
Journal of Electronics Cooling and Thermal Control, 2013, 3, 111-130 
http://dx.doi.org/10.4236/jectc.2013.33013 Published Online September 2013 (http://www.scirp.org/journal/jectc) 

Mixed Convection Heat Transfer for Nanofluids in a 
Lid-Driven Shallow Rectangular Cavity Uniformly Heated 

and Cooled from the Vertical Sides: The Opposing Case 

Hassan El Harfi1, Mohamed Naïmi1*, Mohamed Lamsaadi2, 
Abdelghani Raji1, Mohammed Hasnaoui3 

1Physics Department, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, 
Laboratory of Flows and Transfers Modelling (LAMET), Beni-Mellal, Morocco 

2Polydisciplinary Faculty, Sultan Moulay Slimane University, Interdisciplinary Laboratory of  
Research in Sciences and Technologies (LIRST), Beni-Mellal, Morocco 

3Physics Department, Faculty of Sciences Semlalia, Cadi Ayyad University, Laboratory of Fluid  
Mechanics and Energetics (LMFE), Marrakech, Morocco 

Email: *naimi@fstbm.ac.ma; *naimima@yahoo.fr 
 

Received May 31, 2013; revised July 1, 2013; accepted July 10, 2013 
 

Copyright © 2013 Hassan El Harfi et al. This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

ABSTRACT 

An investigation on flow and heat transfer due to mixed convection, in a lid-driven rectangular cavity filled with Cu- 
water nanofluids and submitted to uniform heat flux along with its vertical short sides, has been conducted numerically 
by solving the full governing equations with the finite volume method and the SIMPLER algorithm. In the case of a 
slender enclosure, these equations are considerably reduced by using the parallel flow concept. Solutions, for the flow 
and temperature fields, and the heat transfer rate, have been obtained depending on the governing parameters, which are 
the Reynolds, the Richardson numbers and the solid volume fraction of nanoparticles. A perfect agreement has been 
found between the results of the two approaches for a wide range of the abovementioned parameters. It has been shown 
that at low and high Richardson numbers, the convection is ensured by lid and buoyancy-driven effects, respectively, 
whereas between these extremes, both mechanisms compete. Moreover, the addition of Cu-nanoparticles, into the pure 
water, has been seen enhancing and degrading heat transfer by lid and buoyancy-driven effects, respectively. 
 
Keywords: Component Nanofluids; Mixed Convection; Heat Transfer; Lid-Driven Cavity; Parallel Flow Assumption;  
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1. Introduction 

Heat transfer in fluidic systems has often been the subject 
of ambitious research in order to enhance it considering 
its importance in several industrial processes. However, 
with conventional fluids, such as water and oil, whose 
thermal conductivity is inherently poor, heat transfer is 
limited, which is a crucial problem to challenge. Also, 
current design solutions already push available technol- 
ogy to its limits, and an innovative way should be taken. 
In such a context, Choi of Argonne National Laboratory 
[1] developed the novel concept of nanofluids as a route 
to improve the performances of heat transfer fluids cur- 
rently available. This new class of advanced heat transfer 
fluids is engineered by dispersing solid nanoparticles 

(metallic, non-metallic or polymeric), smaller than 100  
nm in diameter, in base fluids (aqueous or organic host 
liquids), which confers a large thermal conductivity on 
these ones and makes them potentially useful in engi- 
neering equipments involving heat transfer. To know 
about nanoparticles, nanofluids, their production and ap- 
plications, see, for instance, the report of Yu et al. is cur- 
rently available in [2]. 

During the last decade, nanofluids have attracted lots 
of researchers, who are encouraged by their critical impor- 
tance and promising role, as new advanced heat transfer 
fluids, to take up challenges. Therefore, numerous stud- 
ies, on convection heat transfer, have been conducted, and 
most of them have dealt with forced convection, indicat- 
ing that nanoparticle suspensions have unquestionably a 
great potential for heat transfer enhancement, as reported *Corresponding author. 
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in a recent paper by Corcione [3]. In contrast, although 
the investigations concerned with buoyancy-driven con- 
vection are relatively few, they have seen a gradual in- 
crease lately, leading to contradictory findings, thus leav- 
ing still unanswered question, if the use of nanoparticle 
suspensions for natural convection applications is actu- 
ally advantageous with respect to pure liquids [3]. At the 
same time, mixed convection has not received either less 
attention in view of the number of the related works re- 
cently done. Among them, flow and heat transfer prob- 
lem in lid-driven cavities, which finds applications in 
industrial processes such as food processing, float glass 
production [4], thermal-hydraulics of nuclear reactors [5], 
dynamics of lakes [6], crystal growth, flow and heat 
transfer in solar ponds [7], lubrication technologies [8] 
and so on. The interaction of the shear driven flow due to 
the lid motion and natural convective flow due to the 
buoyancy effect are quite complex, which necessitates a 
comprehensive analysis to understand the physics of the 
resulting flow and heat transfer process. In this respect, 
different configurations and combinations of thermal and 
dynamical boundary conditions have been considered 
and analyzed by some investigators. The contributions 
can be divided in two cases: 

