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ABSTRACT 
Prescriptions for radiation therapy are given in terms of dose-volume constraints (DVCs). Solving the fluence 
map optimization (FMO) problem while satisfying DVCs often requires a tedious trial-and-error for selecting 
appropriate dose control parameters on various organs. In this paper, we propose an iterative approach to sat-
isfy DVCs using a multi-objective linear programming (LP) model for solving beamlet intensities. This algorithm, 
starting from arbitrary initial parameter values, gradually updates the values through an iterative solution 
process toward optimal solution. This method finds appropriate parameter values through the trade-off between 
OAR sparing and target coverage to improve the solution. We compared the plan quality and the satisfaction of 
the DVCs by the proposed algorithm with two nonlinear approaches: a nonlinear FMO model solved by using 
the L-BFGS algorithm and another approach solved by a commercial treatment planning system (Eclipse 8.9). 
We retrospectively selected from our institutional database five patients with lung cancer and one patient with 
prostate cancer for this study. Numerical results show that our approach successfully improved target coverage 
to meet the DVCs, while trying to keep corresponding OAR DVCs satisfied. The LBFGS algorithm for solving 
the nonlinear FMO model successfully satisfied the DVCs in three out of five test cases. However, there is no re-
course in the nonlinear FMO model for correcting unsatisfied DVCs other than manually changing some pa-
rameter values through trial and error to derive a solution that more closely meets the DVC requirements. The 
LP-based heuristic algorithm outperformed the current treatment planning system in terms of DVC satisfaction. 
A major strength of the LP-based heuristic approach is that it is not sensitive to the starting condition. 
 
KEYWORDS 
Fluence Map Optimization (FMO); Linear Programming (LP); Nonlinear Programming (NLP);  
Dose-Volume Constraint (DVC); Intensity-Modulated Proton Therapy (IMPT) 

1. Introduction 
The primary goal of radiation therapy is to deliver the 
prescribed dose to the target while sparing the adjacent 
organs at risk (OARs) as much as possible. Intensity- 
modulated proton therapy (IMPT) is a powerful tool for 
designing and efficiently delivering highly conformal 
dose distributions to the target while simultaneously 
sparing the neighboring OARs to a greater degree than 
intensity-modulated radiation therapy. To optimize treat- 

ment plans for IMPT, different inverse planning ap-
proaches to fluence map optimization (FMO) have been 
proposed [1]. 

Radiation oncologists use dose-volume constraints 
(DVCs) to prescribe and control the dose to the target 
and OARs. The DVC specifies what fraction of a struc-
ture is allowed to receive a radiation dose higher than the 
specified upper threshold value or lower than the speci-
fied lower threshold value. For example, according to the 
lung protocol at The University of Texas MD Anderson 
Cancer Center, the treatment planner may specify that *Corresponding author. 
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“no more than 37% of the normal lung is allowed to re-
ceive 20 Gy or more” instead of imposing a strict upper 
dose limit of 20 Gy on the normal lung. Sometimes the 
clinical goal of achieving an effective dose for all targets 
while preserving the OARs cannot be met. In such cases, 
a compromise must be found and the DVCs relaxed. 
However, modifying DVCs is a highly complex problem, 
and finding the global optimal solution can be very dif-
ficult [2,3]. 

Linear programming (LP) is a powerful method for 
modeling FMO, but DVCs cannot be incorporated di-
rectly into the FMO model without introducing integer 
variables. Integer variables are needed because a DVC 
limits the dose applied for a certain number of voxels. 
Determining exactly how many of the voxels should 
meet DVCs is a difficult combinatorial problem that has 
multiple local optima and is nonconvex and nondetermi-
nistic polynomial time hard [4,5]. 

There are many formulations and solution methods for 
the FMO problem under DVCs. Ehrgott, Güler, Ha-
macher, and Shao [6] reviewed the mathematical opti-
mization in intensity-modulated radiation therapy, in-
cluding DVC-based models. One of the common nonli-
near approaches minimizes the total weighted nonlinear 
function of the dose deviation violation [7,8]. Local 
search methods have been reported to solve these models, 
including gradient-based methods [8] and metaheuristics 
such as simulated annealing [9] and genetic algorithm 
[10]. 

