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ABSTRACT 

Electromagnetic scattering and electromagnetic induction are research topics not directly associated to each other. In 
this work, these two different concepts are combined in a model constituted by a rotating circular coil with a dielectric 
spherical core at a fixed eccentric position. The scope of the analysis is to examine the effect of a permeable object on 
the production of the alternating voltage. Methods and formulas from both scattering and induction have been utilized 
for the derivation of the developed potential difference around the moving loop. Several graphs of the voltage output 
with respect to the geometrical and material characteristics of the configuration, are presented and discussed. 
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1. Introduction 

The electromagnetic induction is defined as the develop- 
ment of voltage across a closed conductor with time- 
varying magnetic flux through it. The physics that govern 
the inductive experiments have been mathematically 
examined in a number of elementary treatises. The rela- 
tionship between the various induction laws is summa- 
rized in [1], where Cohn advocates that the combined use 
of both motional and transformer induction assures the 
validity of the produced results. A complete report re- 
viewing the major developments and identifying impor- 
tant trends in the broad field of geophysical electromag- 
netic induction is given in [2]. Moreover, a rudimentary 
study on induction inside a rotating coil surrounded by a 
rigid conductor of finite or infinite extent has been pro- 
vided in [3]. The analysis is based on integral solutions of 
the field equations and leads to the conclusion that the 
induced magnetic fields depend on the relative symmetry 
of the rotator. 

The electromagnetic scattering is defined as the modi- 
fication of the incident field in the presence of an obsta- 
cle through the fulfillment of the boundary conditions, 
and numerous researches are performed on this topic. In 
[4], the point-source scattering by an electrically large 
conducting sphere has been discussed, where Bessel 

functions of complex order are utilized. In addition, the 
quasi-magnetostatic solution for a permeable prolate 
spheroid under arbitrary excitation by a time-harmonic 
primary field has been obtained by using the separation 
of variables method with vector spheroidal wave func- 
tions [5]. Finally in [6], a simplified solution is obtained 
to the problem of a radiating loop in the presence of a 
metallic core. 

In this work, we combine the two aforementioned is- 
sues (induction and scattering) by considering a structure 
comprised of a rotating thin circular loop and an eccen- 
trically positioned penetrable spherical core, illuminated 
by a plane wave. The rotation happens around the eccen- 
tric axis passing through the centre of the spherical cavity. 
The magnetic vector potential at the position of the thin 
closed wire is evaluated with use of spherical eigenfunc- 
tion expansions and through the enforcement of the 
boundary conditions. The variance of magnetic flux is 
computed from the line integral of the electric field 
around the metallic coil. The DC offset and the RMS 
value of the produced voltage are represented in several 
graphs with respect to the size of the sphere, the material 
of the core and the excitation parameters as well. By in- 
spection of the variations, one can reach various useful 
and applicable conclusions. In particular, one can choose 
the texture, the position and the radius of the scatterer 
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that should be posed eccentrically inside the ring in order 
to obtain maximum output voltage. The engineer could 
utilize the dielectric core, when constructing an electro- 
magnetic induction device, as an “optimizer” for regulat- 
ing the produced potential. 

2. Mathematical Concept 

The configuration of the examined problem is shown in 
Figure 1(a) where the spherical coordinate system (r, θ, 
φ) and the equivalent Cartesian one (x, y, z) are also de-
fined. The origin O coincides with the center of a spheri-
cal volume (region 1) of radius a, filled with dielectric 
material of relative permittivity ε1 and relative magnetic 
permeability μ1. The scatterer is posed into vacuum (re-
gion 0) with intrinsic parameters (ε0, μ0). A thin circular 
metallic loop of radius b > a, is shown on the x – y plane, 
with its center K at (x, y, z) = (0, d, 0) with b > d, located 
eccentrically to the spherical core. The closed wire is 
rotated with respect to x axis with circular frequency  
in the presence of an x-polarized plane wave E0,inc, with 
magnitude Q (in V/m), advancing towards the negative z 
semi-axis. Mind that the harmonic time dependence of 
the incident field, is of the form exp(–iω0t); it has circular 
frequency ω0 ≠ ω. In Figure 1(b), we present a side view 
of the device as appeared from the positive x semi-axis, 
when the frame is rotated by angle ωt, at an arbitrary 
time t. 