1) Steady state case where all boundary conditions are 
time independent. In this regard, it is advisable to men- 
tion the work of Tiwari and Das [8], who studied heat 
transfer enhancement in a nanofluid-filled square cavity, 
with the vertical sides moving and differentially heated, 
while the horizontal ones are insulated and motionless. 
Three situations, depending on the direction of the mov- 
ing walls, were examined, and a model taking into ac- 
count the solid volume fraction of nanoparticles was de- 
veloped to analyze the nanofluids behavior. With only 
one uniformly moving wall, from left to right, first, it is 
to bring up the research of Abu-Nada and Chamkha [9] 
deal with mixed convection flow in an inclined square 
enclosure filled with a nanofluid. The left and right walls 
are kept insulated while the bottom and the moving top 
ones are maintained at constant cold and hot tempera- 
tures, respectively. It was found that significant heat 
transfer enhancement can be obtained due to the presence 
of nanoparticles and that this is accentuated by inclina- 
tion of the enclosure at moderate and large Richardson 
numbers. Mahmoodi [10] investigated mixed convection 
fluid flow and heat transfer in rectangular enclosures 
filled with a nanofluid. The left and right walls as well as 
the top one are maintained at a constant cold temperature. 
The moving bottom is kept at a constant hot temperature. 
A parametric study was performed and the effects of the 
Richardson number, the aspect ratio of the enclosure and 
the volume fraction of the nanoparticles on the fluid flow 
and heat transfer were analysed. It was found that for the 
selected values of the Richardson number, the average 
Nusselt number increases with the nanoparticles volume 

fraction, and seems to be higher with tall enclosures than 
with shallow ones. In the case of a nanofluid-filled squ- 
are cavity with cold sides, a partially heated (with con- 
stant heat flux heater) and insulated bottom, and a mov- 
ing cold top, Mansour et al. [11] examined the effects of 
Reynolds number, type of nanofluids, size and location 
of the heater and the volume fraction of the nanoparticles 
in their study related to mixed convection. They observed 
that the heat transfer enhances with all the above men- 
tioned parameters. Muthtamilselvan et al. [12] studied 
heat transfer enhancement of nanofluids in rectangular 
enclosures, where the moving top is at higher constant 
temperature than the bottom, whereas the left and right 
boundaries are insulated. They found that at higher as- 
pect ratios, the heat transfer rate increases strongly with 
the nanoparticles volume fraction. Nemati et al. [13] in- 
vestigated heat transfer performance of a moving top 
square cavity, filled with nanofluids and subject to dif- 
ferent side wall temperatures. They reported that an in- 
crease of nanoparticles volume fraction enhances heat 
transfer, but such an effect reduces with the Reynolds 
number. As for Talebi et al. [14], they conducted an in- 
vestigation on mixed convection flows in a square lid- 
driven cavity, having left and right sides heated and 
cooled, respectively, and moving top and bottom both 
adiabatic, utilizing nanofluids. These authors showed that, 
at given Rayleigh and Reynolds numbers, an increase of 
the nanoparticles concentration favours the flow and heat 
transfer. Finally, like Tiwari and Das [8], Sheikhzadeh et 
al. [15] were interested in laminar mixed convection of a 
nano-fluid in two sided lid-driven enclosures. The mov- 
ing left and right walls are maintained at constant cold 
and hot temperatures, respectively, while the horizontal 
ones are insulated. The effect of moving direction of 
walls on mixed convection is studied for various Ri- 
chardson numbers, aspect ratios and nanoparticles vol- 
ume fractions, and was found to affect mainly the flow 
field, temperature gradient and heat transfer. In addition, 
increasing the volume fraction of nanoparticles resulted 
in a linear increase of the average Nusselt number, as an 
index of heat transfer rate improvement, for all the con- 
sidered cases. 

2) Unsteady state case, where some boundary condi- 
tions are time dependent as in the only work done, in this 
subject, by Karimipour et al. [16], where periodic mixed 
convection of a nanofluid inside a rectangular cavity, 
with insulted vertical sides and hot temperature bottom 
kept at rest and cold temperature top horizontally oscil- 
lating, was carried out. The effects of Richardson number 
and volume fraction of nanoparticles on the flow and 
thermal behaviour of the nanofluid were examined. It 
was observed that the best heat transfer is obtained with a 
Richardson number lower than unit and that the higher 
value of this parameter corresponds to the lower ampli- 
tude of the oscillation of the heat transfer rate in the  
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steady periodic state. In addition, heat transfer was found 
to be improved by nanoparticles presence. 