Xing, Li, Donaldson, Le, and Boyer [11] defined a 
DVH score function, and developed an algorithm that 
performs a sequence of nonlinear optimizations which 
updated the optimization parameters to improve the score. 
Cho et al. [12] discussed two optimization techniques for 
intensity beam modulation with DVCs. The first method, 
cost function minimization, applies a volume-sensitive 
penalty function in which fast simulated annealing is 
used. In the second one, the convex projection method, 
the DVC is replaced by a limit on the integral dose. 

Michalski, Xiao, Censor, and Galvin [13] formulated a 
DVC satisfaction search for the discretized radiation 
therapy model. The aperture-based approach with prede-
fined segmental fields was used in inverse treatment 
planning, followed by an iterative algorithm of the si-
multaneous sub-gradient projections to obtain solutions. 

Another model used to solve the FMO problem is the 
weighted least-squares model, which focuses on dose- 
volume-based weighted least-squares. These models are 
fast, but they only give an approximate solution. Al-
though the DVC can be directly incorporated into the 
objective function, the objective function will no longer 
be convex and differentiable. Zhang and Merritt [3] pre-
sented a new least-squares model that has a monotonic 
and differentiable objective function. In their model, the 

greedy algorithm has been applied to approximately 
solve the optimization model faster than other existing 
algorithms. 

Nonlinear methods may provide local optimal or sub-
optimal solutions once DVCs are incorporated [4,14]. 
However, there is not sufficient information about the 
optimality gap to allow us to understand the difference 
between these local solutions and a global optimal solu-
tion. Romeijn, Ahuja, Dempsey, Kumar, and Li [15] ap-
proximated any convex objective function by using a 
piecewise linear convex objective function that can be 
solved quickly and easily for a global optimal solution. 
They incorporated an approximation of DVCs by formu-
lating conditional value-at-risk constraints on the diffe-
rential dose-volume histogram (DVH). Langer and Leong 
[16] also formulated and solved the problem of optimiz-
ing the beam weights under DVCs using linear program- 
ming. 

Romeijn, Ahuja, Dempsey, and Kumar [17] approx-
imated the DVC by “mean-tail-dose”, which refers to the 
mean dose of either the hottest or coldest specified vo-
lume. An advantage of the mean-tail-dose approach is 
that the metrics can be formulated linearly. Also, the 
global optimum can be more easily achieved because the 
problem is convex; however, DVC cannot be replaced by 
a mean-tail-dose in the clinic. 

In the work by Chen, Herman, and Censor [2], two 
existing approaches to satisfy DVCs were discussed: 
linear programming and ART3+, an adaptation of a pro-
jection method for solving feasible systems of linear in-
equalities. The two methods were compared in terms of 
their ability to find an optimal solution as well as their 
computational speed. 

Mixed-integer programming (MIP) is another tech-
nique commonly used by researchers to model DVCs 
[18-24]. However, MIP models are too difficult to solve 
to be practically useful because of their nonconvex and 
nondeterministic polynomial time hard characteristics. 
Tuncel, Preciado, Rardin, Langer, and Richard [5] intro-
duced a family of disjunctive valid inequalities to the 
MIP formulation of the FMO problem under DVCs. A 
heuristic algorithm based on the geometric distance sort-
ing technique is proposed by Lan, Li, Ren, Zhang, and 
Min [21] for solving a Linear constrained, quadratic ob-
jective MIP formulation of the FMO with DVCs. 

Preciado-Walters, Rardin, Langer, and Thai [22] for-
mulated the FMO problem as an MIP model over a 
coupled pair of column generation processes. One of the 
processes makes intensity maps, and the other determines 
the protected area for organs under DVCs. Dink et al. 
[25,26] also incorporated DVCs into an MIP model: on 
the basis of work by Morrill, Lane, Wong, and Rosen 
[27]. 