ω

The polar radius R(φ) of the eccentric circular loop at t 
= 0 (Figure 1(a)) is determined by applying the law of 
cosines to the shaded triangle, yielding to: 

  2 2 2sin cosR φ d φ b d φ   .         (1) 

It is necessary to extract the parametric equation set of 
the rotated coil denoted by     , ,  , ,x X φ t y Y φ t 


 

 The azimuthal angle  ,z Z φ t 0,  2φ π  will play 
the role of the parameterization variable even when the 
object does not belong exclusively to x-y plane. At this 
point, it is proper to make clear that there is no practical 
importance in considering the filamentary loop as a torus 
possessing non-negligible thickness. In the vast majority 
of works concerning voltage production by electromag- 
netic induction, the coil boundaries are constructed from 
wires with infinitesimal transversal dimensions. Fur- 
thermore, the assumed oscillation frequency is kept quite 
low and thus the electrical size of the wire would be ex- 
tremely small even it is not filamentary. In such a case, 
the solution to the compound scattering problem from 

both the dielectric sphere and the metallic torus would 
lead to almost identical results to those assuming thin- 
wire approximations. 

As the closed wire is rotated with respect to x axis, the 
corresponding coordinate X(φ, t) will be fixed, inde- 
pendent from the angle ωt and equal to P(φ)cosφ. The 
rest two equations are derived by projecting the other 
edge of length P(φ)sinφ, positioned at angle ωt, upon the 
axes x and z (see Figure 1(b)). Accordingly, one obtains 
the following expressions: 

   , cX φ t R φ osφ              (2a) 

   , sin coY φ t R φ φ ωt s         (2b) 

   , sin siZ φ t R φ φ ωt n         (2c) 

The parametric representation of the curve in spherical 
coordinates      , ,  Θ , ,  Φ ,r P φ t θ φ t φ φ t    for 
each  0,φ  2π , is given by: 

  Ρ ,φ t R φ                   (3a) 

 Θ , arccos(sin sin )φ t φ ωt      (3b) 

 Φ , arctan(tan cos )φ t φ ωt      (3c) 

According to Faraday’s law of induction [7], the in- 
duced voltage across a closed metallic wire (W), is de- 
fined as the line integral of the local electric field around 
the loop. In case of a monochromatic electric field with 
circular frequency ω0, the related formula is given below: 

 
0

0Re iω t

W
U e d     E W         (4) 

It should be stressed that E0 does not denote the real, 
time-dependent electric field into vacuum, but the corre- 
sponding complex phasor. In case the field quantities are 
expressed in terms of the spherical coordinate system (r, 
θ, φ), the Cartesian components are given by [8]: 
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 
 
 
 

  
      
     

 (5) 

Once these functions are determined, the line integral 
of (4) is particularized to give [9]: 

 

              0

2

0 0 0
0

Re , , , , , ,
π

iω t
x φ y φ z φU t e e φ t X φ t e φ t Y φ t e φ t Z φ t dφ 

   
 

                  (6)
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(a)                                                                (b) 

Figure 1. The physical configuration of the investigated device: (a) As viewed from the positive z semi-axis. (b) As viewed 
from the positive x semi-axis. The red arrow denotes the moving direction of the incident plane wave, not the actual vector of 
the electric field. 

 
where subscript φ corresponds to the azimuthal partial 
derivative of the related function. The small-e functions 

 0 0 0, ,x y ze e e  are the electric field components evaluated 
around the moving circular loop: 

        0 0, Ρ , ,Θ , ,Φ ,x xe φ t E φ t φ t φ t     (7a) 

       0 0, Ρ , ,Θ , ,Φ ,y ye φ t E φ t φ t φ t 



    (7b) 

       0 0, Ρ , ,Θ , ,Φ ,z ze φ t E φ t φ t φ t     (7c) 

Thus, the only prerequisite to use expression (6) in 
computing the induced voltage, is the explicit form of the 
total electric field into vacuum, expressed in spherical 
coordinates. 

The electric field into vacuum background is com- 
prised of the incident and the scattering component E0 = 
E0,inc + E0,scat, where E0,inc = xQexp(-ik0z) and k0 = 

0 0 0   . The electric field into vacuum region is com- 
puted with use of spherical eigenfunctions and the follow- 
ing series expansion [10]: 

      0
1cos 0

0
1

2 1 cos
nik r θ

n n
n

e i n P θ j k r






      (8) 

The symbol  m
nP x  corresponds to the Legendre 

function of degree n, order m and argument x. The 
spherical Bessel jn(x) and the spherical Hankel of the first 
kind hn(x) are well-known [11]. The Riccati functions are 
defined as    d

n nz x d z x dx    , where zn(x) is the 
spherical Bessel or Hankel function. Once the boundary 
conditions at r = a are imposed, the respective scattering 
components of the electric field are given by: 

       01
0 ,

1 0

, , cos cos n
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n

h k r
E r θ φ Q φ S n P θ

k r





   (9a) 
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 
   

   
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            (9c) 

where: 