All the above mentioned studies are of numerical na- 
ture, using a finite volume method (for the most), a finite 
difference method or Lattice Boltzmann method to solve 
the governing equations and various single-phase models 
to describe effective conductivity and viscosity of the 
considered nanofluids, which are principally  or 
Cu-water. 

2 3Al O

To the best of our knowledge, the problem of mixed 
convection heat transfer of nanofluids in a lead-driven 
enclosure subject to Neumann boundary conditions for 
temperature (i.e. boundaries subject to heat fluxes) is not 
yet analyzed. So, in order to know more about the effect 
of the boundary conditions kind on flow and heat transfer 
within nanofluids, the present paper focuses on such a 
problem within a two-dimensional shallow rectangular 
enclosure, filled with Cu-water nanofluids, whose short 
vertical sides are submitted to uniform heat fluxes while 
the long horizontal ones are maintained adiabatic with 
the top moving in the opposite direction to the heat flux. 
A numerical solution of the full governing equations is 
obtained via a finite volume method. An analytical one, 
based on the parallel flow approximation, is also pro- 
posed. The results are presented, in terms of streamlines, 
isotherms, stream function and temperature profiles and 
heat transfer rates, and discussed for various values of 
the dimensionless parameters, controlling the problem, 
which are the Reynolds, Re, and Richardson, Ri, num- 
bers, and the solid volume fraction of nanoparticles, Φ. 

2. Mathematical Formulation 

The studied configuration is sketched in Figure 1. It is a 
shallow rectangular enclosure of height H 

q

 and length 
, filled with Cu-water nanofluids. The long horizontal 

walls are adiabatic, while the vertical short ones are sub- 
mitted to a uniform density of heat flux, . All these 
boundaries are rigid, impermeable and motionless apart 
from the top one which moves in its own plane from 
right to left at uniform velocity, 0 . The main assump- 
tions made here are those commonly used, i.e.: 

L

U 

 

H
L

q  q

0


y
T  

0 

0

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y
T  

0U   

v ,y   

u,x   

 

Figure 1. Schematic view of the geometry and coordinates 
system. 

The base fluid and the nanoparticles are in thermal 
equilibrium and they flow at the same velocity (i.e. no 
slip occurs between them or the nanoparticles are uni- 
formly dispersed within the base fluid so that the result- 
ing nanofluid can be considered a single-phase fluid). 
 The nanoparticles are spherical; 
 The nanofluid is Newtonian and incompressible; 
 The thermophysical properties of the considered nan- 

ofluids are constant (taken at the reference tempera- 
ture, 0T  ) except for the density in the buoyancy term 
(containing the gravitational acceleration, g), which 
obeys the Boussinesq approximation; 

 The flow is two-dimensional, laminar and steady; 
 The radiation heat transfer between the sides of the 

cavity is negligible when compared with the other 
mode of heat transfer. 

Therefore, the equations describing the conservation of 
mass (1), momentum (2)-(3) and energy (4), written in 
terms of velocity components  , pressure ,u v   p  
and temperature  T  , are: 

0
u v

x y
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2 2
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(3) 

2 2

2 2nf

T T T T T
u v

t x y x y

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
       (4) 

To close the problem, the following appropriate bound- 
ary conditions are applied: 

0 and 0 for 0 and
nf

T q
u v x x L

x k

         


   (5) 

0 and 0 for 0
T

u v y
y

    


          (6) 

0 0 and 0 for
T

u U v y H
y

       


      (7) 

To model the effective physical properties of the nano- 
fluid, appearing in the above equations, the following 
formulas are used: 

 1nf f np                  (8) 

for the effective density, as shown in [2]; 
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 2.5
1

f
nf


 


             (9) 

for the effective dynamic viscosity, which is due to 
Brinkman [2]; 

      1
nf f np

               (10) 

for the thermal expansion coefficient [17]; 

      1
nf f np

Cp Cp Cp           (11) 

for the heat capacity [2]; 

 
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2 2

2

np f f npnf

f np f f np

k k k kk

k k k k k

   


  
        (12) 

for the effective thermal conductivity, due to Maxwell- 
Garnett, which is a restriction of the Hamilton-Crosser 
model to spherical nanoparticles [2]; 

 
nf

nf

nf

k

Cp



               (13) 

for the thermal diffusivity [18]. 
Note that the Subscripts f, nf and np stand for the base 

fluid, nanofluid and nanoparticles, respectively. 
On the other hand, using the characteristic scales ,H   