Typically, the FMO problem that considers DVCs has 
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multiple local optima and is non-deterministic polynomi-
al time hard [4,5]. There is no guarantee that the gra-
dient-based solution methods and metaheuristics pro-
posed to solve non-LP formulations would allow us to 
find a global optimal solution. Those methods usually 
find local optimal and/or suboptimal solutions [5]. In 
contrast, MIP models can guarantee global optimality. 
But solving the MIP models with DVCs can take such a 
long time that they may not be useful in clinical practice 
[14]. 

Multiobjective optimization is often used to optimize 
fluence maps, although choosing the appropriate values 
for the weight parameters and hot- and cold-spot control 
parameters is not straightforward and requires a tri-
al-and-error approach. In this paper, we developed a Li-
near-based heuristic algorithm to satisfy DVCs that eli-
minates the manual selection of those parameters. This 
algorithm begins by setting loose boundaries for hot- and 
cold-spot control parameters; then, after checking the 
dose-volume criteria, it gradually tightens the boundaries, 
if the DVC criteria are not satisfied. At the same time, 
our algorithm increases the objective function weight 
parameters for organs but does not satisfy their corres-
ponding DVCs. Although this proposed method should 
work well for intensity-modulated radiation therapy, our 
method was developed specifically for IMPT. Proton 
therapy is increasingly being used to treat cancer patients 
in clinical practice. Thus, we tested our DVC satisfaction 
algorithm on IMPT cases. 

2. Materials and Methods 
2.1. Patient Data and Beam Configurations 
We evaluated the relative performance of the optimiza-
tion approaches by retrospectively creating treatment 
plans for one patient with prostate cancer and five pa-
tients with lung cancer who had previously undergone 
IMPT on a prospective institutional review board-ap- 
proved protocol at MD Anderson Cancer Center in Hou-
ston, Texas. Two lateral beam fields were used for the 
prostate case while three beam fields were used for the 
lung cancer cases. The prescribed doses and beam con-
figurations are listed in Table 1. For the patients with 
lung cancer, which are more complicated than the patient 
with prostate cancer, we used two methods of FMO (li-
near and nonlinear) to evaluate DVC satisfaction. 

2.2. DVC 
In this study, we used the same DVCs used in the origi-
nal treatment protocols and adopted in the clinic. The 
following DVC protocols were used for the prostate 
cancer case: 1) rectum: V70 ≤ 25% (≤25% of the rectum 
is allowed to receive 70 Gy or more); 2) bladder V65 ≤ 
25%; and 3) bladder V40 ≤ 50%. The DVCs and mean- 

dose constraints used in the lung irradiation case were as 
follows: 

1) Planning target volume (PTV): ≥ 95% of the PTV 
volume receives ≥ 95% of the prescribed dose. 

2) PTV: No more than 2 cm3 receives ≥ 120% of the 
prescribed dose (minor deviation) or no more than 2 cm3 
receives ≥ 110% of the prescribed dose (no deviation). 

3) Normal lung: V20 ≤ 37%. 
4) Normal lung: Mean lung dose ≤ 20Gy relative bio-

logical effectiveness. 
5) Heart: V45 ≤ 30%. 
6) Heart: mean dose ≤ 35Gy relative biological effec-

tiveness. 

2.3. Linear FMO 

The FMO model optimizes the amount of radiation that 
each beamlet delivers when the gantry is positioned at a 
given angle. The goal of this model is to find the optimal 
beamlet weights, assuming that a set of beam angles are 
given as input parameters. The objective function for this 
model can be either linear or nonlinear. We describe our 
model, which is based on the linear FMO model by Lim, 
Choi, and Mohan [28] in Section 2.4. Then, in Section 
2.5, a nonlinear alternative FMO is presented. The input 
parameters for the linear FMO are shown in Table 2. A 
cold spot represents a portion of a structure that receives 
less than the desired radiation dose. A hot spot represents 
a portion of a structure that receives a dose higher than 
the desired upper boundary. 