             
       

1 1 0 1 0 1

1 0 1 0 1

2 1
d d

n n n n n
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
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The wavenumber in region 1 is defined by 1 0 1 1k   . 
As one can notice, the mathematical formulation 

above is divided in two subsections; the first one con- 
cerns the electromagnetic induction and the second one 
examines the electromagnetic scattering. The induced 
voltage around the loop (first subsection) is solely depen- 
dent on the electromagnetic field and the shape/position 
of the coil. Successful manipulation of the boundary 
value scattering problem (second subsection) gives the 
required electromagnetic field in explicit form. Accord- 
ingly, there are two successive series of algebraic opera- 
tions which help us understanding the combined induc- 
tion/scattering consideration. In this sense, the two con- 
cepts are not treated independently each other, because 
the solution to the scattering problem is a prerequisite to 
solving the induction one. That is why the dielectric core 
cannot be present in our configuration, in case one ignores 
the scattering procedure. In particular, the only mecha- 
nism through which the permeable sphere participates in 
the investigated context is the modification of the elec- 
tromagnetic field externally to it. 

It is also known [7] that the developed voltage around 
a loop with area (S) is proportional to the time rate of 
change of the magnetic flux through it, namely: 

  0
0Re iω t

S

dU e
dt

      B Sd         (11) 

where Β0 is the magnetic field into vacuum. The area 
integral above will be used alternatively for the evalua- 
tion of the induced potential difference in order to vali- 
date our results. 

3. Numerical Results 

Prior to proceeding to the numerical results, we should 
determine the intervals into which the input parameters 
belong. The radius of the metallic loop can take values 
within the range 0.5 m < b < 2.5 m (in most cases equal 
to b = 1 m). The frequency of the excitation wave is 
moderate (usually equal to ω0 = 200π rad/sec), being 
taken between the limits: 2π rad/sec < ω0 < 400π rad/sec. 
When it comes to the spherical scatterer, its relative per- 
mittivity does not affect substantially the results and thus 
is kept constant throughout the numerical simulations (ε1 
= 5). The relative magnetic permeability of the sphere 
possesses usual magnitudes, that is 1 < μ1 < 2.5 and nor- 
mally is assigned the value μ1 = 2. To the query “why 
does the permeability vary?”, one shall respond that the 
characteristics of the sphere’s material are treated as de- 
grees of freedom in designing the device and therefore 
can vary. As far as the values of μ1 are concerned, they 
are chosen close to those owned by common composite 
materials [12]. Instead of the radius of the sphere, we use 
the normalized parameter    0,1a b d   as the core 
should be kept internal to the rotating ring. The eccen-

tricity ratio    0,1d b d   is also utilized to quantify 
the relative transposition of the scatterer. In the following 
graphs, two quantities are mainly represented; the DC 
offset and the RMS value of the induced voltage, defined 
below: 

 
2

02

π
ω

dc

ω
U U t

π
  dt                (12a) 

 
2

2

02

π
ω

rms dc

ω
U U t U

π
    dt       (12b) 

The amplitude of the plane wave Q is a trivial parame- 
ter and therefore is chosen high enough to give realistic 
values for the output voltages. 

In Figure 2(a), the RMS component of the produced 
voltage is shown as function of the normalized sphere 
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Figure 2. The RMS induced voltage Urms as function of the 
normalized radius of the spherical scatterer a/(b – d), (a) for 
various sizes of the loop b (μ1 = 2), (b) for various magnetic 
permeabilities of the core μ1 (b = 1 m). Plot parameters: d = 
0.2 m, ε1 = 5, ω = 200π rad/sec, ω0 = 200π rad/sec, Q = 105 
V/m. 
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

radius for constant eccentric position d corresponding to 
several sizes of the rotating loop. The maximum mag- 
netic flux through the circular wire (and implicitly the 
induced voltage) is proportional to the size of this ring. 
Note also that the normalized radius of the sphere plays 
rather unimportant role when it is kept low. On the con- 
trary, when the scatterer gets close to the frame, there is 
an amplifying effect on the measured quantity, which 
gets more significant for larger loops. This is a natural 
result because for fixed b,d, the available manoeuvring 
area for the sphere to move gets restricted when the of 
the loop is small. In Figure 2(b), the RMS value of the 
produced voltage is represented with respect to the same 
variable a b d  for various magnetic permeabilities 
of the sphere. One could also notice the exponentially 
increasing behavior of the curves which remarks the 
beneficial influence of the scatterer’s radius on the in-
duced voltage. In addition, this upward sloping trend is 
proportional to the magnetic permeability of the spheri-
cal core, while there is no variation when the obstacle is 
magnetically inert. In other words, the size and the mag-
netic density of the dielectric core provide the design 
engineer with two additional degrees of freedom in con-
structing an efficient voltage generator. 