 2
0 ,f U  0 ,H U   0  and ,U  fq H k  , corresponding to 

length, pressure, time, velocity and temperature, respect- 
ively, the dimensionless governing equations and the cor- 
responding boundary conditions are: 
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where nf fk k k , nf f   , nf f   , 
   nf f    and nf f   are parameters 

depending on Φ, according to models given above. In 
addition, to analysis the flow structure, the stream func- 
tion, ψ, related to the velocity components via 

 and with 0 on all boundaries
ψ ψ

u  v
y x

 
   
 

 

(21) 
is used. 

The above equations let appears some dimensionless 
parameters that govern the problem, namely, the solid 
volume fraction Φ, the aspect ratio of the enclosure, A, 
the Peclet, Pe, Reynolds, Re, and Richardson, Ri, num- 
bers. For the last four, the expressions are 

2

0 0
2

0

, , f

f f f

g q HU H U HL
A Pe Re and Ri

H k U


 

    
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(22) 

Note that 

2
and

Gr Ra
Pe Pr Re Ri

PeReRe
         (23) 

where 
4

2
, andf f

ff f

g q H
Gr Pr Ra PrGr

k

 


  
      (24) 

are the Grashof, Prandtl and Rayleigh numbers, respect- 
ively. 

The local heat transfer, through the nanofluid-filled 
cavity, can be expressed in terms of the local Nusselt 
number defined as 

 
* 1

f f

hL q L L T A
Nu y

k T k H T T T

    
    

      A
  (25) 

where h is the heat exchange coefficient,  
*

fT q H k   a characteristic temperature and  
   Δ 0, ,T T y T A y   the side to side dimensionless 

local temperature difference. This definition is based on 
the thermal conductivity of the base fluid, fk , which 
seems logical since, according to Corcione [3], Nu that 
would describe the thermal performance of the enclosure, 
with immediacy, should vary in the same manner as h 
and vice versa. However, Equation (25) is notoriously 
inaccurate owing to the uncertainty of the temperature 
values evaluated at the two vertical walls (edge effects). 
Instead, Nu is calculated on the basis of a temperature 
difference between two vertical sections, far from the end 
sides, as suggested by Lamsaadi et al. [19]. Thus, by 
analogy with Equation (25), and considering two infini- 
tesimally close sections, Nu can be expressed by 

     0 0
2

1 1
lim lim
x x

x A

x
Nu y

T T x T x 


   



   
 

 (26) 1          (20) 
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where x  is the distance between two symmetrical sec- 
tions with respect to the central one. 

The corresponding average Nusselt number is calcu- 
lated, at different locations, from 

 1
Nu Nu y 0 dy              (27) 

3. Numerics 

17) associated with Equations (18)-(20) 

 

Equations (14)-(
have been solved by using a finite volume method and 
SIMPLER algorithm in a staggered uniform grid system 
[20]. A second order back-wards finite difference scheme 
has been employed to discretise the temporal terms ap- 
pearing in Equations (15)-(17). A line-by-line tridiagonal 
matrix algorithm with relaxation has been used in con- 
junction with iterations to solve the nonlinear discretised 
equations. The convergence has been considered as 

reached when 1 5 1
, , ,10k k k

i j i j i j
, ,i j i j

f f f     , where ,
k

i jf   

stands for the value of u, v, p or T at the kth iteration level 
and grid location (i, j) in the plane (x, y). The mesh size 
has been chosen so that a best compromise between run- 
ning time and accuracy of the results may be found. The 
procedure has been based on grid refinement until the 
numerical results agree, within reasonable accuracy, with 
the analytical ones, obtained from the parallel flow ap- 
proach developed in the next section. Hence, as shown in 
Table 1, a uniform grid size of 160  40 has been se- 
lected for 8A   (value used for the numerical compu- 
tations) and een estimated sufficient to model accu- 
rately the flow and temperature fields within the cavity. 
The time step size, t

 has b

 , has been varied in the range 
7 410 10t   , depe ing on the values of the govern- 

4. Approximate Parallel Flow

nd
ing parameters. 

