here it is easily observable how the usable range is increased, allowing to carry out measurements of higher 
permittivity values. This method is in general valid for any mode and resonant frequency. 

Some authors do not use TM modes because any air gap between the top surface of the central cylindrical 
sample and the top surface of the external cavity can distort deeply the resonant frequency [15]. 

One important aspect worth mentioning is that there are some flattened sections, portion with horizontal 
trends, of the curves shown in the Figures 2-4. Those portions represent regions of less sensitivity of the 
permittivity regarding the frequency measurement. This region is not a recommendable region to measure 
properties due to higher expected uncertainty associated to the measurement according results given in [19] and 
[20]. However the method shown in this article to determine the usable range of a given cavity can be used to 
avoid those regions of higher associated uncertainty, simply changing the diameter of the dielectric rod and 
hence the position in the curve of the expected permittivity under measurement. This result may be of the 
interest for metrology in dielectric permittivity. 

5. Experimental Realization  
In this section we explored the previous results by using a double-cylindrical dielectric resonator, diameter is 
140 0.1 mm±  and height 36 0.1 mm±  resonating at 5 GHz in the mode TE011 to characterize the permittivity 
constant of heavy oil with 11 API. The cavity was made of Aluminium C330 whose maximum dielectric 
conductivity is 621 10  S m× . To determine the effective permittivity constant we used the method of the 
critical points [22] with the help of a Vector Network Analyzer Anritsu, model 37269D, 40 MHz - 40 GHz. 
Posteriorly, the theory of mixing of concentric cylinders was used to determine the real permittivity constant of 
heavy oil. As the holder for petroleum sample we selected quartz due to its low dielectric losses and a very well 
known real permittivity constant of 3.850 [25]. The selection of its diameter was done taking into consideration 
the analysis presented in this article. The resulted resonant frequency was 4.881 GHz due to imperfections in 
constructions of the cavity. 

Based on references [23]-[25] we expected a value to be lower than 4. It can be noticed in the Figure 5 that an 
adequate radius for this purpose is 3 cm. It is not recommended a large radius due to the simple fact that the  

 

 
Figure 5. Usable range for dielectric measurement for a resonant cavity at 5 GHz in the mode TE011 for two radius: (a) 1 cm; 
(b) 3 cm. It is obvious that the recommended one is 3 cm which provides enough range for the characterization. Both radius 
where selected in this analysis according material availability.                                                              
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resonant frequency of the cavity is lowered implying an electromagnetic characterization at another frequency 
than the required. 

The real effective dielectric determined using the method of the critical points is 2.688 and the corresponding 
for heavy oil is 2.356 in total agreement with the tend of the previous results known for lower frequencies. 

6. Conclusion 
In this paper we presented a general methodology which may be useful to determine the usable dielectric range 
for material characterization. Due to the presence of the central cylinder, a displacement of the resonant fre- 
quency occurs proportional to the permittivity constant of the material until the resonant pattern of the mode 
under study can no longer exist. It means that for a given cavity and fixed rod’s radius to be located at the center 
of the cavity there exists a maximum value of measurable permittivity constant. No resonant conditions can be 
satisfied for higher permittivity values. The best alternative in order to increase the range of permittivity 
constant that can be measured reducing the radius of the central dielectric rod or choosing a higher resonant 
mode with the disadvantage that cavity loses can affect the results by changing the resonant frequency and the 
quality factor. We have shown that the behavior of the resonant frequency versus the dielectric constant should 
be taken into account when selecting the best appropriate region with high sensitivity in order to ensure the 
repeatability of measurement and to reduce the uncertainty associated to the measurement. Finally we have 
shown with a simple example the electromagnetic characterization of heavy oil with 11 API selecting a proper 
radious for a petroleum holder made of quartz of purity 99%. 

Acknowledgements 
This work was supported by FONACIT under the project No. 2011001317. We wish to thank to Roque 
Rodríguez for his contribution in this work. 

