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Abstract 
Polyphenolic compounds with relatively high antioxidant activity obtained 
from subcritical water extraction of apple pomace were assessed for encapsu-
lation by spray drying technique, making use of polymeric substances 
co-extracted with the polyphenolic compounds. Comparative assessments 
were carried out of the directly encapsulated subcritical water extract (SWE) 
products with particles formed when encapsulated with the addition of hy-
droxyl propyl-β-Cyclodextrin (SWE + HPβ-CD). The powders were charac-
terized for their physico-chemical properties such as, moisture content, den-
sity, particle size, hygroscopicity to assess their suitability within cosmetic 
formulations. The SWE and SWE + HPβ-CD encapsulated products resulted 
in different physical properties. Although the particle size was less than 4 μm 
for both products, the direct encapsulation (SWE) was highly hygroscopic and 
this property was significantly reduced with addition of HPβ-Cyclodextrin 
(SWE + HPβ-CD). Scanning electron microscopy (SEM) and Fourier Trans-
form Infra-red (FT-IR) spectroscopic were employed to analyse the mi-
cronised powders to support evidence of encapsulation. Both techniques re-
vealed the interaction between compounds in extract and the carrier 
HPβ-Cyclodextrin suggesting successful encapsulation. The effect of storage 
conditions on retention of antioxidant activity of the subcritical water extract 
was evaluated within 35 days for extracts with and without the carrier 
HPβ-Cyclodextrin. Hydroxyl propyl-β-Cyclodextrin offered protection against 
degradation of antioxidant compounds thereby potentially extending the 
shelf-life and making the encapsulated powder suitable for incorporation in 
cosmetic and pharmaceutical applications. 
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1. Introduction 

There is a growing concern that common synthetic preservatives such sodium 
benzoate, sodium sorbate, formaldehyde releasers and isothiazolinones may 
have hazardous effects such as hormonal and neurological disorders, human 
carcinogen linked to damaging long term effects [1]. This coupled with con-
sumer demand for natural ingredient has driven increased interest in natural an-
tioxidants and other active ingredients obtained from plants [2]. However topi-
cal formulations incorporating extracts derived from plant sources may be re-
stricted due to their physical and chemical properties, which might affect the 
stability of the product and overall performance [3]. 

Polyphenolic compounds including Proanthocyanidins from grape seeds and 
coffee extracts have been shown to be strong antioxidants in vitro when com-
pared with Carotenoids, Vitamins C and E [4]-[8]. 

Apples are a significant source of bioavailable polyphenolic compounds and 
are a common fruit [9]. The major phenolic compounds found in apples include; 
Chlorogenic acids, Epicatechins, Phloridzin, Procyanidins and the Quercetin 
conjugates [10]. Apple pomace a by-product of apple juice and cider produc-
tions have higher amounts of polyphenolic compounds compared to the apple 
flesh, and are also a potential source of carbohydrate, fibre and pectin [11] [12]. 
Approximately 9 × 106 tonnes of apple pomace are produced globally per annum 
[13]. A recent study has demonstrated that subcritical water, a green solvent, can 
support the efficient and effective extraction of polyphenolic compounds with 
relatively high antioxidant activity from apple pomace [14]. However phenolic 
compounds can undergo molecular transformation through oxidation when ex-
posed to severe environmental conditions such as high temperature and humid-
ity which potentially reduce the efficacy within cosmetic, nutraceutical pharma-
ceutical and food formulations. Therefore, the stabilisation of the high antioxi-
dant activity is important to ensure efficacy before, and during applications. En-
capsulation is a technique widely applied to stabilise and protect bioactive com-
pounds against degradation, within nutraceutical, cosmetic pharmaceutical and 
food industries [15]. The technique involves the creation of barriers around ac-
tive ingredients which modulate their interactions with the environment [16] 
[17]. The barrier material often referred to as the carrier can be natural, syn-
thetic or modified polymeric substances such as lipids, proteins and carbohy-
drates.  

Freeze and spray drying microencapsulation technologies are extensively used 
in the cosmetic pharmaceutical and food industries in recent times to stabilise 
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ingredients against oxidation, improve shelf-life, enhances solubility and 
bioavailability during applications [18]. The benefits of spray drying are: 1) low 
process cost; 2) wide choice of coating; 3) efficient encapsulation; 4) good prod-
uct stability; 5) potential for continuous operation [15] [19].  

The equipment setup generates particles from homogenized solution of active 
ingredients and coating materials [20] [21] [22] [23]. During operation, the ac-
tive ingredient is dispersed within the coating material and is normally atomised 
by passing it through a nozzle with the help of a compressed gas system. Hot 
process air or nitrogen is delivered to meet with the atomised sample thereby 
causing rapid evaporation of the solvent from the particles which drops to the 
bottom of the drying chamber. The physical and structural properties of the par-
ticles are strongly influenced by the geometry of the nozzle and the viscosity of 
the feed [24].  

Naturally occurring polymers have been successfully used as carriers when 
encapsulating bioactive compounds, For example, polyphenolic compounds 
such as Caffeic acid, Chlorogenic acid, Gallic acid, Quercetin, Kaemferol, 
Myricetin, and green tea flavonoids have been coated with soy protein [25]. 
Similarly, lipid nano-capsules were used as a membrane for quercetin delivery 
[26]. Direct formation of microparticulate polysaccharide powders from health 
promoting mushroom, Ganoderma Lucidum, was demonstrated after hydrolys-
ing with subcritical water between 100˚C - 190˚C [27]. Micronisation of 
quercetin and its derivatives recovered from onion waste using pressurised hot 
water and supercritical antisolvent techniques have been demonstrated [28].  