 Analytical  

As  from Figures 2-4, displaying streamlines 

Solution 

 can be seen
(left) and isotherms (right), the flow and temperature 
fields exhibit a parallel aspect and a linear stratification, 
respectively, in the most part of the cavity, for 8A  
and various values of Re, Ri and Φ. Accordingly, th - 
lowing simplifications 
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where C is unknown constant temperature gradient in the 
x-direction, are possible, which leads to the ordinary non- 
dimensional governing equations: 

3d u T
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Table 1. Accuracy tests conducted with Re = 1, 3 

various values of . 
Ri = 10 and 
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Using such an approach, the solution of Equations (29) 
and (30), satisfying Equations (31)-(33), is 
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The expression of the stream function, 

    (35) 

 ψ y , can be 
deduced by integration of Equation (21) nto ac- 
co nditi
Eq

, taking i
unt of the corresponding boundary co ons and 
uation (34), which gives:  
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Figure 2. Streamlines (left) and isotherms (right) for Re = 0.1  ((a)  = 0.1, (b)  = 0.1 and (c)  = 0.2) 
and Ri ((1) Ri = 1, (2) Ri = 10, (3) Ri = 102 and (4) Ri = 103). 

and various values of 

 

   
4 2y y  3 3 2

12 2 2
y ReRiC y y y        

 
  (36) 

where 



  . Therefore, the flow intensity is 

 max min,c Sup             (37) 

where max  and min  are the extrema of  ψ y  at 
the ce vertical section of the enclosure ntral  2x A . 

 natuThey correspond to intensities of forced and ral 
convections, respectively. 

 the 

On the other hand, according to Bejan [21], the energy 
balance in x-direction is 

1 1 1

d d
T Pe T

y uT y
    

0 or  0 0 0 x Ax x 
   

In particular, in the pa

dy      (38) 

rallel flow region and with the 
application of Equation (18), Equation (38) becomes: 

1

0 k
1

 d
Pe

C u y                (39) 

ves 
the following transcendental equation:  

which, when substituted to Equations (34) and (35), gi
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Figure 3. Streamlines (left) and isotherms (right) for Re = 1 and various values of  ((a)  = 0.1, (b)  = 0.1 and (c)   0.2) 
and Ri ((1) Ri = 1, (2) Ri = 10, (3) Ri = 102 and (4) Ri = 103). 

 =

 

2 2 2
2

2
1 0

3360 362,880105
C C C

k  
 

 (40) 

whose solution, via Newton-Raphson method, for 
Pe, Ra and Φ, leads to C. 

31 Pe PeRa Ra   
    

given 

Finally, taking into account of Equations (26) and (27), 
the Nusselt number is constant and can be expressed as 

1
Nu Nu

C
                 (41) 

5. Results and Discussion 

With boundary conditions of Neumann kind (uniform 
heat flux imposed to vertical walls) the flow and thermal 
fields, and thermo-convective ch
parallel, stratified and independent on the enclosure as- 

this parameter tends to 

aracteristics become 

pect ratio, A, respectively, when 
be large enough. In our situation, this has been occurred 
with 8A  in the limit of the explored values of Re 
 0.1 10Re  , Ri  31 10Ri  ,    0 0.2   , 
and 7Pr   (water based mixtures). Consequently, the     
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Figure 4. Streamlines (left) and isotherms (right) for Re = 10 and various values of  ((a)  = 0.1, (b)  = 0.1 and (c)  = 0.2) 
and Ri ((1) Ri = 1, (2) Ri = 10, (3) Ri = 102 and (4) Ri = 103). 
 

tours of streamlines (left) and isotherms (right)  

the flow is parallel to the horizontal boundaries and the 
temperature is linearly stratified in the horizontal direc- 

en from Figure 2 

mixed convection flow developed within the enclosure is 
governed only by four dimensionless parameters, namely, 

e, Ri, in accordance with Equations (22)-(24),  and 

are presented in Figures 2-4 for each Re and various Ri 
and Φ. First of all, remember that, except in the end sides, 

R
possibly the type of nanoparticles, even if the present 
study is limited to Cu-water nanofluid, with the thermo- 
physical properties of Cu and water given in Table 2 
[22]. The effects of these parameters on the flow and 
thermal fields and the resulting heat transfer will be now 
discussed. 

