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Abstract 
Microstructure is closely related to techno-functional properties in microen-
capsulated powders intended to protect bioactive compounds. Soursop leaves 
provide phytochemicals that need to be protected to ensure their functionali-
ty. This investigation aimed to study the microstructure of microcapsules 
containing soursop leaves extract and its linkage with physical and chemical 
characteristics of the resulting powder. Microcapsules were prepared by spray 
drying using gum Arabic and maltodextrin as encapsulating agents at 5 and 
10%. Powders were characterized by scanning electron microscopy, particle 
size analysis, solubility, infrared spectroscopy and encapsulation efficiency. 
Microphotographs showed spherical shape particles ranging from 0.25 to 
13.87 μm, where the particles morphology depended on the concentration 
and the type of the encapsulant used. At higher concentration of encapsulant, 
there was an increase in the sphericity, integrity, size, and surface smoothness 
of particles. This relationship was inverse for solubility in treatments with 
gum Arabic. The extract encapsulation was confirmed by Fourier Transform 
infrared spectroscopy and encapsulation efficiency index, revealing that the 
treatment with maltodextrin at 10% showed a better capability for entrap-
ment (72.12%). The results evidence that microstructure of microcapsules is 
closely linked to the type and concentration of encapsulant, which in turn 
determine the physical and chemical characteristics of powders intended for 
instant drinks solubility and entrapping soursop bioactive compounds. 
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1. Introduction 

Soursop (Annona muricata L.) is traditionally used in ethnomedicine by differ-
ent populations around the world [1]. Recently, the consumption of its leaves as 
extracts has been massively increased due to their therapeutic properties sup-
ported by a number of studies [2] [3] [4] [5] [6], which has led its commerciali-
zation in various presentations. These properties are attributed to the phyto-
chemicals present in different parts of the plant [7], being mainly acetogenins, 
alkaloids and phenolic compounds [8]. 

Bioactive phytochemicals are susceptible to fast inactivation or degradation 
once they are extracted from its original source [9]. In this context, the micro-
encapsulation is an alternative process to increase their stability, protecting them 
from adverse environmental conditions such as light and oxygen [10] as well as 
digestive conditions, allowing their distribution and ensuring their absorption at 
the desired sites [9] [11]. 

Microencapsulation, which is one of the most used techniques for bioactive 
compounds conservation, is defined as a process where small particles or drops 
are surrounded by a cover or embedded in a homogeneous or heterogeneous 
matrix to generate microscopic capsules with advantageous properties [12]. 
Among the current encapsulation techniques is the spray drying, which is used 
due to its low cost and simplicity of operation [13] [14]. During spray drying, 
drops generated by a nozzle are instantly dehydrated by application of heat; 
usually, solutions containing the compounds of interest mix with additional in-
gredients known as encapsulants, which play a structural role. The most effective 
encapsulating agents for food applications are the polysaccharides [11]. Two of 
the most commonly used in microencapsulation by spray drying are gum Arabic 
(GA) and maltodextrin (MD) because of its technological properties [15] [16], 
both are recognized as GRAS (Generally Recognized as Safe) ingredients. They 
are colorless, offer high solubility in water, low viscosity in solution, relatively 
low cost, and ensure an adequate protection of compounds sensitive to oxidation 
[15] [16] [17] [18] [19]. 

Depending on the microencapsulation technique and the encapsulants used, it 
is possible to obtain particles with heterogeneous superficial structure, size, and 
shape, which lead to a deficient conservation of the compounds of interest [12] 
[20] [21]. The microparticle structure is determinant for techno-functional 
properties such as solubility, liberation, or reconstitution of the resulting powd-
er; thus, it is a priority to understand the formation of the microcapsules surface 
structure in terms of composition [16] [22]. 