The voxels in the OARs are denoted by Sk to signify a 
collection of k OARs, and T represents the voxels in the 
PTV. Each voxel is represented by a three dimensional 
coordinate, (x,y,z). The dose contribution d(x,y,z,j) is 
calculated via an in-house-developed dose calculation 
engine [29], where d(x,y,z,j) denotes the dose contributed 
by the jth beamlet per unit weight, and is received by 
voxel (x,y,z). Given that the decision variable wj is the 
intensity of beamlet j, the total dose in voxel (x,y,z) can 
be calculated as ( ) ( ) ( ), , , , ,1 .m

jx y z x y z jjD w d
=

= ⋅∑  

The standard LP model to optimize the beamlet 
weights is constructed as follows. The objective function 
of the LP model has three terms that are associated with 
the target and OARs. 
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Table 1. Dose and beam configurations. 

Patient Prescribed  
dose (Gy) 

Target  
volume  
(cm3 ) 

Gantry  
angles 

Dose grid  
resolution (mm) 

Prostate 76 99 90, 270 4 
Lung 1 74 922 320, 230, 180 4 
Lung 2 60 616 100, 150, 190 5 
Lung 3 66 800 200, 225, 300 5 
Lung 4 74 407 225, 205,160 5 
Lung 5 74 502 200, 90, 150 5 

 
Table 2. Input parameters for linear FMO. 

Parameter Definition 

T A set of voxels in planning target volume (PTV or target) 
Sk A set of voxels in kth organ-at-risk (OAR) 
θL Cold spot control parameter on PTV 
θU Hot spot control parameter on PTV 

φ Hot spot control parameter on OAR 
LT Lower reference boundary on PTV 
UT Upper reference boundary on PTV 

tλ
+  Penalty coefficient for hot spots on PTV 

tλ
−  Penalty coefficient for cold spots on PTV 

λSk Penalty coefficient for hot spots on kth OAR 

d(x,y,z,j) Dose contribution from beamlet j to voxel (x,y,z) 
Where (x,y,z) ∈ T∪ S and j ∈ {1, 2, ..., m} 

 

solute values of the columns i
i

x 
 
 
∑ . The notation (.)+  

represents max{•,0}, DT and DS are doses to the target 
and OARs respectively, and eT and eS are the vectors of 
ones. 

2.4. LP Heuristic Algorithm to Satisfy DVCs in  
Linear FMO 

The linear FMO model [28] imposes strict hot spot con-
trol parameters on both the target and the OARs and 
strict cold spot control parameters on the target. This 
approach often helps satisfy the DVCs if the values are 
selected appropriately. The values of the parameters can 
sometimes be shown to be unnecessarily conservative, 
which compromises the quality of the treatment plan for 
other organs. Consequently, a tedious trial-and-error ef-
fort is made to find appropriate parameter values. To 
eliminate this trial-and-error approach, applying the 
techniques for controlling dose-volume histogram by 
Lim, Ferris, Shepard, Wright, and Earl [30], our algo-
rithm starts by setting arbitrarily loose upper boundaries 
on these parameters; it then gradually tightens the boun-
daries and simultaneously increases the objective penalty 
coefficients through an iterative solution process. Fol-
lowing this iterative process, appropriate parameter val-

ues are determined, which results in an even trade-off 
between OAR sparing and target coverage. The algo-
rithm stops when all of the DVCs are satisfied or when 
no more improvement can be made in the DVCs. The 
algorithm can be described as follows: 

1) Initialize φ and λS for OARs, as well as tλ
+ , tλ

− , θL, 
and θU for the target. 

2) Solve the FMO model. 
3) If all constraints are satisfied, stop; otherwise go to 

step 4. 
4) Remove all OAR voxels that satisfy the DVCs from 

sets Sk and keep the remaining (or DVC-violating) vox-
els for the next iteration, if there are any violated DVCs 
for OARs. 