In Figure 3, we show the measured response with re- 
spect to the permeability of the core μ1, for several ec- 
centricity ratios  d b d . It should be stressed that the 
eccentricity ratio affects crucially the RMS value of the 
induced voltage which means that the degree of asymme- 
try reinforces the recorded quantity. In this way, the per- 
meable sphere could play the role of a tuner with which 
the magnitude of the output is chosen at will by changing 
the eccentric position of the sphere. Also, all the curves 
coincide at μ1 = 1 and then increase gradually for mag- 
netically denser construction materials. It seems that 
when μ1 = 1, the dielectric core becomes completely 
transparent to the incident electromagnetic field regard- 
less of its position. 

In Figure 4(a), the RMS component of the produced 
voltage is shown in a contour plot with respect to the 
rotation frequency of the loop and the oscillation fre- 
quency of the incident plane wave. For increasing ω0, the 
recorded quantity gets reinforced with a pace negatively 
related to ω. Once the rotation frequency gets larger, 
there is either a stability in the measured output (modest 
ω0) or a magnitude boost (substantial ω0). It should be 
also remarked that when ω is very low, rapid variations 
in Urms are observed for little change of ω0. This chaotic 
behavior is attributed to the fact that, in case ω  0, the 
magnetic flux is considerably affected even by the 
slightest variance in the frequency of the alternating field. 
In Figure 4(b), the DC offset Udc is represented for the 
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Figure 3. The RMS induced voltage Urms as function of the 
core magnetic permeability μ1, for several eccentricity ra-
tios d/(b – a). Plot parameters: a = 0.2 m, b =1 m, ε1 = 5, ω = 
200π rad/sec, ω0 = 200π rad/sec, Q = 105 V/m. 
 

 

rotation frequency ω (rad/sec) 
200    400    600    800   1000   1200

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1200

1000

800

600

400

200ex
ci

ta
tio

n 
fr

eq
ue

nc
y 
ω

0 (
ra

d/
se

c)
 

 
(a) 

 

rotation frequency ω (rad/sec) 
200    400    600    800    1000   1200

0.4

0.2

0 

-0.2

-0.4

-0.5

1200

1000

800

600

400

200ex
ci

ta
tio

n 
fr

eq
ue

nc
y 
ω

0 (
ra

d/
se

c)
 

 
(b) 

Figure 4. Contour plots of (a) the RMS induced voltage Urms 
and (b) the DC component of the produced voltage Udc, 
with respect to the rotation frequency ω and the excitation 
frequency ω0. Plot parameters: a = 1/3 m, d = 1/3 m, b = 1 m, 
ε1 = 5, μ1 = 2, Q = 105 V/m. 
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same set of parameters. Note that in all the previous ex- 
amples, the presence of the scatterer makes the produced 
oscillating voltage to have nonzero average value owning 
similar waveforms to Urms. This is not the case; when ω 
is chosen close to ω0, there is a substantial increase for 
growing frequencies. After numerical trials, we con- 
cluded that the shape of the equal Udc levels in Figure 
4(b) resemble rotated hyperbolas with narrow extent 
following an asymptotic law of: 

fundamental phenomena in electromagnetics (induction 
and scattering) have not been studied yet. 

The variation of the measured output is represented as 
function of the sphere’s characteristic parameters and 
several conclusions are drawn describing its effect on the 
magnetic flux through the coil. An interesting expansion 
of the present study would be to assume a spherical scat- 
terer with inhomogeneities and/or anisotropies, or to 
modify slightly the shape of the core using oblate sphe- 
roid coordinates and functions. Also, closed wires of 
arbitrary curvature rotating around arbitrary axes could 
be also investigated with use of the same techniques. 

2 2
0

35
2dcU O ωω ω ω     03          (13) 

In Figure 5, we show in contour plot the relative dif- 
ference between the estimation of the RMS voltage via 
normal expression (4) and its evaluation through the al- 
ternative Formula (11). This percent error is represented 
as function of the quantities (a/b, d/b), where a + d  b, 
and one can observe that its magnitude is very low (be- 
low 0.0002%). As the truncation limit (number of terms 
summed) in the series (9) is kept fixed, the error gets 
more significant for more sizeable scatterers. Addition- 
ally, the more eccentric is the position of the sphere, the 
more substantial is the recorded quantity. As far as most 
of the numerical results represented in previous figures 
are concerned, they have been verified through the area 
integral (11) and remarkable coincidence with (4) is ex- 
hibited. 
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