There is no former information about studies on morphology of soursop 
leaves extract microencapsulated by spray drying. The aim of this investigation 
was to study the microstructure of microcapsules of hydroalcoholic extract from 
soursop leaves (Annona muricata L.) microencapsulated via spray drying using 
gum Arabic and maltodextrin as encapsulants at two different concentrations, 
and its linkage with physical and chemical properties. 
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2. Materials and Methods 
2.1. Materials 

The herbal Augusto Weberbauer (MOL) of the Universidad Nacional Agraria La 
Molina, certified the authenticity of the species under study. The leaves were 
collected in a farm in Pisco, Ica, Peru (Latitude 13˚44.817'S, Longitude: 
76˚9.897'W) during December 2016. Ethanol 99.9% (Merck, Germany) was used 
for extraction. The encapsulants used were gum Arabic (Nexira food, France) 
and maltodextrin DE = 15 - 20 (Lihua Starch, China), which were selected in for-
mer trials due to its tolerance to ethanolic solutions. Other reagents used were 
Acetic acid (Merck, Germany), Gallic acid (Sigma-Aldrich, USA), Folin-Ciocalteu 
reagent (Merck, Germany), and sodium carbonate (Merck, Germany). 

2.2. Preparation of Samples 

The collected fresh leaves were selected, washed with drinking water and dried 
in absence of sunlight for 10 days (Final humidity = 12%). They were previously 
oven-dried (UM400 Memmert) at 50˚C until reaching 10% humidity before 
grinding. Then, the leaves were ground in a leaf mill (3383-L30 Thomas Scien-
tific) applying a N˚ 20 sieve. The leaves powder was hermetically stored in po-
lyethylene bags until being used. 

2.3. Extraction 

The previously powdered leaves were weighed in Erlenmeyer flasks, mixed with 
a hydroalcoholic solution (20% ethanol) at 1:36 rate (mass:volume), and placed 
in a water bath (AL 25 LAUDA Aqualine) at 70˚C for 30 minutes. Then, the ex-
traction was stopped by immersing the flasks in a bath with ice. The extract was 
filtered using a nylon fiber. The filtrate was centrifuged at 2,500 rpm (IEC 
HN-SII Damon) for 30 minutes. 

2.4. Microencapsulation 

The resulting supernatant from the extraction was mixed with gum Arabic and 
maltodextrin to obtain solutions at 5% and 10% (w/w). The mixture was homo-
genized (IKA® T18 Ultra-Turrax®) at 10,000 and 15,000 rpm for 5 minutes each 
turn and kept in refrigeration until being used. Mixtures were spray dried in a 
Mini Spray Dryer B-2 90 (Büchi, Switzerland) with a 1 mm nozzle at 140˚C, an 
air flow rate of 32.5 m3/h, a feeding flow rate of 10 mL/min and pump at 10%. 

2.5. Microstructural Analysis 

Morphology study by scanning electron microscopy (SEM) 
The morphology of the dry extract, the pure encapsulants, and the microcap-

sules was evaluated with a JSM-6380LV (JEOL, Japan) microscope. The pow-
dered samples were placed on the upper surface of metallic stubs covered with 
Scotch double sided tape and vacuum immobilized using gold (S150, Edwards). 
Microphotographs were taken at magnifications ranging from 1200 to 20000x. 
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Particle Size analysis 
The size was expressed in terms of the volume-weighted mean diameter 

(D[4,3]) which was determined by the estimate of the diameters of more than 
650 particles using the software Axio Vision Rel. 4.8 from panoramic photos ob-
tained with SEM. In accordance with Jinapong et al. [23], the D[4,3] was calcu-
lated using Equation (1): 

[ ]
4

34,3 i i

i i

n d
D

n d
= ∑
∑

                        (1) 

where ni is the number of particles of di diameter. 

2.6. Qualitative Determination of Extract Encapsulation  
by Infrared Spectrometry (FTIR) 

To verify the encapsulation process, IR spectrums for the microencapsulated ex-
tracts (04 treatments), the sole spray dried extract, and the pure encapsulants 
were obtained using a portable spectrometer TruDefender FT (Ahura Scientific, 
USA) diamond point with a resolution of 3 cm−1 from 4000 to 650 cm−1. Before 
placing the samples (powdered), a correction of air background was made. The 
peaks were analyzed with the software Resolutions pro 4.0 Varian, Inc. 