5) Decrease the hot spot control parameter (φ) and in-
crease the penalty coefficient for hot spots (λS) if any of 
the constraints of an OAR are not satisfied. 

6) For violated DVCs of the target, increase the cor-
responding penalty coefficient ( tλ

+  and tλ
− ), tighten the 

corresponding control parameter (increase θL or decrease 
θU), and then go to step 2. 

2.5. Nonlinear FMO 
This problem can also be modeled using the nonlinear 
(mostly quadratic) objective function. A quadratic mo- 
del used to optimize the weights is constructed as fol-
lows: 

( ) ( ) ( )
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2 2
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Similar to the LP model, λ terms denote the penalty 
weights of the corresponding organs. PD+  and PD−  are 
the upper and lower prescribed dose levels for the tumor, 
respectively, and 

kTolD  is the tolerance dose for the kth 
OAR. 

In order to take in to account the non-negativity of the 
beamlet intensities, the weight of beamlet j is denoted by 
the non-negative quantity 2

jw . As a result, the con-
strained optimization problem with respect to weights is 
turned into an unconstrained one of optimizing the 
square root of the beamlet weights instead of optimizing 
the beamlet weight directly.  

The objective function penalizes quadratic integral 
dose violations to the target and the OARs. The model 
only includes OAR voxels receiving doses greater than 
their tolerance dose levels. The penalty weights and the 
prescribed and tolerance doses for the target and OARs 
can be altered by the treatment planner. The limited 
memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) 
method is applied to solve this unconstrained optimiza-
tion model [31,32]. 
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3. Results 
3.1. Prostate Cancer Case 
We tested our LP heuristic algorithm on a prostate cancer 
case. Two major OARs were the rectum and bladder. 
Note that we normalized the prescribed dose on the PTV 
so that the value of 1 stands for the prescribed radiation 
dosage level on the tumor. The normalization was done 
for all the experiments in this paper. Typically, the values 
of tλ

+ , tλ
− , and λS are selected by the treatment planner. 

In our experiments, we started the algorithm by assigning 
equal weights to the PTV and OARs. The algorithm then 
adjusted these values in order to satisfy the DVCs. 

For the prostate cancer case, all DVCs were satisfied 
by the algorithm at its initial iteration (which is the same 
as the linear FMO) and the algorithm was terminated.  
However, to assess the algorithm, we modified the DVCs 
to make them much harder to satisfy. Figure 1 shows 
how using the algorithm for organ sparing and to main-
tain the target dose coverage affected the DVH. 

3.2. Lung Cancer Cases 
3.2.1. Results for the LP Heuristic Approach 
In this section, we applied our developed method to five 
cases of lung cancer. These cases were more complicated 
than the case of the patient with prostate cancer discussed 
in the previous section. Lung cancer cases include two of 
the most critical OARs: normal lung and heart. Table 3 
presents the progression of the LP heuristic algorithm, 
from the initial iteration to the final one in terms of con-
straints satisfaction for all the lung cancer cases. The 
results of the first iteration showed unnecessarily con-
servative OAR sparing, whereas the PTV coverage was 
not enough to satisfy its corresponding DVCs. 

For instance, DVC1 at the first iteration was not satis-
fied for Patient 1. As illustrated in Table 3, 80.7% of the 
PTV received a dose greater than or equal to 95% of the 
prescribed dose, which was not greater than or equal to 
the corresponding reference point (95%) and thus vi-
olated the reference criteria. On the other hand, for 
DVC3, 21.6% of the normal lung received a dose greater 
than or equal to 20 Gy at the first iteration, which was 
significantly less than the reference point (37%). How-
ever, at the final iteration of the LP heuristic for the same 
patient, 99.6% of the PTV received a dose greater than or 
equal to 95% of the prescribed dose, which satisfied the 
reference criteria for DVC1, and 29.7% of the normal 
lung received a dose greater than or equal to 20 Gy, 
which was still less than the reference point for DVC3 
(37%). 

