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ABSTRACT 

In this paper an attempt has been made to find the aperture field distribution in a rectangular waveguide for non-sinu- 
soidal, periodic excitations using Multiple Cavity Modeling Technique. The excitation functions, considered, are square, 
trapezoidal and clipped sine wave in nature. In the present analysis these time domain excitation functions have been 
represented in terms of a truncated Fourier series consisting of the fundamental frequency and its higher harmonics. 
Within the waveguide the fundamental frequency will give rise to a dominant mode excitation whereas the higher order 
modes will excite dominant and higher order modes. If the higher harmonics are assumed suppressed then the 
waveguide is subjected only to a dominant mode excitation. Results for dominant mode reflection coefficient (magni- 
tude), VSWR and complex transmission coefficient have been computed and compared with theoretical data. The ex- 
cellent agreement between them validates the analysis. 
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1. Introduction 

Waveguide and waveguide based components are used 
since World War II and they are still continued to be in 
use. These waveguide based elements have got wide ap- 
plications in ground based, air borne and ship borne ra- 
dars as well as in onboard satellite application in various 
frequency bands ranging from 1 GHz to 1000 GHz. The 
main reason for this is their high power handling capabil- 
ity, ability to sustain high environmental variations, rug- 
gedness and the possibility of achieving high accuracy in 
fabrication. Modern radar system employs a number of 
waveguide components and circuit elements. Some of 
them are the irises, septum and windows, filters, waveguide 
Tee-junctions, waveguide power dividers, ortho-modal 
couplers and multiplexers etc. In addition to these wave- 
guide components apertures cut in a ground plane and 
slots cut along the broad wall or narrow wall are exten- 
sively used in array antennas due to their large power 
handling capability, generation of ultra low side lobes 
and excellent polarization characteristics. Raw wave- 
guides are also used for transmitting signals from one 
node to another in a high power microwave networks. 

During post World War II, Lewin [1] and Harrington 
[2] gave an extensive material on the waveguides. Till 
then huge works have been carried out on different 
waveguide and waveguide based circuits on frequency 
domain using variational technique, Method of Moment 

(MoM), Finite Difference Time Domain (FDTD) method 
etc. The total amount of work on these is so huge that 
even a brief literature survey of it will be a report of its 
own. However, comparatively, very few amounts of works 
are available on transient analysis and non-sinusoidal peri- 
odic excitations of waveguide. 

In 1954 Karbowiak [3] presented the basic theory of 
transient propagation in waveguides. The theory was 
subsequently applied to the propagation of a unit step 
modulated carrier and propagation of pulses. Later, in 
1957, Elliot [4] studied the pulse waveform degradation 
due to dispersion in waveguide. He derived an expression 
in terms of error function and Fresnel’s integrals for the 
exit wave shape as a function of guide length, dispersion 
and width of the input rectangular pulse. In 1963, Saxton 
and Schmitt [5] published another paper on transients in 
large waveguide. An analytical study of the influence of 
moving media on the propagation of transient electro- 
magnetic modal waves in dispersive waveguide was re- 
ported by Berger and Griemsmann [6]. The response to 
impulsive excitation was determined in exact closed form 
and was used to demonstrate the pulse distortion. In 1970 
Schulsz-Dubois [7] presented a paper on Somemrfeld pre 
and postcursors in the context of waveguide transients. 
Ito [8] presented his work on dispersion of very short 
pulses in waveguide. Tretyakov [9], in 1994, published 
an evolutionary equation for the theory of wave-guides. 
The theory opened up new possibilities for investigating 
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transient fields directly without obligatory applications of 
Laplace’s or Fourier’s transforms. In the same year an 
exact closed form expression for transient fields in ho- 
mogeneously filled waveguides was presented by Dvorak 
[10]. The closed form solution, involving Bessel’s func- 
tion of first kind was derived from the impulse response 
of the waveguide. However exact, closed form solution 
for complex pulses was not presented. In the paper it was 
also demonstrated that the incomplete Lipschitz-Hankel 
integrals can be used to represent transient pulses in ho- 
mogeneously filled waveguides. Next year, P. Srenus and 
B. York [11] studied the transient propagation in rectan- 
gular waveguide using elementary dispersion theory. A 
time domain theory of waveguide was also presented by 
Geyi [12]. 