2.7. Encapsulation Efficiency of Phenolic Compounds (EE) 

Total phenolic compounds were used as a referential indicator of the amount of 
phytochemicals in the powders. Encapsulation efficiency for each treatment was 
determined by quantifying the content of phenolic compounds inside “core” 
(CPC) and on the surface (SPC) of the microparticles using the Folin-Ciocalteu 
method adapted from Simon-Brown et al. [24]. Phenolic compounds extraction 
was performed using the method of Saikia et al. [10]. Aliquots of 100 mg of each 
powdered extract were mixed with 1 ml of ethanol, acetic acid and water 
(50:8:42) for the CPC and with 1 ml of ethanol-methanol (1:1) for SPC determi-
nations; then the mixture was stirred in a vortex (Vortex Genie 2, Scientific In-
dustries, Inc.) for 1 minute and then filtered through a 0.45 μm syringe filter. 
100 μL of supernatant was mixed with 100 μL of Folin-Ciocalteu reagent diluted 
in water (1:10, v/v); it was left to react for 5 minutes, then 100 μL of the aqueous 
solution of Na2CO3 (100 g l−1) was added and leveled with distilled water up to 
1200 μL. 30 minutes after the reaction, the absorbance was measured on 120 μL 
at 726 nm using a microplate spectrophotometer (PowerWave XS2 Biotek). The 
total content of phenolic compounds was calculated using Equation (2) from a 
standard curve of Gallic acid solution (1 to 10 μg ml−1) with a correlation coeffi-
cient of R2 = 0.999. 

31.401 0.0001A C= × −                      (2) 

where A is the absorbance at 726 nm and C is the concentration in mg/mL. 
The encapsulation efficiency was calculated using the Equation (3): 
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( )% 100CPC SPCEE
CPC
− = × 

 
                  (3) 

2.8. Powders Solubility (SBT) 

The solubility of the microencapsulated extracts was determined according to 
the adapted method from De Souza et al. [25] as described below. In a falcon 
tube, 0.5 g of the sample was mixed with 50 mL of distilled water and then 
stirred in an orbital table (TOS-40BOFD, MRC) at 100 rpm for 30 minutes. 
Then, it was centrifuged at 3000 rpm for 15 minutes (Rotofix 32, Hettich). An 
aliquot of 25 mL of the supernatant was oven-dried at 105˚C in a 50 mL beaker 
until reaching a constant weight. The solubility was calculated by the weight dif-
ference posterior to evaporation (Wf − Wi) corresponding to the solubilized sol-
ids of the 25 mL sample and expressed as a percentage by the Equation (4): 

10,000f iW W
SBT

Wm
− 

= × 
 

                    (4) 

where Wf is the weight of flask plus solids (g), Wi is the weight of empty flask (g) 
and Wm is the weight of the 25 mL aliquot (g). 

2.9. Statistical Analysis 

EE and SBT data were expressed as the average ± standard deviation (S.D.) from 
at least three replicas. The significance of differences between encapsulants and 
concentrations was evaluated by analysis of variance (ANOVA) using a Rando-
mized Complete Block design considering encapsulants as blocks and concentra-
tions as treatments. The statistical analysis was performed using Microsoft Excel. 

3. Results and Discussion 
3.1. Microstructural Characterization by SEM 

Morphological characteristics of microparticles such as sphericity, shape and 
surface (smoothness/roughness), and particle size were examined by analyzing 
SEM images (Figure 1). 

In this study, the microstructure of the spray dried soursop extract without 
encapsulant and the original structure of commercial encapsulants in powder 
were used as controls. Each component showed a characteristic microstructure 
inherent to its chemical nature and as a consequence of the technological 
process experienced during its elaboration (Figures 1(a)-(c)). The drying opera-
tion is a complex process where energy and matter transfer mechanisms take 
place, causing physical, chemical and structural changes [26] [27], which deter-
mine the final characteristics of the powder such as color, appearance, textural 
and structural properties, sensory attributes like aroma and flavor, as well as nu-
tritional and functional properties [28]. Therefore, it is imperative to use encap-
sulants of known microstructural quality to understand the mechanism involved 
in the transformation of liquid extracts into solid particles. Since there are no  
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Figure 1. Spray-dried hydroalcoholic extract from soursop leaves (a), maltodextrin powder (b) and gum Arabic 
powder (c). Microencapsulated soursop leaves extract by spray drying using gum Arabic ((1) and (3)) and malto-
dextrin ((2) and (4)) at 5 and 10% respectively. 

 
reference patterns for purity evaluation of the encapsulants, the optimization for 
obtaining powdered plant extracts and their sub-products might take much 
more studies. 