Hence, in the last iteration, the LP heuristic found so-
lutions that satisfied the constraints for all organs through 
an iterative process by automatically adjusting the opti-
mization model parameter values. The resulting DVHs  

 
Figure 1. Effect of the LP heuristic on the dose-volume his-
togram for the prostate case (solid line: initial iteration; 
dashed line: final iteration). 
 
are displayed in Figure 2 for all five cases of lung cancer. 
DVCs 1, 3, and 5 are illustrated for all the cases. For Pa-
tient 2, the algorithm was not able to satisfy DVC3, but 
tried to improve tumor coverage while keeping the total 
lung’s DVH as close to the corresponding DVC as possi-
ble. DVC2 was obviously satisfied, since for all the cases, 
no volume of the PTV received a dose greater than or 
equal to 120% of the prescribed dose. Mean dose con-
straints (4 and 6) which could not be displayed on the 
DVH were also satisfied for all the patients (Table 3). 

The outcomes of our constrained FMO model de-
pended on the lower and upper reference boundary pa-
rameters for PTV, LT and UT, respectively. Having those 
parameters in the LP model is useful in controlling the 
optimization process, which is not possible in uncon-
strained optimization models. However, selecting the right 
parameter values can be a daunting task. Choosing boun- 
daries that are too tight can result in an infeasible solu-
tion, so we imposed loose boundary constraints on the 
target, i.e., LT = 0.8 and UT = 1.2, for all cases. Further 
experiments were performed to show the behavior of the 
model. Four different settings of these boundaries were 
implemented for Patient 4, as shown in Figure 3. The 
cold spots were controlled by setting different values of 
LT. When we increased the lower boundary from 0.8 
(Figure 3(a)) to 0.85 (Figure 3(c)), the model respon- 
ded accordingly and the starting point of the target DVH 
curve has been shifted to ensure that no target voxels 
received less than 85% of the prescribed dose. Simi-
larly, the hot spots can be controlled by UT, as seen in 
Figures 3(a) and (b). Figure 3(b) is the result of allow-
ing up to a 20% overdose (UT = 1.2) to the target, 
while Figure 3(a) is based on a 15% overdose limit, i.e., 
UT = 1.15. By setting these boundaries tighter, both the  
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(a)                                                           (b) 

 
(c)                                                           (d) 

 
(e) 

Figure 2. Dose-volume histograms using the LP heuristic algorithm for cases of lung cancer (blue line: target, red line: nor-
mal lung, black line: heart). (a): Patient 1; (b): Patient 2; (c): Patient 3; (d): Patient 4; (e): Patient 5. 
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Table 3. Comparison of constraints satisfaction levelsa between the initial and final iterations of the LP heuristic in lung 
cancer cases. 

Const. Reference 
criteria 

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 

First itr. Final itr. First itr. Final itr. First itr. Final itr. First itr. Final itr. First itr. Final itr. 

1 ≥0.95 0.807 0.996 0.706 1.000 0.785 0.997 0.820 0.958 0.852 1.000 

2 ≤2 cm3b 0 0 0 0 0 0 0 0 0 0 

3 ≤0.37 0.216 0.297 0.238 0.385 0.230 0.294 0.147 0.180 0.106 0.218 

4 ≤20 Gy[RBE] 13.47 18.13 12.12 19.32 11.48 15.18 9.47 11.47 7.99 12.728 

5 ≤0.3 0.084 0.102 0.089 0.117 0.060 0.089 0.028 0.043 0.009 0.007 

6 ≤35 Gy[RBE] 6.81 8.806 8.94 10.26 5.74 7.656 2.88 4.14 1.92 1.332 

Abbreviations: Const., constraint; RBE, relative biological effectiveness; itr., iteration. aPortion of voxels satisfied the constraint. bMinor deviation was allowed 
for DVC2. 
 

