
Journal of Data Analysis and Information Processing, 2014, 2, 6-11
Published Online February 2014 (http://www.scirp.org/journal/jdaip)
http://dx.doi.org/10.4236/jdaip.2014.21002

OPEN ACCESS JDAIP

A Web Server Cluster Solution Based on Twitter Storm
Xiaoling Xia, Lin Tian*

School of Computer Science and Technology, Donghua University, Shanghai, China
Email: *lin-95@qq.com

Received November 18, 2013; revised December 20, 2013; accepted January 27, 2014

Copyright © 2014 Xiaoling Xia, Lin Tian. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In accor-
dance of the Creative Commons Attribution License all Copyrights © 2014 are reserved for SCIRP and the owner of the intellectual
property Xiaoling Xia, Lin Tian. All Copyright © 2014 are guarded by law and by SCIRP as a guardian.

ABSTRACT
Single Web server would become a bottleneck that influences the availability and stability of Web service. Ten
years ago, what had been proposed is to add Web servers for resolving this problem—Web Server Cluster. In
recent years, the concept of cloud computing has got rapid development, and is becoming the future development
trend of the IT industry. One of the characteristics of cloud computing is putting lots of computing resources
together to provide users with a unified service. In this paper, we have proposed a new Cloud-Based Web Server
Cluster Solution, based on the existing cloud computing model—Twitter Storm. It involves a new way to handle
the web request from client and some other new features compared to the traditional Web Server Cluster. Com-
bining with cloud computing, it would be the new trend of Web Server Cluster, and its feasibility is described in
the paper too.

KEYWORDS
Twitter Storm; Web Server Cluster; Cloud Computing

1. Introduction
The architecture of traditional Web Server Cluster is
shown in Figure 1, which is currently the most widely
used Web cluster approach. The front end is a Load Ba-
lancer, which is responsible for receiving requests from
the client, forwarding request and scheduling according
to the load of each server in the cluster. And the Web
servers in the cluster deal with the request from the front
end and return the action result. At the same time, Web
servers can get data or information from database server
by Local Area Network (LAN) [1]. In addition, due to
the Web servers in the cluster running Web application
independently, the state information in Web service, such
as the Session information cannot be shared within the
cluster. So there should be a Session Storage Server for
sharing the state information between the Web servers
[2].

The Web server in traditional Web Server Cluster was
running independently, which means that there are Web
application instances running on each Web server con-
tainer [3]. In the meantime, the solution is in response to
peak load, and the sever utilization rate is actually not

high, generally about 5% - 20% [4].
According to the concept of Platform as a Service

(PaaS) in cloud service, Xin Zhao, et al. [3] proposed a
shared cluster topology structure based on process isola-
tion—supports for multiple Web services sharing the
same physical server cluster—named Shared WAS Clus-
ter. The core idea is integrating multiple Web applica-
tions on the same physical server cluster by splitting,
merging and migrating the instances of Web application
which is running on the cluster. By this way, we can
achieve a much higher server utilization rate. However,
there are actually multiple instances running on the clus-
ter for a single Web application service at the same time,
which is not compatible to the cloud computing model
[5]. The specified Web application service for users on
the physical server cluster is supposed to have only one
corresponding instance running on the cluster.

We presents a new Cloud-Based Web Server Cluster
that addresses the problem faced by traditional Web
Sever Cluster and also can guarantee the physical server
utilization rate for supporting PaaS. All in all, the new
solution must handle the following issues:

1) The bottleneck problem caused by single Web ser- *Corresponding author.

http://www.scirp.org/journal/jdaip
http://dx.doi.org/10.4236/jdaip.2014.21002
mailto:lin-95@qq.com

X. L. XIA, L. TIAN

OPEN ACCESS JDAIP

7

Figure 1. Architecture of traditional web server cluster.

ver, which means how to provide the same Web applica-
tion service by more than one service entrances;

2) How to deal with the load balance and share state
information between multiple physical servers;

3) How to support the cloud computing model of PaaS
—there are multiple Web services on the same cluster,
and there is only one instance for a Web service.