The current study builds on the fact that carbohydrates and polyphenolic 
compounds from plant materials have been shown to interact [29]. The objective 
of the research was to evaluate the feasibility of coupling extraction of polyphe-
nolics with spray drying mediated encapsulation using co-extracted natural 
polymers, therefore, negating the need for an external carrier to ensure im-
proved stability of the polyphenolic antioxidant compounds against oxidation. 
The natural occurring polymeric compounds such as hemicellulose, lignin and 
proteins have previously been co-extracted with polyphenolics under subcritical 
water condition [30]. As a comparative study HP β-Cyclodextrin, which oli-
gomers of glucose are known to form inclusion complexes with polyphenolic, 
was mixed with the subcritical water extract before spray drying and evaluating 
the stability of the particles derived.  

2. Materials and Methods 
2.1. Apple Pomace Sample 

Apple pomace a residue from cider production comprising Michelin, Dabinett, 
Yarlinton Mill, Chisel Jersey, Brown Snout, Vilberie and Harry Masters Jersey 
varieties, was supplied by Universal Beverages Limited (UBL) a subsidiary com-
pany of Bulmers, UK. The pomace sample was very heterogeneous comprising 
peels seeds, apple flesh and therefore was thoroughly mixed to ensure replicate 

https://doi.org/10.4236/jeas.2019.92005


S. Ibrahim, S. Bowra 
 

 

DOI: 10.4236/jeas.2019.92005 86 Journal of Encapsulation and Adsorption Sciences 
 

samples were representative of the population of samples. 
The dry weight of all samples was determined using AOCS (American Oil 

Chemist Society Standard) standard protocol using a laboratory oven (STATUS 
international, UK) at 103˚C ± 3˚C. The frozen wet apple pomace sample was 
homogenized for 30 seconds using Moulinex domestic blending machine to 
minimize variability in batch-to-batch analysis. Portions of the homogenize ap-
ple pomace was freeze-dried using vacuum freeze dryer (Model number EQ03 
by Vacuum and Industrial Products, UK). 

2.2. Subcritical Water Extraction of Polyphenolics from Apple  
Pomace 

Subcritical water-mediated extraction of polyphenolics from wet homogenised 
apple pomace was conducted using a Parr instrument (model 5521), which was a 
300 ml stainless steel reactor vessel with a heating jacket. The vessel was con-
nected with temperature and pressure sensors. Magnetic stirrer (1240 rpm) with 
integrated cooling system was attached to help enhance mass transfer. A back 
pressure regulatory valve was used to control the pressure inside the vessel. A 
nitrogen gas cylinder was used to pressurize the reactor. The setup is illustrated 
in Figure 1. 

Wet homogenised apple pomace was loaded into the reactor according to the 
solid-to-solvent ratio of 4.5% (w/v). The reactor vessel was first purged for 10 - 
15 seconds with nitrogen, before the extraction pressure inside the vessel was set 
to 50 bar and the gas valve (V-3) closed. The temperature of extraction was set to 
150˚C at 20 minutes residency time. Once the reaction was finished, the gas 
valve (V-1) was closed and the heating and stirring turned off. Cooling system to 
the reactor was turned on and vessel quickly removed from the heating jacket 
into an ice bath to allow the reactor cool below 50˚C and depressurised to allow 
the extract to be collected. 
 

 
Figure 1. Setup for the subcritical water extraction of Apple pomace. 
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The extract was transferred into 500 ml Beckman centrifuge bottles and cen-
trifuged at 4000 g for 10 minutes at a temperature 4˚C using a Beckman J2-20 
centrifuge. Supernatant from the centrifugation step was further filtered under 
atmospheric pressure using Fisherbrand filter paper (QL 100).  

2.3. Total Phenolic Content 

Total phenolic content of the extract was determined using the Folin Ciocal-
teus’s micro scale method proposed by Waterhouse, (2001) [31]. Gallic acid was 
employed as the standard. 20 μl aliquots of extract were pipetted into 3 test tubes 
and 1.58 ml of distilled water added to each sample. 100 μl of Folin-Ciocalteu 
reagent was then added and thoroughly mixed. 300 μl Sodium Carbonate solu-
tion was added to the mixture and vortexed thoroughly (Miximatic Vortex). The 
samples were incubated for 30 minutes at 40˚C in a water bath (Clifton). 300 μl 
of the solutions were pipetted into 96 Well F/B microplate and absorbance of 
sample read using a microplate spectrophotometer at 750 nm (Promega Glo-
max). Total phenolic content was expressed in mg Gallic acid equivalents per 
gram dry weight of apple pomace. 

2.4. Identification of Polyphenolic Compounds by HPLC 

Phenolic compounds in the subcritical water extracts were resolved according to 
the protocol described by [32]. Specifically, an Agilent 1100 series HPLC was fit-
ted with a Prodigy 5 µm ODS3 100 A, C18 (250 × 4.6 mm I.D) column (Phe-
nomenex, Torrance, CA, USA) and operated at 40˚C with a guard column. The 
mobile phase was 2% (v/v) of the glacial Acetic acid in water as eluent A and 
0.5% of Acetic acid in 50:50 (v/v) of Acetonitrile and Water as eluent B. Eluent C 
was (100%) Acetonitrile. A 10 µl aliquot was injected and subject to a gradient 
elution profile at a flow rate of 1 ml/min. Phenolic compounds were identified 
by comparing retention times of external standards at their maximum ab-
sorbance and spectral data. The external standards made of 0.1 - 0.2 mg/ml of 
epicatechin (≥90%), (-) ± catechin hydrate, chlorogenic acid (≥95%), phlo-
ridzin dihydrate (≥99%), procyanidin B2 (≥90%), quercetin-3-β-D-glucoside 
(≥90%), quercetin-3-D-galactoside (≥97%), and 3,4-dihydroxybenzaldehyde 
(≥97%) from Sigma-Aldrich, UK. 