 
(a)                                                           (b) 

 
(c)                                                           (d) 

Figure 3. Dose-volume histogram using the LP heuristic for four reference boundary settings on Patient 4 (blue line: target, 
red line: normal lung, black line: heart; Blue star: DVC1, red star: DVC3, black star: DVC5). (a): LT = 0.8, UT = 1.2; (b): 
LT = 0.8, UT = 1.15; (c): LT = 0.85, UT = 1.2; (d): LT = 0.85, UT = 1.15. 
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cold spots and the hot spots were reduced accordingly. 
Note that such a reduction trend will continue as long as 
the model can find a feasible solution to meet the con-
straints requirements. If the model cannot find a solution 
to satisfy the protocol requirements, the algorithm termina- 
tes with the last solution found during the iterative process. 

3.2.2. Comparison between the LP Heuristic and the  
NLP Model 

We applied the nonlinear model solved by L-BFGS to 
the lung cancer cases and compared the results to those 
of the LP heuristic approach. Although the NLP model 
was able to satisfy constraints for some cases, it failed for 
other cases. Figure 4 compares DVHs of the LP heuristic 
and NLP approaches for one of these cases. All con-
straints except DVC1 were satisfied by the NLP ap-
proach on this case (Patient 4). Note that DVC1 corres-
ponds to cold spots on the tumor; 91% of the tumor vo-
lume received a dose greater than or equal to 95% of the 
prescribed dose, which was less than the reference point 
on DVC1 (95%) and violated the reference criteria. 
When compared to the NLP FMO, the LP heuristic re-
sulted in fewer cold spots and hot spots on the tumor. 
The worst cold spot on the tumor using the NLP FMO 
was 72% of the prescribed dose, while the worst cold 
spot using the LP heuristic was 80% of the prescribed 
dose. The worst hot spot on the tumor using the NLP 
FMO was more than 120% of the prescribed dose, while 
the worst hot spot using the LP heuristic was 112% of the 
prescribed dose. 

3.2.3. Comparison of LP Heuristic with Eclipse 8.9 
For the five cases of lung cancer, we compared the out-
comes of our method to the plans from Eclipse 8.9 com-
mercial treatment planning system (Varian Medical Sys-
tems, Palo Alto, CA, USA), which uses an NLP solver 
and is used at MD Anderson to treat cancer patients. 
Those plans are physician-approved clinical ones gener-
ated by very experienced dosimetrists, and satisfy all 
clinical requirements. Table 4 presents the satisfaction 
levels for all constraints using our heuristic algorithm 
and the Eclipse 8.9 system. For all patients, the LP heu-
ristic algorithm satisfied all the constraints except DVC 3 
for Patient 2. However, using the commercial treatment 
planning system resulted in more violations from the 
reference points: Constraints 2, 3, 4, and 5 for Patient 1, 
constraints 3 and 4 for Patient 2, and constraints 1 and 4 
for Patient 3 (see Table 4). As an example, for Patient 3, 
94.5% of the PTV volume received a dose greater than or 
equal to 95% of the prescribed dose, which was slightly 
below the reference point for DVC1 (95%). Also, the 
mean lung dose for this patient was 24.11 Gy, which vi-
olated the reference criteria corresponding to constraint 4 
(≤ 20 Gy). 

 
Figure 4. Comparison of dose-volume histograms using the 
LP heuristic and NLP approach for Patient 4 (solid line: 
NLP, dashed line: LP heuristic;blue line: target, red line: 
total lung, black line: heart;blue star: DVC1, red star: 
DVC3, black star: DVC5). 

4. Discussion and Conclusions 
The purpose of this study was to test an LP-based heuris-
tic approach for FMO with DVCs using an iterative li-
near FMO algorithm. A major advantage of our method 
is that it satisfies the DVCs without increasing the com-
plexity of the problem and while conserving its convexi-
ty. This method alleviates the tedious effort of selecting 
initial values of model parameters by choosing appropri-
ate values through a simple iterative process. Starting 
from its initial condition, the parameter values are itera-
tively updated while considering trade-offs between the 
target coverage and the OAR sparing. 