References 
[1] Love, D.C. and Rothwell, E.J. (2006) A Mode-Matching Approach to Determine the Shielding Properties of a Doubly 

Periodic Array of Rectangular Apertures in a Thick Conducting Screen. IEEE Transactions on Electromagnetic Com-
patibility, 48, 121-133. 

[2] Massaro, A., et al. (2009) Design and Modeling of GaAs/AlGaAs Nonlinear Waveguides by Hertzian Potential For-
mulation. European Microwave Conference, Rome, 29 September 2009-1 October 2009, 719-722. 

[3] Yla-Oijala, P., Taskinen, M. and Sarvas, J. (2001) Multilayered Media Green’s Functions for Mpie with General Elec-
tric and Magnetic Sources by the Hertz Potential Approach. Progress in Electromagnetics Research, 33, 141-165.  
http://dx.doi.org/10.2528/PIER00120802  

[4] Tartarini, D. and Massaro, A. (2011) GPU Approach for Hertzian Potential Formulation Tool Oriented For Electro-
magnetic Nanodevices. Progress in Electromagnetics Research M, 17, 135-150. 

[5] Collin, R.E. (1960) Field Theory of Guided Waves. 2nd Edition, IEEE Antennas and Propagation Society, USA. 
[6] Gershon, D., Calame, J.P., Carmel, Y. and Antonsen, T.M. (2000) Adjustable Resonant Cavity for Measuring the 

Complex Permittivity of Dielectric Materials. Review of Scientific Instruments, 71, 3207-3209.  
http://dx.doi.org/10.1063/1.1304865  

[7] Chen, L.J. and Lue, J.T. (1998) The Transition from the d- to s-State Due to Thermal Fluctuation for High-Tc Super-
conductors as an Evidence from the Microwave Penetration-Depth Measurement. IEEE Transactions on Microwave 
Theory and Techniques, 46, 1251-1256. 

[8] Pozar, D.M. (2005) Microwave Engineering. 3rd Edition, John Wiley & Sons, Inc., Hoboken. 
[9] Kukharchik, P.D., Serdyuk, V.M. and Titovitsky, J.A. (2008) Diffraction of Hybrid Modes in a Cylindrical Cavity Re-

sonator by a Transverse Circular Slot with a Plane Anisotropic Dielectric Layer. Progress in Electromagnetics Re-
search, 3, 73-94. http://dx.doi.org/10.2528/PIERB07112502  

[10] Shen, Z.Y., et al. (1992) High-Tc-Superconductor-Sapphire Microwave Resonator with Extremely High Q-Values up 
to 90 K. IEEE Transactions on Microwave Theory and Techniques, 40, 2424-2431. 

[11] Liu, J.H., Chen, C.L., Lue, H.T. and Lue, J.T. (2003) A New Method Developed in Measuring the Dielectric Constants 
of Metallic Nanoparticles by a Microwave Double-Cavity Dielectric Resonator. IEEE Microwave and Wireless Com-
ponents Letters, 13, 181-183. http://dx.doi.org/10.1109/LMWC.2003.811668 

[12] Yan-Shian, Y., Juh-Tzeng, L. and Zhi-Ren, Z. (2005) Measurement of the Dielectric Constants of Metallic Nanoparti- 

http://dx.doi.org/10.2528/PIER00120802
http://dx.doi.org/10.1063/1.1304865
http://dx.doi.org/10.2528/PIERB07112502
http://dx.doi.org/10.1109/LMWC.2003.811668


E. J. Paez et al. 
 

 
197 

cles Embedded in a Paraffin Rod at Microwave Frequencies. IEEE Transactions on Microwave Theory and Techniques, 
53, 1756-1760. 