Visual analysis allowed to understand how the morphology of the supplies 
gets altered because of the spray drying process. Figures 1(1)-(4) reveals that 
the entrapment process of the extract into the encapsulants was effective. 

In general, the shape of the microparticles was spherical and had a heteroge-
neous size. The sphericity and the heterogeneity in size is characteristic of the 
spray drying process [17] [21] [29] but depending in turn on the type and con-
centration of the encapsulant used [19] [30]. 

The particles with MD (Figure 1(2) and Figure 1(4)) were more spherical 
than those with GA (Figure 1(1) and Figure 1(3)). The same has been observed 
using GA in comparison with MD [24]; according to Fernandes et al. and Janis-
zewska [31] [32], it is due to the elasticity that MD offers during the drying 
process; by contrast Dib Taxi et al. [33] indicate that the extracts encapsulated 
with GA acquire a similar morphology to those of pure GA. 

With both encapsulants there is a greater proportion of spherical particles 
when a concentration of 10% is used. This verifies that a greater concentration of 
encapsulant increases the number of spherical particles mainly with MD; simi-
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larly, Simon-Brown et al. [24] reported a greater incidence of spherical particles 
in Zingiber officinale extracts microencapsulated with MD; Li et al. [29] also 
mention that the shrinkage degree diminished as a consequence of the increase 
of encapsulant concentration in fish oil microcapsules. 

From the techno-functional point of view, the particles with a rough surface 
are more sensitive to oxidation reactions compared with those with a smooth 
surface due to their greater superficial areas [34]. In the same way, a smooth 
surface diminishes the gas permeability, improving the protection and retention 
of the nucleus [24] [29] [35]. Additionally, obtaining microcapsules with a 
smooth surface enhances the flow characteristics of the material [21]. 

According to Table 1, the microcapsules sizes varied from 0.25 to 13.87 μm 
and correspond to the range of microparticles (0.2 to 5000 μm) reported by Silva 
et al. [36]. The relatively small size of the particles could be related to the nature 
of the solvent used since ethanol would reduce the superficial tension of the so-
lution and would contribute to the formation of small size drops during the as-
persion [37]. Having particles with small size is advantageous since it favors so-
lubility. 

With both encapsulants, there was an increment of the particle diameter when 
the encapsulant concentration was increased. Additionally, the particles with GA 
tended to show a slightly larger size in comparison to those prepared using MD, 
as has been reported in similar studies [24] [31]. 

The drying temperature is determinant since significantly influences the con-
servation of thermosensitive bioactive compounds [19], as well as in the size, 
shape, and surface of the particles [38]. It should be noted that a high rugosity is 
characteristic of particles produced by spray drying at low drying temperatures 
[38] [39]. On the contrary, high temperatures are advantageous for obtaining 
particles with a smooth surface and with a greater diameter [21] [38] [40]. 
However, having previously considered the same drying temperature for all the 
treatments allowed to understand the mechanism of transformation of drops 
into microparticles and their differences associated with the kind and concentra-
tion of encapsulants. 

3.2. Formation of Defective Particles during Spray Drying 

Drop formation into microcapsule and proposed mechanisms to explain in a 
graphical way how some defective particles were formed during spray drying are  

 
Table 1. Volume-weighted mean diameter and size of microcapsules. 

Treatment D [4,3] (µm) Size range (µm) 

EXT GA 5% 6.97 0.28 - 13.87 

EXT GA 10% 7.51 0.25 - 11.21 

EXT MD 5% 7.05 0.29 - 12.86 

EXT MD 10% 7.36 0.30 - 13.43 
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presented in Figure 2, which are coincident with Nandiyanto & Okuyama, and 
Walton [41] [42]. 