5.1. Flow and Thermal Patterns 

Typical con

tion. On the other hand, as can be se
corresponding to Re = 0.1, the shear effect due to moving 
top wall is domin all (=1), relatively small (= ant for Ri sm
10) and moderate (=10²), since the flow is unicellular and 
counterclockwise with streamlines crowded near this 
boundary causing the lost of their own symmetry with 
respect to the horizontal mid-plane and this, whatever the 
value of Φ. In contrast, for relatively high Ri (=10³), a 
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clockwise cell, whose size reduces with an increasing Φ, 
is generated by buoyancy effect in the lower part of the 
cavity, i.e. under that due to lid-driven effect. The influ- 
ence of Φ can be explained by the fact that an increase of 
this parameter leads to an increase of the effective vis- 
cosity, which, in its turn, tends to decelerate the buoy- 
ancy flow and accelerate the shear one. In fact, the vis-
cosity is a manifestation of surface phenomena and there- 
fore can only favour the shear flow. As for the isotherms, 
they remain almost vertical synonymous of pseudo-con- 
duction regime (i.e. low convection regime, Re = 0.1). 
An increase of Re to 1 (Figure 3) anticipates the buoy- 
ancy flow, since the related cell takes place at Ri = 10², 
with a decreasing size with Φ like before (i.e. Re = 0.1). 
However, such a cell tends to be large when passing to Ri 
= 10³, which is normal if one refer to Equation (22). In 
such a situation, the isotherms, which are tilted, with res- 
pect to y-axis, in the counterclockwise direction (i.e. that 
of the shear flow), gradually change direction of tilting as 
the buoyancy flow takes importance (i.e. while increas- 
ing Ri). But, with the presence of nanoparticles (i.e. with 
increasing Φ), such a change seems to occur slowly, de- 
pending on Ri. Finally, for Re = 10 (Figure 4), two small 
clockwise eddies develop in the bottom left and right cor- 
ners of the enclosure, for Ri = 10 (Figure 4(2a)), as a re- 
sult of buoyancy driven effect, although these structures 
may disappear wile introducing nanoparticles in the base 
fluid. As before, a progressive increase of Ri to 10² (Fig- 
ure 4(3)) makes stronger buoyancy effect and the two 
tiny eddies, observed previously, join each other and 
grow to give rise to a large buoyancy cell, whose size 
reduces slightly with Φ, for the reasons given above. A 
further increase of Ri to 10³ (Figure 4(4)) makes bigger 
enough buoyancy cell so that the effect of Φ, on this, 
cannot be detected, which is obvious since, according to 
Equation (22), inertia effects due to gravity prevail over 
those associated with top moving wall. At the same time, 
the isotherms appear to be nearly tilted in the direction of 
the strongest flow (shear flow for Ri = 1 and 10, and 
buoyancy flow for Ri = 10³). Between the two case, i.e. 
for Ri = 10², both the tendencies exist and the shape of 
the isotherms is strongly distorted. Here also, it is easy to 
see that an increase of Φ does not affect strongly the 
shape of isotherms. 

In addition to that, the similarity notion is not re- 
spected in the present problem since a change of Re may 
cause big changes in flow and thermal fields for given Ri 
 
Table 2. Thermophysical properties of base fluid (H2O) and 
nanoparticles (Cu) [22]. 

 

  3kg m   J kg kPC    W m kk    510 1 k 

O2H  997.1 4179 0.613 21 

Cu 8933 385 401 1.67 

and Φ (compare, for example, Figures 2(3a)-4(3a) cor- 
responding to Ri = 102 and Φ = 0). Also, for the case Ri = 
1, although buoyancy and lid-driven effects have the 
sam  magnitude, th  shear flow s dominan  because of 
th all dep the encl  (shallow cavity). 

5.2. Valida f the A oxima aralle w  

erature 

seen  the two types of results is 

e e  i t
e sm th of osure

tion o ppr te P l Flo
Analytical Solution 

In order to validate the approximate analytical solution, 
the numerical results (full circles) are compared to those 
obtained analytically (solid lines), as displayed in Fig- 
ures 5-7 giving stream function (left) and temp
(right) profiles along the y-axis at the mid-length of the 
cavity, (A/2, y) and T(A/2, y), respectively. As can be 

, the agreement between
quite perfect, which confirms the existence of an ana- 
lytical solution and validates mutually the parallel flow 
hypothesis and the elaborated computing code. 

Moreover, computed and calculated values of the 
stream function at the vertical central section of the cav- 
ity, c , and mean Nusselt number, Nu , presented in 
Figures 8-10, show also good agreement between the 
analytical and numerical results for a wide range of Ri, 
and various values of Re and Φ. 

5.

Se

 those discussed in sub- 
 increase 

 and 
natu here 
Φ re ost without influence due to mixing effects 

e extremum) corre- 
sp

from the left hot side and cools the top (y = 1) after pass-  

3. Stream Function and Temperature  
Distributions along the Vertical Central 

ction 

Although the results (Figures 5-7) of subsection 5.2 are 
related to the core region, where the parallel flow con- 
cept is valid, they confirm mostly
section 5.1 and demonstrate that, in general, an
of Φ amplifies and reduces the strengths of forced

ral flows, respectively, except in some cases w
mains alm

that occur at Re = 10 (Figure 7). 
The presence of a maximum in the stream function 

profile indicates that the flow is unicellular counter- 
clockwise, driven mainly by the moving top wall. When 
this profile presents, simultaneously, two extrema, maxi- 
mum and minimum, this means that both the shear and 
buoyancy driven flows coexist and the flow regime is 
bicellular. The maximum (positiv

onds to shear flow, which is counterclockwise, and the 
minimum (negative extremum) is related to buoyancy 
flow that is clockwise. 