However, most of these analyses assume a pulse or 
impulse excitation. No attention was paid on the analysis 
of waveguide circuits under non-sinusoidal, periodic ex- 
citations like square wave, trapezoidal wave, clipped sine 
wave, triangular wave, saw tooth wave etc. Out of these 
the first three have huge technical significance in high 
power applications like radar. This is because in Con- 
tinuous Wave Doppler radar if the gain and/or the input 
time harmonic signal of the amplifier is/are very high 
then the output signal may be clipped off resulting in a 
clipped sinusoidal wave. Depending on the clipping level 
it may be approximated as a trapezoidal or even a square 
wave. 

In this paper, a methodology for the analysis of a 
waveguide under non-sinusoidal periodic excitation has 
been carried out and the aperture field distributions in the 
waveguide have been plotted for different excitation. 

2. Theory 

The proposed waveguide structure has been analyzed 
using Multiple Cavity Modeling Technique (MCMT) 
[13-15]. The cavity modeling of the structure with details 
of different regions and fictitious magnetic currents 
(equivalent source to electric field) at the apertures are 
shown in Figure 1. The structure has three regions, 
namely, two waveguide regions & one cavity regions and 
two interfacing apertures between them. The electric field 
 

 

Figure 1. Details of regions and fictitious magnetic currents 
at the apertures. 

distributed on apertures (and hence the fictitious magnetic 
currents) are unknown and to be determined. The  
component of electric field at the ith aperture can be ap- 
proximated in terms of unknown complex basis coeffi- 
cients 

x
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pqE x and known two dimensional piecewise train- 

gular basis function  as [13-15] ( )(T x )

   ,

1 1

=    where  =
M M

i i ξ
ξ pq p q

p q

E E T x T y ξ x y
 
    (1) 

and 

( )

1
1

1

1
1

1

  for 

=

  for 

v
v v

v v
v

v
v

v v

T










 




 



x x
x x x

x x
x

x x
x x x

x x

-

+

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷÷çè ø

       (2) 

The value of “M” in Equation (1) depends on the con- 
vergence and desired accuracy of the result. For the pre- 
sent analysis we have taken M = 25. Higher the value of 
“M” better is the accuracy and larger is the simulation 
time. 

Since the basis function is known we need to find the 
value of the basis coefficients in Equation (1) to find the 
aperture electric field distribution/fictitious magnetic 
current distribution existing at the aperture. The fictitious 
magnetic current iM x  is basically the equivalent source 
of the aperture electric field and is related with it by the 
equivalent principle. 

The boundary conditions (continuity of tangential com- 
ponent of magnetic field across the dielectric-dielectric 
boundary) at the apertures can be obtained using super- 
position principle and can be given by 
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The magnetic field scattered inside the cavity region 
due to the fictitious magnetic currents at the apertures 
can be determined by using cavity Green’s function of 
the electric vector potential. The cavity Green’s function 
has been derived by solving the Helmholtz equation for 
the electric vector potential for unit magnetic current 
source [13]. The scattered magnetic fields in the waveguide 
region due to the presence of the fictitious transverse 
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magnetic current densities are solved by rigorous mode 
matching technique [2,13]. The incident magnetic fields 
are assumed to be X-directed and can be obtained by 
solving wave equations [16]. 

The tangential component of magnetic fields in the 
cavity region due to magnetic current in aperture “i” can 
be expressed as 
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where 1,2 ; , ,v N X Y Y X        and l = a b . 
In Equations (7)-(10), 2a is the guide width, 2b is the 

guide height, m  and n  are the Neumann’s function, 
2d is the cavity thickness/length of the waveguide,  
is the propagation constant for the (m, n) mode. The rest 
have their usual meanings. 