The structure of the paper is as follow: Section 2 pre-
sents the new Cloud-Based Web Server Cluster Solution
from the aspect of architecture and physical deployment.
Section 3 introduces Twitter Storm form the core idea of
calculation model, cluster deployment and work flow. In
Section 4, we discuss about how to solve the issues to the
new solution with Twitter Storm. Finally, the paper con-
cludes the work and presents our future research plan.

2. Cloud-Based Web Server Cluster
The architecture of the Cloud-based Web Server Cluster
is different from the traditional Web Server Cluster,
which is shown in Figure 2.

In the new solution, we use a unified cloud cluster in-
stead of multiply independent Web servers, to handle the
REST or RPC request [6] based on the HTTP from the
client. These requests would be evenly distributed through
the DNS server to the request node, which is responsible
for data transmission with client. While the data pro-
cessing work of the request can be forward to the other
node in the cluster. All nodes in the cluster could retrieve
data from the database server by the LAN and other
ways.

The management of the node in the cluster is similar to
the physical topology of Hadoop [7], which involved a
master node and several slave nodes, and the master node
coordinates with slave nodes rely on Zookeeper cluster.
Meanwhile, the cluster take the distribution mechanism
similar to the JobTracker [8] in Hadoop: once a data
processing task of requests from client is received by the
cluster, the master node would be responsible for assign-
ing the task to one of slave nodes. And slave nodes

should monitor the task from the master node and finish
the related work of the task. To ensure the reliability of
the cluster, the master node should have the ability of
monitoring the execution of the task, and could reassign
the task to another slave node in the cluster when the
execution of one task is failed on previous slave node.

Compared to traditional Web Server Cluster, the
Cloud-Based Web Server Cluster could have the follow-
ing characteristics:

1) The physical servers can be seen as a unified cluster,
which actually divides the servers into nodes for data
transmission or data processing. This design makes it
compatible with the PaaS, so the cluster can provide
multiply Web service with multiply entrance for request
while is acting just like a single Web server.

2) The request node is responsible for data transmis-
sion, while the data processing work is distributed by the
master node and assured to be finished. It may not ne-
cessary to consider the load condition anymore, so we
could use the DNS server for distributing the request
from the client to the request node in the cluster.

3) Zookeeper provides a high-availability, high-per-
formance coordination service, which can be used to
store the state information [9]. It is usually used in the
cloud computing model, such as Hadoop and Twitter
Storm. We would apply the technique to the storage of
state information for the new solution, which is specifi-
cally described in Chapter 4.

3. Twitter Storm
Twitter Storm is an open source distributed real-time
computation system [9,10]. It is scalable, fault-tolerant,
guarantees your data will be processed, and it has many
use case: real-time analytics, online machine learning,
continuous computation, distributed RPC, ETL, and
more [10]. It has been used by many companies such as
Twitter, Baidu, Alibaba, and more.

3.1. Core Idea of Twitter Storm
First, Let us introduce some concepts of Twitter Storm:

Stream: is the core abstraction in Twitter Storm. A
stream is an unbounded sequence of tuples. And the
tuples would be created and processed in a distributed
and parallel way. Actually, one tuple is key-value pairs.

Spout: is the source of the stream, which means that it
is the tuple producer. Spout takes responsibility for pro-
ducing the origin tuple of the stream by retrieving data
from file, database or other ways like Web request.

Bolt: is the compute unit of the stream, which con-
sumes any number of input streams, does some process-
ing, and possibly emit new streams. Bolts can do any-
thing from run functions, filter tuples, do stream aggre-
gation, do streaming joins, talk to database, and more.

X. L. XIA, L. TIAN

OPEN ACCESS JDAIP

8

Figure 2. Architecture of the cloud-based web server cluster.

Topology: put the three concepts together, Spout pro-

duces the origin tuples, and emits the tuples into different
streams based on specified requires. The tuples in the
stream would be handled by different Bolts according to
specified process logics. And then the result could be
returned back if necessary. A complete set of real-time
computing application could be handled by this way,
which is abstracted as Topology in Twitter Storm. To-
pology is a real-time computing application logic. A
simple structure of Topology is shown in Figure 3.