Generally, the temperature profile presents two or 
three zones with positive and negative signs, namely 
(+,−), (−,+,−) and (−,+), depending on the flow nature 
and the competition between lid and buoyancy driven 
effects. Thus, with a dominant lid-driven effect, the shear 
flow warms the bottom (y = 0) by transporting the heat 
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Figure 5. The stream function (left) and temperature (right) profiles at mid-length of the cavity, along the vertical coordinate, 
for Re = 0.1 and various values of  and Ri. 
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Figure 6. The stream function (left) and temperature (right) profiles at mid-length of the cavity, along the vertical coor nate, 
for Re = 1 and various values of  and Ri. 
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Figure 7. The stream function (left) and temperature (right) profiles at mid-length of the cavity, along the vertical coordinate, 
for Re = 10 and various values of  and Ri. 
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Figure 8. Flow intensity (a) and heat transfer rate (b) versus Ri, for Re = 0.1 and various values of . 
 
ing near the right cold side. This is the case of a tem- 
perature profile of signs (+,−). With competing shear and 
buoyancy flows, the temperature sign is such that the 
corresponding counterclockwise and clockwise cells act 
so that the interface between them is warm, the bottom is 
cold and the top is warm (−,+) or cold (−,+,−) depending 
on whether shear or buoyancy effect is dominant, and on 
Φ. 

5.4. Flow Intensity and Heat Transfer Rate 

For further analysis of the problem, the flow intensity  

(top), , and heat transfer rate (bottom), Nuc , are re-  

ported, against Ri, in Figures 8-10, for each Re and var- 
ious Φ. 

It is easy to observe that c  
 depen
 a dec

exhibits in general two 
tendencies, whose expanse ds on Re and Φ. The 
first one is characterized by rease of c  with Ri, 
expressing a reduction of th rength of t ear flow 
until a minimum reached at particular value Ri, which 
increases and decreases with  and Re, respectively. The 
second one corresponds to ncrease of

e st

Φ
 an i

he sh
of 

c   with Ri, 
beyond the minimum obser d, and expr  aug-   ve esses an
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Figure 9. Flow intensity (a) and heat transfer rate (b) versus Ri, for Re = 1 and various values of . 
 
mentation of the strength of the buoyancy flow which 
reduces with Φ. It can be seen, also, that an increase of 
Re leads, first, to an increase of c  and, second, to a 
decrease of this quantity (compare Figures 8-10, ob- 
tained for Re = 0.1, 1 and 10, respectively). This is due, 
probably, to a change of the dominant role from one re- 
gime to another. 

With regard to Nu , a slight increase of this quantity, 
with Ri, is observed for Φ = 0, but such a tendency dis- 
appears, as Φ increases, leading to a constant . This 

behaviour is the consequence of an increase of the effect- 
e mo- 
ion is 

of

Nu

ive viscosity with Φ, which acts to slow down th
tion, particularly, for Re = 0.1 where mixed convect
weak (Figure 8). Moreover, for Re = 1 and 10, two 
trends  evolution appear for Nu , as fo cr  , since 
Nu  decreases and increases with Ri on both sides of a 
minimum depending on Φ (Figures 9 and 10 e first 
tre

driven flow. In contrast, the second trend, whi retches  

). Th

ch st

nd, which corresponds to a short range of Ri, whose 
expanse increases with Φ, is related to a dominant lid- 
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Figure 10. Flow intensity (a) and heat transfer rate (b) versus Ri, for Re = 10 and various values of . 
 
over a large range of Ri, is associated with a prevailing 
buoyancy-driven flow. Last, Figures 8-10 show also the 
quite obvious increase of Nu  with Re, conveying the 
favorable role of the lid-driven flow to heat transfer. 