During the formation of the microparticle a given thickness of the solid sur-
face (Shell) is needed to give it mechanical resistance to avoid disruption [43], 
which is achieved by the concentration of the encapsulant and the processing 
conditions; a high porosity and permeable nature of the particle structure allows 
the flow of water, water vapor and possibly the dissolved gases from the interior 
to the surface with a minimum resistance, so minimizing the internal pressure 
and the distention of the particles (inflation) [42], otherwise if the internal pres-
sure were superior as a consequence of an outside impervious layer, an expan-
sion and explosion would occur. 

The fragmentation of particles (Figure 2(a)) was a recurrent fault in all the 
treatments, but evidently it was lower at higher concentration of encapsulant; 
lack of integrity is related to the nature of the encapsulant material and is also 
associated to high drying temperatures, which produce an excessive water eva-
poration and a quick expansion of the particle [38] [40] causing breaking off and 
formation of superficial holes. 

The microparticles with GA at 5% showed to have experienced a “ballooning” 
phase tending to breakage after having overreached their extension; in spite of 
this phenomenon was visually lower at highest encapsulant concentrations, it 
was also shown the presence of post rupture particle remainders. The incidence 
of breaking off is an indicator of the microencapsulation process efficiency [44],  

 

 
Figure 2. Formation of defective particles during spray drying. 
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being both inversely proportional. 
Microparticles with GA showed a predominant rough surface (Figure 2(b)), 

which is associated with a higher degree of shrinkage; the dented structures can 
be due to a fast loss of moisture during the first stages of the drying process and 
an immediate subsequent cooling that causes a contraction of the drops [34] 
[45]. A rough surface morphology induces agglomeration of particles which af-
fects flow properties. 

Mushroom hat type microparticles can be observed in the microphotographs 
of extract with 10% GA (Figure 2(c)); similarly, Janiszewska & Włodarczyk [46] 
reported microphotographs from beetroot pigment encapsulated with MD by 
spray drying, where different stages of what would happen during the formation 
of these particles can be seen. This suggests that they come from particles which 
have expanded (without breaking) and they lose internal pressure, producing a 
deflation followed by a folding in half (Figure 2(c1)). 

It is not evident the existence of an independent nucleus (Figure 2(a1)), sug-
gesting that the extract has fused with the matrix making an external wall with a 
hollow center which is greater while more spherical is the particle; the same be-
havior has been observed in microparticles of anthocyanin encapsulated using 
GA/MD; this type of morphology, where the nucleus is homogeneously distri-
buted throughout the wall material, is categorized as multiple core structure [18] 
or matrix type [47]; simirlaly, Kim & Morr [48] reported spherical hollow 
particles surrounded by porous walls and with surface indentations when using 
GA as encapsulant. 

Factors that influence the formation of hollow particles are a rapid evapora-
tion rate [41] and the nature of the solvent [37]; in this case, a binary phase was 
used as solvent (ethanol-water). According to Walton [42], if the evaporation of 
volatile solvent exceeds the speed of diffusion of the liquid through the particle 
structure, a hollow particle with an internal bubble is formed. 

One of the primordial properties of encapsulated powder intended for direct 
human consumption is its easy reconstitution which will depend on the size, 
density, porosity, superficial charge, superficial area of the particle, and the 
presence of amphipathic substances [49]. In addition to the technological crite-
rion, in a broader approach, it is necessary that the microcapsules protect the 
bioactive compounds from gastrointestinal conditions in such a way that their 
liberation in a specific site is accomplished [9]. 

Therefore, it is necessary to optimize the spray drying conditions (type and 
concentration of the encapsulant, type of nozzle, entrance temperature, air 
speed, among others), depending on the expected use of the product, taking into 
account the greatest number of variables with significant effect, which is 
achieved through a previous screening. 

3.3. Qualitative and Quantitative Confirmation of Microencapsulation 

IR spectrums 
The infrared spectrum of the encapsulant materials, the pure spray-dried ex-
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tract, and the microencapsulated extracts are presented in Figure 3, which re-
veals the types of molecules they are made of. 