2.5. Antioxidant Activity by ORAC Assay 

The antioxidant activity of the extract was determined using a modification of 
the oxygen radical antioxidant activity assay (ORAC)protocol described by 
Huang et al., (2002) [33]. The principle behind the ORAC assay is that, it is de-
signed to monitor the decrease in the fluorescence of sodium fluorescein (pro-
tein target) probe in the presence of peroxyl radicals generated from thermal 
decomposition of 2,2l-azinobis (2-amidinopropane) dihydrochloride (AAPH) 
relative to Trolox-a water soluble vitamin E. A fluorescein working solution (150 
μl) was added into a 96 well microplate in quadruplicate using a multichannel 
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pipette into the wells designated as, control, blank, sample and Trolox. 50 μl of 
Phosphate buffer (75 mM and pH 7.4) was added only into the control wells. 
Aliquot (25 μl of phosphate buffer, pH 7.4) was pipetted into the blank wells. 25 
μl of phenolic sample was added into sample wells and Trolox standard solution 
(25 μl) added into Trolox designated wells. The solutions were thoroughly mixed 
using a Microplate Thermo-shaker PHMP series (Grant Instruments, Cam-
bridge) set at 1000 rpm for 3 minutes and before incubating the microplate at 
37˚C for 30 minutes. The reaction was started by adding 25 μl of 2,2l-azinobis 
(2-amidinopropane) dihydrochloride (0.414 g of AAPH in 5 ml of 75 mM 
phosphate buffer), warmed to 37˚C, to the blank/sample/Trolox wells and mix-
ing 1000 rpm for 20 seconds. The microplate was then placed into a microplate 
reader (Promega) to monitor the fluorescence decay over a period of 45 minutes. 
ORAC data analysis performed using Microsoft Excel 2010 and results expressed 
as µmol of Trolox equivalents per g of dry weight apple pomace. 

2.6. Preparation of the HP-β-Cyclodextrin-Polyphenolic Inclusion  
Complex 

The procedure for preparing HP-β-Cyclodextrin-polyphenolic inclusion com-
plex described by Gioxari et al., 2010 was adopted with slight modifications [34]. 
The inclusion complex was prepared (4:1 in mass ratio) by weighing 56.5 g of 
HP-β-Cyclodextrin into 500 ml of the subcritical water extract of apple pomace 
containing 0.0283 g/ml of dry solids into 1000 ml Erlenmeyer flask and covered 
with an aluminium foil. The mixture was stirred for 4 hours at room tempera-
ture. 5 ml of the mixture was pipetted into 15 ml plastic vials and frozen at 
−20˚C for 24 hrs and then freeze-dried using a vacuum freeze dryer (Model 
number EQ03 by Vacuum and Industrial products). Freeze dried solid lumps 
were broken using glass rod and stored in a desiccator for future analysis. The 
remaining liquid mixture was then arranged for spray drying.  

2.7. Spray Drying 

The laboratory scale spray dryer (Model-SS07, by Lab plant Ltd, UK) was em-
ployed to produce the powders. All glassware was fitted to the unit and inlet 
temperature set to 200˚C and allowed for 15 minutes to warm up before setting 
the actual spray temperature. Inlet and outlet temperatures were set at 170˚C 
and 84˚C respectively. Sample feed was delivered at 3.6 ml/min using a variable 
speed peristaltic pump into a 0.5 mm two-fluid-stainless spray nozzle with an air 
flow rate of 180 g/min. The subcritical water extract of the apple pomace con-
taining 0.0283 g/ml dry solids was sprayed from 140˚C to 170˚C. The previously 
prepared inclusion complex mixture was also sprayed at the same condition. 
Feeds were continuously stirred during spraying and dry powders were sepa-
rated by a cyclone and collected in an insulated sample collection bottle. A por-
tion of the dried powder was sampled for analysis and bulk packed in seal poly-
ethylene bags and stored in a desiccator. 
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2.8. Determination of Powder Density 

A gas displacement technique was employed to determine the density of the 
spray dried powder using an AccuPyc II 1340 gas Pycnometer (Micrometrics In-
struments Corporation). A 1 cm3 cup whose weight was previously determined 
using the microbalance (SART 1702 Germany) was filled with samples of the 
dried powder and reweighed to obtain accurate weight. The cup containing the 
powder was sealed in the instrument compartment and helium gas was admitted 
to serve as a displacement medium and expanded within the internal volume of 
powder. The solid phase volume of powder was computed from the changes in 
pressure during filling of sample chamber and that of the discharge empty 
chamber. Data were analysed using VI.05 software and density of powder was 
determined by dividing the average volume into powder weight. 

2.9. Particle Size Measurement 

Particle size and the distribution of particle size within the dried powders was 
determined using a HELOS/RODOS/VIBRI dispersing system (Sympatec 
GmbH, Clausthal-Zellerfel Germany) The setup consisted of HELOS (He-
lium-Neon-Laser optical system), a dry powder dispersion system RODOS, and 
a vibrating feeder VIBRI. Operations were controlled by software WINDOX 5 
for evaluation of particle size and other analysis. 