The arrow line between the nodes in the figure shows
the flow of tuples. Once Spout produces a tuple, it would
send the tuple to the Bolts that connected to the Spout.
After received tuple from the Stream, Bolts can do tuple
filtering, aggregation or other process logics, and then
generate a new tuple passed to the next Bolt processing
unit if necessary. A route from the Spout to a final Bolt,
which would not generate any new tuples, is described as
a Stream. All the elements in the figure make up a To-
pology, which means a Topology is made up of several
Streams. From the figure, we would know that a Topol-
ogy is a directed acyclic graph (DAG).

In short, a real-time computing application is ab-
stracted as a DAG structure. The start point (Spout)
receives data processing request from client. The request
is mapped along the direction of the arrow line to be
processed by the following nodes (Bolt). The real-time
computing logic is finished as the action is done by the
end point (Bolt).

3.2. Architecture of Twitter Storm Cluster
A Twitter Storm cluster is superficially similar to a Ha-
doop cluster, there are two kinds of node on the cluster:

Figure 3. A simple topology.

the master node and the worker node. The master node
runs a daemon called “Nimbus”, which is responsible for
distributing code around the cluster, assigning tasks to
machines, and monitoring for failures. Each worker node
runs a daemon called the “Supervisor”, which listens for
work assigned to its machine and starts and stops worker
processes as necessary based on what Nimbus has as-
signed to it.

All coordinate between Nimbus and the Supervisor is
done through a Zookeeper cluster. Additionally, the Nim-
bus and Supervisor are all-fast and stateless, all state is
kept in Zookeeper or on local disk. This means you can
kill Nimbus and Supervisors and they will start back up
like nothing happened. This design leads to Twitter
Storm being incredibly stable.

The deployment architecture of Twitter Storm has
been shown in the Figure 2.

3.3. Handle Web Request with Twitter Storm
With the idea of Stream and Topology, Twitter Storm
handles Web request through the following steps:

1) The worker node on which Spout is running rece-
ives the web request and emits the origin tuple.

X. L. XIA, L. TIAN

OPEN ACCESS JDAIP

9

2) The master node distributes the task to worker
nodes according to the definition of Topology.

3) The worker nodes finish all the task origin from the
request, and generate the result.

4) The worker node that emits origin tuple returns the
result to the client.

So, multiple physical nodes in the cluster can process
Web requests of Web service in parallel with the above
idea. While in the Traditional Web Server, all the work
associated with the specified Web request is finished by a
single physical server, and the Web requests of Web ser-
vice are handled by multiple threads concurrently, which
is not suit for the cluster solution in the cloud Era.

DRPC has been implemented with this idea, providing
the RPC service. The implementation shows that Web
service can be realized on the cluster, and the idea of
Stream and Topology in Twitter Storm creates the new
way to implement real-time Web service.

4. Web Server Cluster Solution Based on
Twitter Storm

Actually, Twitter Storm has implemented almost every-
thing of the new Web Server Cluster Solution. While it
only supports for RPC service base on SOA, does not
support the REST service base on ROA, which means it
cannot provide the human web service now. It is neces-
sary to talk about the feasibility of the new Web Server
Cluster solution.

4.1. Request & Response
With traditional Web server like Tomcat, the Web appli-
cation in server side receives request from client, re-
trieves data or finishes process logic through function
calls, and then sends the corresponding response to the
client. The data flow of information was a strongly con-
nected graph in the server. For example, SSH framework
of J2EE, the request is received by the web layer, which
calls the service layer for doing the process logic. The
service layer retrieves the data by calling functions in the
DAO layer. The data in server side goes back to the web
layer along the way of the data persistence layer, the
DAO layer, the service layer. Finally, the web layer
makes the response and sends it to the client. And the
problem is that we could make the independent Web
servers into a unified cluster by the traditional way of
callback function.