[13] Stratton, J.A. (1941) Electromagnetic Theory. McGraw-Hill Boook Company, USA. 
[14] Geyi, W. (2008) Time-Domain Theory of Metal Cavity Resonator. Progress in Electromagnetics Research, 78, 219- 

253. http://dx.doi.org/10.2528/PIER07090605 
[15] Ong, C.K., Varadan, V.V. and Varadan, V.K. (2004) Microwave Electronics Measurement and Materials Characteriza-

tion. John Wiley & Sons Ltd., Chichester. 
[16] Dester, G.D., Rothwell, E.J., Havrilla, M.J. and Hyde, M.W. (2010) Error Analysis of a Two-Layer Method for the 

Electromagnetic Characterization of Conductor-Backed Absorbing Material Using an Open-Ended Waveguide Probe. 
Progress in Electromagnetics Research B, 26, 1-21. http://dx.doi.org/10.2528/PIERB10080506 

[17] Krupka, J., Gregory, A.P., Rochard, O.C., Clarke, R.N., Riddle, B., et al. (2001) Uncertainty of Complex Permittivity 
Measurements by Split-Post Dielectric Resonator Technique. Journal of the European Ceramic Society, 21, 2373-2676. 
http://dx.doi.org/10.1016/S0955-2219(01)00343-0 

[18] Riddle, B., Baker-Jarvis, J. and Krupka, J. (2003) Complex Permittivity Measurements of Common Plastics over Va-
riable Temperatures. IEEE Transactions on Microwave Theory and Techniques, 51, 727-733. 

[19] Paez, E., Azpurua, M.A., Tremola, C. and Callarotti, R.C. (2012) Uncertainty Estimation in Complex Permittivity 
Measurements by Shielded Dielectric Resonator Technique Using the Monte Carlo Method. Progress in Electromag-
netics Research B, 41, 101-119. http://dx.doi.org/10.2528/PIERB12041306 

[20] Paez, E., Azpurua, M.A., Tremola, C. and Callarotti, R.C. (2012) Uncertainty Minimization in Permittivity Measure-
ments in Shielded Dielectric Resonators. Progress in Electromagnetics Research M, 26, 127-141. 
http://dx.doi.org/10.2528/PIERM12082811 

[21] Harrington, R.F. (1961) Time-Harmonic Electromagnetic Fields. John Wiley and Sons, Hoboken, 220. 
[22] Sun, E.Y. and Chao, S.H. (1995) Unloaded Q Measurement—The Critical-Points Method. IEEE Transactions on Mi-

crowave Theory and Techniques, 43, 1983-1986. http://dx.doi.org/10.1109/22.402290 
[23] Callarotti, R.C. and Paez, E.J. (2014) Microwave Dielectric Properties of Heavy Oil and Heating of Reservoirs. SPE 

Energy Resources Conference, Port of Spain, 9-11 June 2014, 127-141. http://dx.doi.org/10.2118/169937-MS 
[24] Callarotti, R.C. and Paez, E.J. (2013) Efficient Eigenvalue Numerical Solutions for Time Dependent Linear Systems. 

Computational Methods and Experimental Measurements, 16, 43-54. 
[25] Paez, E.J., Callarotti, R.C., Azprua, B.M. and Rodrguez, R.J. (2013) Medida de la permitividad de lquidos de bajas 

prdidas en un resonador dielctrico blindado en alta frecuencia (4881 GHz). In 10 Congreso internacional de metrologa 
elctrica, Buenos Aires, September 2013, Vol. 10. 

http://dx.doi.org/10.2528/PIER07090605
http://dx.doi.org/10.2528/PIERB10080506
http://dx.doi.org/10.1016/S0955-2219(01)00343-0
http://dx.doi.org/10.2528/PIERB12041306
http://dx.doi.org/10.2528/PIERM12082811
http://dx.doi.org/10.1109/22.402290
http://dx.doi.org/10.2118/169937-MS

	Measurable Dielectric Permittivity Range for TE and TM Modes in a Shielded Dielectric Resonator
	Abstract
	Keywords
	1. Introduction
	2. Hertzian Potentials 
	3. TE and TM Modes for the Cylindrical Cavity Resonator  
	3.1. Solution for TE Modes
	3.2. Solution for TM Modes

	4. Convergence Range for Dielectric Measurements
	5. Experimental Realization 
	6. Conclusion
	Acknowledgements
	References