2.10. 2 Hygroscopicity Test 

0.5 g of the dried powders (SWE and SWE + HPβ-CD) were weighed in tripli-
cates using a microbalance instrument GR-202 (A & D Scientific Laboratory 
suppliers) and spread uniformly on glass petri dishes. The powder samples were 
kept at 23˚C in an incubator model SI-600R (Medline Scientific). 300 ml satu-
rated solution of Sodium Chloride was placed inside the incubator to provide 
approximately 75.5% relative humidity and left for 7 days. Samples were re-
weighed after the 7 days and hygroscopicity HG of powders determined accord-
ing to the equation below;  

( )
HG

1

im M M
m

M

∆ +
=

∆
+

 

where m∆  was the increase in weight of powder after equilibrium. M was the 
initial weight of powder and iM  was the free water content of powder prior to 
exposure to the humid environment [35] [36] [37] [38]. 

2.11. Scanning Electron Microscopy 

Environmental Scanning Electron Microscopy (XL 30 ESEM FEG Philips, Neth-
erlands) was used to observe the morphology of the freeze-dried and spray dried 
powders. The samples were spread on ESEM-stub covered with sticky carbon 
tape, and sputter coated under high vacuum with gold using EMSCOPE SC 500 
gold sputter coater. All samples were scanned at a voltage of 15 kV using XL 30 

https://doi.org/10.4236/jeas.2019.92005


S. Ibrahim, S. Bowra 
 

 

DOI: 10.4236/jeas.2019.92005 90 Journal of Encapsulation and Adsorption Sciences 
 

ESEM FEG electron microscope and images captured over a range of magnifica-
tions within the sample. 

2.12. Fourier Transform Infrared Spectroscopy (FT-IR) 

FTIR analysis was performed to characterise the powders in molecular terms 
using Jasco FT-IR 6300 infrared spectrometer. Resolution of 4 cm−1 and 32 scans 
were used in a range between 4000 and 600 cm−1. A background was performed 
before each sample analysis to scan the environment which was subtracted from 
the sample spectra to avoid any interference in the results. 

2.13. Stability Studies 

1.5 ml of subcritical water extract (SWE) and subcritical water extract with 
HPβ-Cyclodextrin (SWE + HPβ-CD) were measured into separate 2 ml Eppen-
dorf tubes and incubated at 65˚C in a drying cabinet (Fisons Scientific instru-
ments UK). Stability assessment in terms of antioxidant activity of all samples 
were determined every 7 days for 35 days by Folin Ciocalteu method. All meas-
urements were done in triplicates and samples were not protected from external 
light. 

3. Results and Discussion 
3.1. Powder Production 

Several inlet and outlet temperatures of spray drying operations were employed 
by trial and error to favour the generation of dried powders of the subcritical 
water extract. Dried powders were obtained from subcritical water extract 
(SWE) for inlet temperatures from 140˚C to 170˚C. There was difficulty in ob-
taining fine and dried powders below 140˚C and beyond 180˚C for the subcriti-
cal water extract whose solid concentration was only 2.75% (w/v). Wet products 
were observed below 140˚C due to insufficient drying and sticky brown products 
at 180˚C due to caramelisation reaction of the monomeric sugars in the extract 
at the high temperatures. However, spray drying of HPβ -Cyclodextrins encap-
sulated with the subcritical water extract (SWE + HP-β-CD) was without chal-
lenges. The incorporation of HPβ-Cyclodextrin raised the glass transition tem-
perature of the subcritical water extracts thereby reducing the stickiness [35]. 
Previous reported research suggested, many challenges during spray drying of 
substances containing higher levels in glucose, fructose and sucrose without a 
wall material [38] [39] [40].  

3.2. Characterisation of Powders 

Colour of the directly encapsulated polyphenolic fraction (SWE) of the apple 
pomace with polymers co-extracted under the subcritical water-mediated hy-
drolysis was yellowish brown and those of the HP-β-Cyclodextrin (SWE + 
HPβ-CD) encapsulated reflected the colour of the directly encapsulated product 
in extract and were lightly brownish. 
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3.2.1. Moisture Content of Powder 
Moisture content or residual water associated with solid raw materials for 
nutraceutical, pharmaceutical, food and cosmetic applications can significantly 
affect their physico-chemical properties. Rate of dissolution, flow and compacti-
bility of powder, as well as degradation or deterioration are all affected due to 
prolong exposure to moisture [41]. The average moisture content of samples (g 
water/100g powder) is shown in Table 1.  

Moisture content of directly encapsulated subcritical water extract (SWE) 
powder was 22.6% higher than HPβ-Cyclodextrin inclusion complex (SWE + 
HPβ-CD). Thus suggesting that increasing the solid content through the addi-
tion of HPβ-Cyclodextrin to the subcritical water extract reduces the amount of 
residual water of the powder. Previous studies have shown that the moisture 
content of spray dried powders is dependent on the type and concentration of 
the carrier material used [42] [43]. 