A Web application is actually a complex Twitter
Storm Topology. A Web application is a strongly con-
nected graph in traditional server, while the Topology of
Twitter Storm is a DAG structure. With a little change to
the core compute model of Twitter Storm, we could fix
the difference between the two architectures. The mod-
ified compute model is shown in Figure 4.

Figure 4. The request & response procedure.

The idea comes from the implement of DRPC in

Twitter Storm. After Spout gets request from clients, it
produces two kinds of tuple and sends to Blot1 and Join
Bolt. The tuple in the process stream is executed through
Blot1 to Blotn, and will be handled to Join Bolt with re-
quest information and process result finally. The Join
Bolt stores the request information from the Spout into
variables, and just waits the tuples from the processing
stream. Once a tuple from processing stream is received,
Join Bolt would make a tuple which will be sent to Re-
turn Bolt to assure that the request & response procedure
is finished. Return Bolt is expected to return correspond-
ing response to the actual request from the client.

The real-time Web service cannot be implemented in
the cloud computing with the way of callback function.
But Twitter Storm makes it possible to implements real-
time Web service based on Server-Client architecture by
the new way.

4.2. Load Balance
One of the main works in traditional Web Server Cluster
is that how to coordinate the system of several stand-
alone Web servers [11]. Because the Web servers are
independent from each other, and each one of them has
different processing capabilities, the load balancing for
the cluster has been the key issue all the way. In the Web
Server Cluster Solution based on Twitter Storm, the data
processing is distributed to slave nodes by the master
node, and the request will be guaranteed to be processed.
There is no worry about that which node the request is
processed on because all slave nodes is the same for the
master node.

For this reason, Cloud-Based Web Server Cluster can
handle the performance bottleneck problem caused by
single Web server simply by the way: choosing several
slave nodes in the cluster as request node (Spout) which
is responsible for data transmission, and there is no need
to consider about the complex load measurement. We
could do the request distributing work by DNS server
replaces for the Load Balancer. Meanwhile, the way of
DNS server is much easier than the Load Balancer [12].

4.3. Storage of Sessions
One feature of the ROA is statelessness, which means
that the HTTP request is complete isolated from others
[6]. However, the Web server is expected to save the

X. L. XIA, L. TIAN

OPEN ACCESS JDAIP

10

information about the user who accesses the website
from the time he enters to the time he leaves. As a con-
sequence, the state information should be saved in the
server to make the stateless HTTP request have state.

The Twitter Storm is not available for this requirement,
so it only supports DRPC service based on SOA archi-
tecture for the moment. It does not mean that we could
not do this work with Twitter Storm. As mentioned
above, the design with Zookeeper cluster leads to Twitter
Storm being incredibly stable. According to the idea, the
Web Server Cluster Solution could provide a stateful
Web service with the Zookeeper.

Zookeeper is thought to be a file system with high-
availability without files or directories, and has the un-
iformed node, which called znode [7]. All of the znode in
the Zookeeper constitute a tree structure begins with
character “/”. Each znode has its own properties and val-
ues. The state information is used for storing information
of the client within a certain period, such as Session in-
formation. The two characteristics of state information
are that it has several attributes and it need to be kept in a
short time. Thus, we could store state information with
Zookeeper as follows:

1) Create a child znode named SESSIONS for storage
of the root node “/”.

2) Generate a SESSION-ID for a HTTP request with-
out SESSION-ID attribute, and store the associated in-
formation as the child node of SESSIONS with name of
SESSION-ID. Assign an expire-time for the child node.

3) The HTTP request with SESSION-ID could get the
state information by query Zookeeper with SESSION-ID.

4) Create a daemon (may be a Bolt) in the cluster,
which can clean the SESSION-ID node that is expired.

As described above, the HTTP request with the same
SESSION-ID could have same state information with the
Zookeeper cluster in the Cloud-Based Web Server Clus-
ter.