ε ε
Γmn

The tangential component of magnetic fields in the 
waveguide region due to magnetic current in aperture “i” 
can be expressed as 
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where 
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The incident fields will be composed of a number TE 
and TM modes that are generated at the feed point dis- 
continuity and are supported by the waveguide and can 
be written as 
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provided the incident field is assumed to be X-directed. 
If we further assume that the geometric distribution of 
the field source is such that the excitation is a linear 
combination of the supported modes then the amplitude 

0H  and 0 of Equations (19) and (20) can be obtained 
from the Fourier coefficients of the input signal. If 

E
  be 

the rise and fall time and T be the time period then the 
Fourier coefficients for square, trapezoidal and clipped 
sine wave respectively can be given by (for all the cases 
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Solving the boundary conditions, provided in Equa- 
tions (3)-(6) by Galerkin’s specialization of Method of 
moment, where weighting function is same as expressed 
in equation Equations (1) and (2), the aperture electric 
field distribution can be obtained. 

From the aperture electric field distribution, obtained 
using the present theory, we can easily calculate the com- 

plex reflection    and transmission (T) coefficients 
using the following equations:  
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3. Results and Discussion 

The electric field distribution at apertures of waveguide 
for square, trapezoidal and clipped sine excitations have 
been normalized with respect to the maximum aperture 
field strength and are shown in Figures 2-4 respectively. 
The figures show that the aperture electric field distribu- 
tions are not purely sinusoidal. This is due to the pres- 
ence of the higher order modes in the guide. However as 
the excitation changes from square to clipped sine wave 
it become more sinusoidal. This is because of the rapid 
convergence of the Fourier series and hence presence of 
lesser number of modes. 

If we set the rise/fall time of the broken sine wave 
equal to T/4 then the excitation function changes to a 
sinusoid excitation. The dominant mode reflection coef- 
ficient (magnitude), VSWR and transmission coefficient 
for such case have been computed using Equations (24) 
and (25) and compared with the available theoretical data 
in Figure 5. The theoretical data for |S11|, VSWR and 
|S21| are not shown in Figure 5 as they are well known to 
be constant at 0, 1 and 1 respectively. Theoretical value 
of the phase of the transmission coefficient is equal to 
4π gt   where g  is the guided wavelength. 
 

 

Figure 2. Normalized electric field distribution in wave- 
guide for square wave excitation. 
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Figure 3. Normalized electric field distribution in wave- 
guide for trapezoid wave excitation. 
 

 

Figure 4. Normalized electric field distribution in wave- 
guide for clipped sine wave excitation. 
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Figure 5. Plot of reflection coefficient (magnitude), VSWR 
and transmission coefficient. The theoretical value of the 
magnitude of reflection coefficient = 0, Magnitude of trans- 
mission coefficient = 1 and VSWR = 1 are standard and hence 
not shown in the graph. 

4. Conclusions 

The paper presents a methodology to find the aperture 
electric field distribution in the waveguide for square, 
trapezoidal and clipped sine wave excitation. The meth- 
odology is general and can be extended to other wave- 
guide circuits excited by any deterministic and periodic 
waveform that can be extended in Fourier series. 

It should be that noted our main objective of the pre- 
sent work is to propose a methodology to find the aper- 
ture field distribution in a waveguide circuit for non si- 
nusoidal periodic excitation. This is because if we can 
find the aperture field distribution then from it we can 
calculate the complete characteristic of the circuit under 
the given excitation. 

The proposed theory can be extended for any arbitrary 
not periodic waveform also. However for such cases we 
must know the strengths of the individual mode existing 
within the circuit. 

The proposed theory is also applicable to other rec- 
tangular waveguide based circuits under periodic/non- 
periodic non-sinusoidal excitations. 
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