3.2.2. Hygroscopicity of Powders 
Hygroscopicity is defined as the estimation of the ability of a substance to absorb 
moisture from a relatively high humid environment and is an important prop-
erty to consider during storage of powder [44] [45] [46]. Spray dried powder of 
the directly encapsulated (SWE) had a higher hygroscopicity (9.30 ± 0.11 
g/100g) compared with HPβ-Cyclodextrin encapsulated powder (5.08 ± 0.01 
g/100g) (Table 1). The results showed the absorptive capacity of the micronised 
subcritical water extract in humid environment was approximately twice that of 
the spray dried powder HPβ-Cyclodextrins complexed with SCW extract. Inclu-
sion of HPβ-Cyclodextrins decreased the hygroscopic nature of the extract. 
Many researchers have reported the reduction of hygroscopicity of extracts when 
carriers were added. As an example, the hygroscopicity of acai extract was re-
duced through the addition of the polysaccharide maltodextrin [38]. Moreover, 
the effect has been shown to be correlated with concentration [45]. Reduction of 
hygroscopicity of mango powder with maltodextrin has also been reported [36].  

The presence and concentration of low molecular weight sugars (Glucose, 
fructose) and organic acids (citric, malic and tartaric acid) are thought to ac-
count for the hydroscopic properties of spray dried powders. Furthermore, the 
high hygroscopicity, thermoplasticity, and low glass transition temperature (Tg) 
of these low-molecular-weight substances contribute to the stickiness of dried 
powders which is a phenomenon frequently encountered during spray drying 
[36] [39] [44] [46]. Powder stickiness can be reduced by the addition of carriers 
to increase glass transition temperature thereby eliminating the problem during  
 
Table 1. Some physico-chemical properties of spray dried powders of subcritical water 
extract and extract encapsulated in HPβ-Cyclodextrin. 

Powder Sample Moisture (%) Hygroscopicity (g/100g) Particle size (µm) 

SWE + HPβ-CD 5.59 ± 0.4 5.08 ± 0.01 3.46 ±0.04 

SWE 7.22 ± 0.01 9.30 ± 0.11 3.41 ± 0.15 
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processing and storage [36] [38]. Hygroscopicity data of spray dried powder of 
subcritical water extract of apple pomace is not available for comparison. How-
ever, mean hygroscopicity value of 23 g/100g apple pomace residue was reported 
during vacuum drying at temperatures between 80˚C and 110˚C with hygro-
scopicity decreasing at higher temperatures [47]. The physical state of the drying 
powders under the spray dry operation was already changing rapidly with 
stickiness during collection consistent with previously reported investigations 
for sugar containing samples [39]. Stickiness of powders was lesser in the SWE + 
HPβ-CD compared to the auto-encapsulated subcritical water extract (SWE). 

3.2.3. Density and Particle Size of Powders 
Many methods for determining particle density of solids have been applied and 
reported in the literature [48]-[54]. However, the density of the encapsulated 
products evaluated by the gas displacement technique has been described as a 
reliable way to obtain the “true, absolute and apparent density” [55]. The aver-
age density of the powders recorded for 5 cycles at different times is shown in 
Figure 2.  

Analysis of the SWE spry dried powder indicated that it had a density of 1.560 
± 0.001 g/cm3 which was higher than the density of spray dried powders of the 
SWE + HPβ-Cyclodextrin complex (1.503 ± 0.003 g/cm3). The increase in the 
volume of the SWE + HPβ-Cyclodextrins powders can be attributed to the coni-
cal structure of the cyclodextrin which supports a more open matrix when com-
pared to the compact polymers co-extracted with polyphenolics under subcriti-
cal water-mediated hydrolysis. The cumulative distribution curves for both 
powder samples are presented in Figure 3. 

The mean particle size of SWE and SWE + HPβ-CD were 3.35 µm and 3.42 
µm respectively and while not significant (p < 0.05) the results do reflect the dif-
ferences in density which has been attributed to the architecture of the matrix 
within each particle. The lack of significant difference in particle size can per-
haps be explained by the fact the spray drying operating conditions were similar 
for both samples. As it has been illustrated that different particle sizes of powders  
 

 
Figure 2. The density of powder as a function of time under 5 cycles with purge fill pres-
sure of 19.50 psig and equilibrating rate at 0.020 psig per minute. 

https://doi.org/10.4236/jeas.2019.92005


S. Ibrahim, S. Bowra 
 

 

DOI: 10.4236/jeas.2019.92005 93 Journal of Encapsulation and Adsorption Sciences 
 

 
Figure 3. Cumulative distribution of particle size percent vs the upper limit of each size 
class from the HELOS and RODOS particle size analyser using density values of 1.50 
g/cm3 (SWE + HPβ-CD powder) and 1.56 g/cm3 (SWE powder). 
 
were produced when the spray drying operating conditions are varied [56]. The 
micronized powders are therefore suitable for cosmetic and pharmaceutical 
formulations due to the size obtained in micrometres. Physical appearance, feel 
and stability of cosmetic products are influenced by particle size of raw materi-
als. Particle size analysis is an indicator of quality and performance because of 
size impacts flow and compaction properties. Particle sizes less than 0.1µm are 
not suitable for cosmetic formulations [57] [58]. 

3.2.4. Morphology of Powders 
Scanning electron microscopy (SEM) was used to investigate the impact of the 
type of drying technique and carrier introduced. SEM images of freeze-dried and 
spray dried subcritical water extract (SWE) of the apple pomace revealed differ-
ent morphologies. The SEM of freeze-dried subcritical water extract (Figure 4).  

Smooth aggregates of varying sizes had formed and reflected the observations 
and reported for freeze-dried powders [35] [59] [60] [61]. The spray dried sub-
critical water extracts presented very different morphologies (Figure 5).  

The particles formed under spray drying appear spherical and aggregate into a 
network. The morphology suggests the extract have been directly encapsulated 
and the “stickiness” of the particles supports the network of aggregates. 

The morphology of pure HPβ-CD is shown in Figure 6 and illustrates the 
smooth spherical structures which at high magnification reveal voids within the 
particle.  