4.4. Support for PaaS
As one import form of cloud computing [4], Platform as
a Service (PaaS) provides computing resources for Web
application in the way of platform. PaaS is divided into
the user layer, the application layer, the resource layer,
the physical layer and the manage layer [13]. The Web
Server Cluster based on Twitter Storm has new im-
provement in the resource layer: the Web server contain-
er is no longer independent, but a unified Twitter Storm
Cluster. The Twitter Storm is actually a Web server con-
tainer now, and the Web application is Topology.

As introduced in the Chapter 3, Twitter Storm is a
real-time computing system with several Topologies
running on it. The Web Server Cluster Solution based on
Twitter Storm would support that several Web services
provided by the same cluster and there is only one in-

stance for a specified Web service is running based on
the new architecture.

5. Conclusions
Focused on the bottleneck problem caused by single Web
server, the paper proposes a new Web Server Cluster
Solution based on cloud architecture. With the existing
cloud computing model—Twitter Storm, we have intro-
duced the solution in detail and discussed the feasibility
of the architecture. For the trend of cloud computing, this
new solution would be the best practice of the Web
Server Cluster in the cloud Era.

In fact, Twitter Storm has implemented the RPC ser-
vice based on Service-Oriented Architecture (SOA) while
the REST service based on Resource-Oriented Architec-
ture is not in its development plan. We take implement of
the REST Web service [6] on the Twitter Storm cluster
as our future work.

REFERENCES
[1] T.-Y. Li, L. Xu and Z.-Q. Chang, “A New Solution of

Web Cluster Based on Network Storage,” Application
Research of Computing, Vol. 20, No. 10, 2003, pp. 78-79,
112.

[2] H. Zhang, “Jee Web Cluster,” InfoQ Enterprise Software
Development Community, 2011.
http://www.infoq.com/cn/minibooks/jee-webserver-cluster

[3] X. Zhao, W. Wang and W. B. Zhang, “Research on Re-
source Consolidation of Shared Web Application Server
Cluster,” Journal of Frontiers of Computer Science and
Technology, Vol. 7, No. 1, 2013, pp. 25-34.

[4] M. Armbrust, A. Fox and R. Griffith, “A View of Cloud
Computing,” Communications of the ACM, Vol. 53, No. 4,
2012, pp. 50-58.
http://dx.doi.org/10.1145/1721654.1721672

[5] K. Hwang, G. C. Fox and J. J. Dongarra, “Distributed and
Cloud Computing from Parallel Processing to the Internet
of Things,” China Machine Press, Beijing, 2013.

[6] L. Richardson and S. Rudy, “Restful Web Service,” Pub-
lishing House of Electronics Industry, Beijing, 2008.

[7] T. White, “Hadoop: The Definitive Guide,” Tsinghua
University Press, Beijing, 2012.

[8] C. Xu, H. Liu and L. Tan, “New Mechanism of Monitor-
ing on Hadoop Cloud Platform,” Computer Science, Vol.
40, No. 1, 2012, pp. 112-117.

[9] J. H. Zhao, “Study on Real-Time Data Processing Analy-
sis Tools Based on Twitter Storm,” Shangqing, Vol. 8,
2013, pp. 157, 274.

[10] N. Marz, “Storm Wiki,” Storm, 2013.
https://github.com/nathanmarz/storm/wiki

[11] Y. Pan, C. Gu and Z. H. Liu, “Study on the Application
of Structure of Web-Server Cluster and Real-Time Sche-
duling Algorithms for Multiple Tasks,” Computer Mea-
surement & Control, Vol. 12, No. 1, 2004, pp. 74-76.

http://www.infoq.com/cn/minibooks/jee-webserver-cluster
http://dx.doi.org/10.1145/1721654.1721672
https://github.com/nathanmarz/storm/wiki

X. L. XIA, L. TIAN

OPEN ACCESS JDAIP

11

[12] X. Guo, “Building High Performance Web,” Publishing
House of Electronics Industry, Beijing, 2009.

[13] P. Xu, S. Chen and S. Su, “Architecture of PaaS for In-

ternet Applications,” Journal of Beijing University of
Posts and Telecommunications, Vol. 35, No. 1, 2012, pp.
120-124.