To validate the outcomes of our new algorithm, the 
results for cases of lung cancer were compared with 
those of two other approaches (NLP FMO solved by 
L-BFGS and Eclipse 8.9). We first illustrated the LP heu-
ristic algorithm on a case of prostate cancer (Figure 1). 
Using the iterative process, the algorithm found a better 
solution in terms of satisfying the constraints on all 
OARs. We then examined the performance of all three 
solution methods in the five lung cancer cases. We ob-
served the progression of the iterative LP heuristic when 
comparing the outcomes of the first and the last iteration 
(Table 3). DVCs corresponding to cold spots on the tu-
mor were not satisfied at the initial iteration for any of 
the five cases. On the other hand, the satisfied portion of 
constraints corresponding to total lung and heart were 
much higher than the acceptable level (reference point). 
Thus, our heuristic algorithm improved the target cover-
age step-by-step to meet the DVC while maintaining 
satisfaction of the constraints for the OARs. We illu-
strated how to use the LP heuristic approach to control  
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Table 4. Comparison of constraints satisfaction levels* between LP heuristic and Eclipse 8.9. 

Const. Referencecriteria 
Patient1 Patient2 Patient3 Patient4 Patient5 

Eclipse LP heu. Eclipse LP heu. Eclipse LP heu. Eclipse LP heu. Eclipse LP heu. 
1 ≥0.95 0.993 0.996 0.983 1.000 0.945 0.997 0.956 0.958 0.98 1.000 
2 ≤2 cm3** 5.26 0 0 0 0 0 0 0 0 0 
3 ≤0.37 0.7 0.297 0.408 0.385 0.271 0.294 0.185 0.180 0.224 0.218 
4 ≤20 Gy[RBE] 25.01 18.13 32.76 19.32 24.11 15.18 16.52 11.47 13.02 12.728 
5 ≤0.3 0.4 0.102 0.170 0.117 0.085 0.089 0.044 0.043 0.025 0.007 
6 ≤35Gy[RBE] 14.98 8.806 25.11 10.26 13.33 7.656 6.68 4.14 4.366 1.332 

Abbreviations: Const., constraint; RBE, relative biological effectiveness; itr., iteration; LP heu., LP heuristic. *Portion of voxels satisfied the constraint. **Minor 
deviation was allowed for DVC2. 
 
both the hot spots and the cold spots, using four different 
settings of reference boundaries on the tumor (Figure 3). 
We showed that the LP heuristic successfully satisfied all 
constraints in all cases and demonstrated that properly 
selected tighter boundaries decreased cold spots and hot 
spots on the tumor as expected. These outcomes showed 
the advantage of using constrained linear programming 
optimization to control the cold and hot spots on the tu-
mor. 

We also compared the performance of the LP heuristic 
approach and the NLP approach in lung cancer cases and 
observed that the NLP failed to satisfy the DVCs in some 
cases (Figure 4). Note that the NLP model is an uncon-
strained minimization model solved using the L-BFGS 
method. A major drawback of this approach is that the 
model does not consider DVCs. Hence, there is no re-
course for correcting unsatisfied constraints other than a 
manual trial-and-error effort to find a solution that is 
close to the requirements. One can try different values of 
initial beamlet weights and prescribed dose, or different 
penalty weights on the objective function, which requires 
a substantial amount of effort to find a clinically feasible 
solution. The advantage of using the LP heuristic ap-
proach is that it is not sensitive to its initial condition. It 
may fail to satisfy the DVCs or may result in an unac-
ceptable plan quality at the first iteration, but through the 
iterative process, it will find a solution to meet the re-
quirements. 

The LP heuristic approach performed better than the 
Eclipse 8.9 commercial treatment planning system for 
the five lung cancer cases (Table 4). Unlike Eclipse 8.9, 
the LP heuristic approach satisfied the constraints for 
almost all the reference criteria for all patients. The Ec-
lipse treatment planning system produced solutions in 
which eight constrains were violated in three cases. 
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