SEM images of the freeze-dried encapsulated subcritical water extracts with 
HPβ-Cyclodextrin (Figure 7) consisted of smooth spherical surface with less 
shrinking. Absence of cracks or pores in the freeze-dried microencapsulated 
SWE-HPβ-CD may be an indicator of preservation of the active ingredient as 
freeze-dried quercetin encapsulated in β-CD showed similar morphology and 
reported as such [62].  

The ice formed within the encapsulated product during the freeze-drying 
process prevented the collapse and shrinkage of the particles [63]. 

Figure 8 shows the particle morphology generated when HPβ-CD is complexed 
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Figure 4. SEM images of freeze dried encapsulated phenolic fraction with natural poly-
saccharides co-extracted under subcritical water extraction of apple pomace (SWE); with 
Magnifications; (a) =50×; (b) =100×; (c) =1000× and (d) =5000×. 
 

 
Figure 5. SEM images of spray dried encapsulated phenolic fraction with natural 
polysaccharides co-extracted under subcritical water extraction of apple pomace (SWE) 
with Magnifications; (a) =100×; (b) =200×; (c) =500× and (d) =1000×. 
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Figure 6. SEM images of pure HPβ-Cyclodextrins Powder with magnifications; (a) 
=100×; (b) =500×; (c) =1000× and (d) =5000×. 
 

 
Figure 7. SEM images of freeze dried encapsulated subcritical water extract of apple po-
mace with HP-β-Cyclodextrins (SWE + HP-β-CD); with Magnifications; (a) =100×; (b) 
=500×; (c) =1000× and (d) =2000×. 
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Figure 8. SEM images of spray dried encapsulated subcritical water extract of apple po-
mace with HP-β-Cyclodextrins (SWE + HP-β-CD) with Magnifications; (a) =200×; (b) 
=1000×; (c) =2000× and (d) =5000×. 
 
with SWE priority and during spray drying. The SEM images clearly indicate 
that during processing discrete spherical particles of varying sizes are formed, 
creating an overall morphology distinct from that formed when the SWE is 
sprayed dried without cyclodextrin i.e. a free flowing powder.  

However, increased magnification revealed the formation of “dents” or 
shrinkage in the spray dried particles. The mechanism of atomisation and com-
bined effects of drying rates taking place at the initial drying stages could be re-
sponsible for the observed particle morphology [64] [65]. Viscoelasticity of the 
carrier before expansion of droplets also could possibly contribute to the de-
flated morphology. Rapid solidification due to high rate of drying, and forma-
tion of crust on particle surface hinders the inflation of the microcapsules hence, 
the shrunken surface [66] [67]. Crust formation on surfaces of powder suggests 
incomplete encapsulation [68]. Structural collapse and blow-holes on the surface 
of spray dried microencapsulated β-Cyclodexrin had been reported [67] [69]. 
The presence of holes on the spherical or cylindrical surfaces within microen-
capsulated structure could also indicate incomplete encapsulation because simi-
lar structures were seen in the pure HP β-Cyclodextrin SEM images (Figure 6). 
The subcritical water extract is made up of complex mixture of molecules with 
varying sizes and could have an influence in the morphology of encapsulated 
HPβ-Cyclodextrin. The natural polymers co-extracted could exceed the host ca-
pacity of HPβ-Cyclodextrin. The shape of HPβ-Cyclodextrin is toroidal with a 
hollow structure which changes during incorporation [70]. 
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3.2.5. Fourier Transform Infrared Spectroscopy (FT-IR) 
FT-IR spectroscopy was employed to identify potential interactions between the 
carrier HP-β-CD and the subcritical water extract (SWE) complexes during both 
freeze drying and spray drying as a way to confirm encapsulation. The applica-
tion of FT-IR was based on the fact that; vibrational spectra are unique physical 
properties of molecules. Therefore, it is possible to overlay spectra of pure and 
complexed powders to determine changes induced during encapsulation [71].  

Infrared spectra of pure HPβ-Cyclodextrin and spray and freeze-dried 
HPβ-Cyclodextrin complexed with SWE, are shown in Figure 9.  

No new peak was observed in the FTIR spectrum of binary systems, confirm-
ing that there were no new chemical interactions and no new covalent bonds 
had formed.  

The FTIR spectrum of pure HPβ-Cyclodextrin revealed all the functional 
groupings recorded in Table 2, except for carboxylic acid group (C=O) (1760 - 
1769 cm−1).  
 

 
 

 
Figure 9. FTIR-spectra of HPβ-Cyclodextrin (B-CD), spray dried HPβ-Cyclodextrin with 
SWE (B-CD-SDF), Freeze dried HPβ-Cyclodextrin with SWE (FD-B-CDF), spray dried 
SWE (SDF) and Freeze dried SWE (FDF). 
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Table 2. Infrared Absorption characteristics of selected functional groups [72]. 

Functional group Bond Wavenumber (frequency) cm−1 

Alcohols and phenols O-H stretching 3500-3200 

Alkanes C-H stretching 3000-2850 

General carbonyls C=O stretching 1760-1665 

Carboxylic acids C=O stretching 1760-1769 

Esters and others C-OH stretching 1320-1000 

 
However, the C=O was relevant in the direct encapsulated subcritical water 

extract (SWE) of the apple pomace and was present when complexed with 
HPβ-Cyclodextrin (Figure 9). While no new peaks were observed, the spectrum 
of the HPβ-Cyclodextrin-SWE complex showed a shift in the frequencies (Table 
3 and Table 4) and the intensity, and was attributed to interactions involving 
hydrogen bonding.  