In order to examine the influence of Φ on flow inten- 
sity and heat transfer rate, the quantities c  (top) and 
Nu  (bottom) are plotted against Φ  for various Ri and 
each Re, in Figures 11-13. For Re = 0.1 (Figure 11), 
except for Ri = 103 where a decrease of c

,

  with Φ, due 
probably to the reduction of buoyancy effect by nanopar- 

 are, in 

general, increasing functions of Φ. For Re = 1, Figure 12 
shows different variations of c  and Nu , with Φ, de- 

ticles, is observed for Φ < 7.5%, c  and Nu

pending on Ri. Hence, for Ri = 1 and 10, c  is almost 
constant (very weak slop), ncreawhile the i se of Nu  is 

 is not notab r Ri = , clear, although it le. Fo 10² c  pre- 
se nd nts a decrease a an increase on both sides of Φ = 
6.25%, whereas the increase of Nu  is monotonic. For 
Ri = 10³ the tendency is reversed since c   and Nu  
are decreasing functions of Φ. At last, for Re = 10 (Fig- 
ure 13), c  seems to be quite unconcerned about any 
variatio Φ n of   , whilst Nu  undconstac  nt ergoes   
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Figure 11. Flow intensity (a) and heat transfer rate (b) versus , for Re = 0.1 and various values of Ri. 
 
a diminution with this parameter, at least for the selected 
values of Ri. 

It is clear
fluids lead to contradictory conclusions, depending on 

uall
ven 

flo

happens, which is paradoxical when nanofl ds are ex- 
pected to improve heat transfer. This can be related, es- 

nductivity 
and v

 

 that the results related to heat transfer in nan- sentially, to the conflict between effective co
o
the flow nature, thus leaving still unanswered the ques- 
tion if the use of nanoparticle suspensions for mixed con- 
vection applications is act y advantageous with re- 
spect to pure liquids. In fact, with dominant lid-dri

w, heat transfer enhances with nanoparticles, whereas 
with dominant buoyancy-driven flow the opposite effect  

iscosity with the complicity of the cavity aspect 
ratio, which is large and favours the effect of viscosity 
and disfavours that of conductivity. 

5.5. Onset of the Bicellular Flow 

In Figure 14 is depicted the evolution of cRi , corre-    

ui
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Figure 12. Flow intensity (a) and heat transfer rate (b) versus , for Re = 1 and various values of Ri. 
 
sponding to the onset of buoyancy-driven flow, which 
gives rise to bicellular flow, versus Re, for various values 
of Φ. As can be seen, decreases and increases on 
both sides 
alue, , of Re suc , depending on 

flow tends s precocious, 
so

the presence of nanoparticles delays the onset of buoy- 
ancy-driven flow and then opposes to the corresponding 
effect, confirming the deterioration observed, efore, for cRi  

h that 

to

of a minimum corresponding to a particular heat transfer associated with this kind of flow. 
v m

Φ. This trend indicates that the appearance of the buoy- 
ancy-driven 

Re 1 5mRe 

 be sometime
metimes late around mRe . In addition to that, the more 

Φ increases the more cRi  increases, which means that  

6. Conclusions 

In this paper, a numerical and analytical study on mixed 
convection in a two-dimensional horizontal shallow     

b
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Figure 13. Flow intensity (a) and heat transfer rate (b) versus , for Re = 10 and various values of Ri. 
 
enclosure, of aspect ratio , filled with a nanofluid, 
has been conducted in the case where both short vertical 
sides are submitted to uniform heat fluxes while the long 
horizontal ones are assumed adiabatic, with the top one 
uniformly moving in the opposite direction to heat flux. 

The full partial differential equations, governing the 
problem, ha

olume method. The computations, which have been lim- 

respectively, in the ranges , 0
and .2

8A

ve been solved numerically using a finite 
v
ited to Cu-water mixtures, with 7Pr  , have been car- 
ried out with governing parameters, Re, Ri and Φ, varying, 

0.1 10Re  31 1Ri   
0 0  

s of a paralle
nclosure. 

be summar
In the limit o

numerical ones

. Analytic e
basi l flow assu
the e The main findi  
can ized as follows
 f the selected  th

, which 

al solution is d
mption in the 
ngs of such an
: 

values of

validates mutually bot

rived on the 
core region of 

investigation 

e governing 
ell with the 

h the cor- 
parameters, analytical results, agree very w

responding approaches. 
 Flow and temperature fields strongly depend on the  
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Figure 14. Limit of the onset of the bicellular flow, for various values of . 
 

Richardson number, measuring the relative impor- 
tance of both lid and buoyancy-driven effects. 

 Increasing the Richardson number is, in general, as- 
sociated with decreasing of heat transfer rate due to 
shear flow and increasing of that due to buoyancy- 
driven flow. 

 The addition of Cu-nanoparticles into the pure water 
leads to an enhancement of lid-driven convection heat 
transfer. 

 Against all odds, the addition of Cu-nanoparticles into 
the pure water results in a degradation of buoyancy- 
driven convection heat transfer. Therefore, although 
prospects of nanofluids are very promising, there is 
still a dearth of enough research in this area. 

 The onset of buoyancy-driven flow, giving rise to bi- 
cellular flow, depends strongly on the Reynolds num- 
ber and nanoparticles volume fraction. 
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