All the spectra showed a common band of absorption at the wavelength of 
3300 cm−1 (Figure 3), which is characteristic of the hydroxyl group (-OH) and a 
water content indicator of the samples; similarly, all the spectra have in common 
a peak around 900 cm−1 which corresponds to C-H bonds. The pure dry extract 
spectrum shows typical absorption bands (molecular fingerprint) in the region 
between 1700 - 1400 cm−1; these bands practically disappear in the microencap-
sulated extracts which indicate a good encapsulation process as described by 
Medina-Torres et al. [50]. The region ranging from 1630 to 1590 cm−1 is charac-
teristic of phenolic compounds and alkaloids [51]. 

Both encapsulants reduced the band intensity characteristic of the extract 
(peaks at 1585 and 1507 cm−1); however, unlike MD, the gum Arabic spectrum 
shows a peak (at around 1600 cm−1) very closely located to the characteristics 
peaks of extract, which has also been identified by Bouaziz et al. [52] for com-
mercial gum Arabic and may be related to amides bonds from protein nature 
[53]. These results confirm the presence of bioactive compounds inside the mi-
crocapsules. 

Encapsulation efficiency of phenolic compounds 
Significant differences were found by analyzing the four treatments (Table 2), 

demonstrating that the phenolic compounds were encapsulated in different de-
grees in the matrix under the study conditions. 

In this study, percentages of EE varied from 53.46% to 72.12%; the values of 
efficiency increase when the concentration of the encapsulant increases, and it is 
higher in samples with MD, trend observed earlier by Saikia et al. [10], who also 

 

 
Figure 3. Infrared spectra of treatments with MD and GA and the original supplies. 
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Table 2. Encapsulation efficiency and solubility values. 

Samples EE (%) Solubility 

EXT GA 5% 53.46 ± 1.931Aa 93.23 ± 0.991Aa 

EXT GA 10% 64.76 ± 1.461Ab 88.49 ± 0.731Ab 

EXT MD 5% 54.10 ± 0.992Ba 98.15 ± 0.632Bc 

EXT MD 10% 72.12 ± 1.102Bc 97.38 ± 0.992Bc 

Averages with different capital letters and low case letters in each column indicate a significant difference (p 
≤ 0.05) between blocks and treatments, respectively. 

 
reported values from 63% to 79% using MD. Additionally, it was observed that 
the value for treatment with GA at 5% becomes equivalent to the treatment with 
MD at 5%, but EE increases significantly with MD at 10%. 

Considering that the extract is a mixture of compounds with unique proper-
ties this variability between values of EE is partially explained to be due to the 
nature of the metabolite and its affinity with the matrix [54], and it is also attri-
butable to the susceptibility of the phenolic compounds during the spray drying 
process [10] [55] [56]. 

3.4. Solubility 

Solubility of microencapsulated powders ranged from 88.5% to 98.2% (Table 2), 
showing significant differences related to the type and concentration of the en-
capsulant, being the solubility greater when using MD. On the other hand, de-
pending on the type of encapsulant material used there may not be any signifi-
cant difference between them according to Kuck & Noreña [56], who used GA, 
PHGG (guar gum partially hydrolyzed) and PD (polydextrose). Additionally, it 
was found that the solubility decreased as the concentration of encapsulant was 
increased. This behavior in solubility would be associated to the particle size 
since at smaller size the availability for hydration surface will be greater [56]; 
coincidentally the treatments with higher solubility (5% of encapsulant) exhi-
bited smaller particle size. 

4. Conclusion 

The encapsulation of soursop dry leaves extract by spray drying was achieved, 
getting microparticles of spherical shape and heterogeneous size (0.25 - 13.43 
μm). The morphology of the microparticles depended on the concentration (5 
and 10%) and type of the encapsulant (GA and MD), giving a positive correla-
tion between the encapsulant concentration and the microparticles sphericity, 
mainly for MD. Also, the powder solubility was greater using MD, but inversely 
proportional to the concentration of the encapsulant, which is associated with 
the particle size. The extract encapsulation was qualitative confirmed via FTIR 
spectroscopy. Encapsulation efficiency essays showed that the treatment with 
MD at 10% presented a greater performance for encapsulating phenolic com-
pounds originally existing in the extract. The characterization of the encapsu-
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lated extract is a starting point in the search of its application in food matrixes. 
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