Carboxylic acid group (C=O) is distinctive to polyphenolic compounds and a 
strong peak was reported at 1740 cm−1 when quercetin was encapsulated in a 
surfactant Poloxamers [73]. A shift of the ester (C-OH) band from 1183 - 1206 cm−1 
(Δδ = +23) for dimethyl-β-Cyclodextrin [74] and 1180 to 1154 cm−1 (Δδ = +26) 
for Proxicam complexed with β-Cyclodextrin [75]. The results so far confirmed 
interaction between HPβ-Cyclodextrin and the phenolic extract but not very in-
dicative enough to support evidence of encapsulation because FTIR spectro-
scopic method is less clarifying technique compared to single crystal diffraction 
(SCXRD) and powder X-ray diffraction (PXRD) suitable for detecting inclusion 
complexes [76] [77] [78] [79]. 

3.3. Antioxidant Stability 

The antioxidant activity determined using the ORAC assay of the liquid sub-
critical water extract of the apple pomace was compared to that of the spray 
dried powder to establish the impact of “direct” encapsulation. The spray drying 
had a marked impact and resulted in 46.5% loss of antioxidant activity (Table 5). 

A decrease in polyphenolic content of elderberry juice by 25% had been re-
ported after spray drying and decreases further with increasing inlet temperature 
[80]. Similar results of decreases of 28% to 50% in antioxidant activity were re-
ported after spray drying of grape pomace extracts [81]. Also, approximately 
42% loss in antioxidant activity was reported during spray drying of Momordica 
cochinchinensis, fruit powder [82]. The subcritical water extraction was per-
formed at 150˚C and the extracts were then spray dried at 170˚C, therefore it 
was possible the increased in temperature had a negative effect on both the anti-
oxidant activity and polyphenolic content. Degradation of active compounds 
with increasing temperature had already been reported [60] [83]. In contrast, the 
HPβ-CD-SWE complex only lost 3.2% of its antioxidant activity after the spay 
drying process, suggesting that, the HPβ-CD demonstrated significant protec-
tion of the polyphenolic antioxidant compounds (Table 6). 
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Table 3. Comparison between frequencies of pure HPβ-CD and corresponding inclusion 
complex for spray dried powder. 

Bond 
Frequency Change 

Δδ HPβ-CD SWE + HPβ-CD 

O-H 3338.18 3341.07 +2.89 

C-H 2925.48 2926.45 +0.97 

C=O (general carbonyl) 1643.05 1627.63 −15.42 

C=O carboxyl - 1731.76 +1731.76 

C-OH 1020.16 1024.98 +4.82 

 
Table 4. Comparison between frequencies of pure HPβ-CD and corresponding inclusion 
complex for freeze dried powder. 

Bond 
Frequency (cm−1) Change 

Δδ HPβ-CD SWE + HPβ-CD 

O-H 3338.18 3317.93 −20.25 

C-H 2925.48 2928.38 +2.90 

C=O(general carbonyl) 1643.05 1634.38 −8.70 

C=O carboxyl - 1726.94 +1726.94 

C-OH 1020.16 1021.12 +0.96 

 
Table 5. Antioxidant activity changes of subcritical water extract before and after spray 
drying. 

Antioxidant activity 
Subcritical water extract Percentage loss in 

antioxidant activity 
(%) Before spray drying After spray drying 

TPC (mg/l) GAE 574.1 ± 13.9 318.8 ± 11.2 44.6 

ORAC (μmolTE/g) DW 1517.6 ± 93 811.7± 20 46.5 

 
Table 6. Antioxidant activity changes of subcritical water extract with HPβ-CD before 
and after spray drying. 

Antioxidant activity 
Subcritical water extract with HPβ-CD Percentage loss in 

antioxidant activity 
(%) Before spray drying After spray drying 

TPC (mg/l) GAE 530.0 ± 4.4 513.5 ± 16 3.2 

3.4. Storage Antioxidant Stability 

The caking nature and relatively high hygroscopicity of the directly encapsulated 
powder (SWE) from subcritical water extract was a potential challenge to the 
stability studies to be conducted in the solid form. However, liquid forms were 
utilised during analysis, because molecular encapsulation can form both in solid 
and in solution [84]. Solid and liquid forms of β-Cyclodextrin inclusion com-
plexes with, hesperetin, hesperidin, naringin and narigeninn have been reported 
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using FT-IR, NMR, DSC and X-ray techniques to support evidence of encapsu-
lation [85] [86]. 

Changes in antioxidant activity of SWE and SWE + HPβ-CD were monitored 
at facilitated conditions of 60˚C to observe time effect on the retention of poly-
phenolic antioxidant activity. A control experiment employing Chlorogenic acid 
standard was set up similar to the HPβ-Cyclodextrin complex. Folin Ciocalteu 
method proposed among standardised assays for quality control and antioxidant 
activity determination was adopted and applied.  

The changes in antioxidant activity overtime are presented in Figure 10.  
Antioxidant activity decreases with time at the constant temperature 60˚C. A 

44% decrease in antioxidant activity of the directly encapsulated SWE was ob-
served compared with 25% decrease of the subcritical SWE + HPβ-CD over the 
35 days period. The initial antioxidant activity of the HPβ-Cyclodextrin included 
complexes (both subcritical water extract and standard Chlorogenic acid) were 
slightly below the direct encapsulated SWE and the Chlorogenic acid standard. 
However, there was a sharp increase in antioxidant activity within the 7 days’ 
period and then decrease afterwards. One-way analysis of variance (ANOVA) of 
the antioxidant activity was tested against time for each treatment with post hoc 
Tukey comparisons at 95% confidence. The null hypothesis was, all means (an-
tioxidant activity) were equal against the alternative hypotheses that, at least one 
mean (antioxidant activity) was different. There were no significant changes in 
antioxidant activity for subcritical water extracts within the first 7 days (p > 
0.05). However, antioxidant activity varied significantly after the 7 days (p < 
0.05) and no significant changes were observed between 14 - 35 days (p < 0.05). 
For the control experiment using the standard Chlorogenic acid, antioxidant ac-
tivity significantly changed after 7 days (p > 0.05) and no significant differences 
in antioxidant activity measured from 14 - 28 days (p < 0.05). The 35th-day an-
tioxidant activity of Chlorogenic acid was significantly different and may be at-
tributed to high antioxidant activity of degradation products of Chlorogenic 
acid. For the HPβ-CD encapsulated complexes, antioxidant activities at day 7  
 

 
Figure 10. Antioxidant activity for subcritical water extract (SWE), extract with Cyclo-
dextrin (SWE + HPβ-CD), Chlorogenic acid (CGA) and Chlorogenic acid with Cyclo-
dextrin (CGA-HPβ-CD) following storage at 60˚C for 35 days. 
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were significantly higher compared to day 1 (initial) antioxidant activities (p < 
0.05). No significant differences in antioxidant activities for days, 21, 28 and 35 
for SWE + HPβ-CD encapsulated products were observed (p > 0.05). 

Likewise, there was no significant difference in antioxidant activities for days 
7, 28, 35 for HPβ-CD encapsulated Chlorogenic acid standard (p > 0.05). 

Clearly, only first 7 days’ antioxidant activities were comparable for both en-
capsulated and non-encapsulated subcritical water extracts samples. It implies 
that there was no significant difference between antioxidant activities for both 
treatments within the first 7 days (p < 0.05). 

However, antioxidant activity for day 14, 21, 28 and 35 of HPβ-CD encapsu-
lated subcritical water extracts were significantly higher than corresponding 
samples without HPβ-CD (p > 0.05). Unexpectedly, only day 7 antioxidant ac-
tivity of control experiment of standard Chlorogenic acid was similar to day 7 
antioxidant activity of Chlorogenic acid + HPβ-Cyclodextrin (p < 0.05). 

There was a significant variation of the antioxidant activity after 7 days (p < 
0.05) of Chlorogenic acid with HPβ-Cyclodextrin. Antioxidant activities of days 
7, 14, 21, 28 and 35 of standard Chlorogenic acid samples were significantly 
lower (p < 0.05), compared to antioxidant activities of days 7, 14, 21, 28 and 35 
of the complex of Chlorogenic acid with HPβ-CD. 

The hydroxyl Propyl Cyclodextrin offered good protection of the polypheno-
lic antioxidant compounds in the subcritical water extracts against degradation, 
and was confirmed in the control experiment using standard phenolic com-
pound Chlorogenic acid. Cyclodextrin was considered as secondary antioxidant 
and had been reported to have protective effect on ascorbic acid and phenolic 
compound 2,2,5,7,8-pentamethylchroman-6-ol (PMC) [87]. Many other reports 
of protective effect of Cyclodextrin on antioxidant activity of bioactive com-
pounds are available [34] [88] [89]. 

Protective mechanism of the Cyclodextrin against degradation and oxidation 
were apparently due to the complexation of the subcritical water extracts into its 
hydrophobic cavity. Therefore, the HPβ-Cyclodextrin can be employed as a car-
rier to prolong shelf-life of the phenolic antioxidant compounds and to mask 
any undesired taste and colour of SWE for applications in nutraceutical, phar-
maceutical industries. The polyphenolic compounds identified in the SWE is 
shown in Figure 11. 

4. Conclusions 

Encapsulation of subcritical water extract was successfully demonstrated by 
spray drying technique with and without an external carrier. Particle sizes of 
powders suitable for cosmetic formulations were achieved. However, spray dry-
ing methods negatively affected antioxidant activity of the extracts. Total anti-
oxidant activity of the auto-encapsulated (SWE) was approximately 50% less 
than the liquid subcritical water extract. Micronised products obtained were 
found to be hygroscopic which would negatively affect their applications in  
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Figure 11. Chromatogram of subcritical water extract (SWE) at 150 ºC for 30 minutes; 1: 
5HMF; 2-furfural, 3: Protocatechuic aldehyde; 4: Chlorogenic acid; 5: (isomer of Chloro-
genic acid); 6: caffeic acid; 7: Quercetin-3-galactoside; 8: Quercetin-3-glucoside, peak 9 
and 10 not identified; 11: Phlorodzin. 
 
cosmetic and pharmaceutical formulations and cost of storage. Hydroxyl pro-
pyl-β-Cyclodextrin as a carrier has decreased the hygroscopicity of the subcriti-
cal water extract, mask the brown colour, and in addition, demonstrated protec-
tive effect against oxidation and degradation, thereby prolonging the shelf life of 
the antioxidants compounds. Fourier transform infra-red spectroscopy (FTIR) 
and Electron scanning microscopy (SEM) were selected to characterised pow-
ders to support evidence of encapsulation of the subcritical water extract into the 
hydrophobic cavity of the Cyclodextrin. Both techniques have revealed some 
level of interaction between the host HPβ-CD and subcritical water extract.  
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