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Abstract 

Data fusion is usually an important process in multi-sensor remotely sensed 
imagery integration environments with the aim of enriching features lacking 
in the sensors involved in the fusion process. This technique has attracted 
much interest in many researches especially in the field of agriculture. On the 
other hand, deep learning (DL) based semantic segmentation shows high 
performance in remote sensing classification, and it requires large datasets in 
a supervised learning way. In the paper, a method of fusing multi-source re-
mote sensing images with convolution neural networks (CNN) for semantic 
segmentation is proposed and applied to identify crops. Venezuelan Remote 
Sensing Satellite-2 (VRSS-2) and the high-resolution of Google Earth (GE) 
imageries have been used and more than 1000 sample sets have been collected 
for supervised learning process. The experiment results show that the crops 
extraction with an average overall accuracy more than 93% has been ob-
tained, which demonstrates that data fusion combined with DL is highly 
feasible to crops extraction from satellite images and GE imagery, and it 
shows that deep learning techniques can serve as an invaluable tools for larger 
remote sensing data fusion frameworks, specifically for the applications in 
precision farming.  
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1. Introduction 

At present RS technology has received great attention in the agriculture com-
munity due to its ability to provide periodic and regional information for crop 
monitoring and thematic mapping [1] [2]. Modern RS to identify any features 
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on the surface is no longer considered as a processing of a one-source single date 
image. It has shifted to multi-source fusion of multi-temporal images. Several 
spectral indices have been proven to be valuable tools in describing crop spatial 
variability. In this context, the images of high spatial and spectral resolution 
have already proved their potential and effectiveness in crop detection. However, 
when we are considering to identify the types of crops with multispectral image-
ries, RS becomes more challenging. The main challenge of satellite based remote 
sensing application in agricultural field at present is that there is no suitable 
sensors with very high spatial resolution like below 50 centimeters and with a 
good temporal resolution and spectral resolution at the same time. 

Indeed, novel approaches and algorithms using Unmanned Aerial Vehicle 
(UAV) or satellite based multispectral imaging have been developed for vegeta-
tion classification [3]. But, the acquisition of UAV images or images of other 
platform such as GeoEye-1, WorldView-4 and KompSat 3a can be difficult to 
acquire considering the high cost, and their availability only in the specific small 
region. Google Earth (GE) provides an open data source with very high spatial 
resolution, which represents a very good alternative for crops detection. Very 
few studies have been undertaken to use GE images as the direct data source for 
land use/cover mapping [4]. Numerous methods based on DL have been pro-
posed recently for agricultural applications over specific RS data, especially fo-
cusing on high resolution and hyperspectral images [5], plant phenotyping [6] 
or weed scouting [7] and early disease detection [8]. However, some recent ap-
proaches have tried to directly adopt deep architectures designed to identify 
other aspects related to the vegetation or the diseased plants, the results, al-
though very encouraging, appeared coarse [9].  

In this research, we are going to identify several types of crops that has very 
different shapes, sizes, and color intensities, and the surrounding plants and 
background soil strongly differ across regions. In addition, data fusion of RGB 
images (with high spatial resolution) obtained from Google platforms and mul-
tispectral satellite imagery obtained from Venezuelan Remote Sensing Satellite 
(VRSS-2), will be done through Gram-Schmidt (GS) pan-sharpening method. 
Fusion images and vegetation indices (VIs) were used as input to following Seg-
Net based semantic segmentation. Our main contributions can be summarized 
as: this is probably the first attempt conducted to explore the combination of 
VRSS-2 and GE imagery, through a data fusion process for crop detection; a 
SegNet-based semantic segmentation model is proposed for crop type detection, 
capable of adapting to fusing data sets in which the results proved that this ap-
proach provide better performance than that of the traditional classification 
methods; a self-designed preparation of data sets and semantic segmentation 
network have been employed to provide a per pixel labelling of the input data; 
finally, two different data sets from VRSS-2 and GE, those are obtained abso-
lutely free of cost, have been employed with several pre-processing and 
post-processing strategies, designed and combined with Segnet architecture, that 
has increased the overall accuracy. 
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2. Materials and Methods 

2.1. Study Area 

The study area is located in the north-central region of Venezuela, Aragua State, 
Palo Negro Sector-Venezuela. The most important agricultural production is 
concentrated in this area and the main crops produced are banana, pasture, pa-
paya and coco. Banana and pasture production have greater importance in the 
study area, because they represent 65% of the economy of that region of Vene-
zuela. In recent years their production and thereby, the source of employment 
have been declined considerably. Reasonably, the state has taken steps to identify 
and quantify the possible reasons and overcome the problems. ‘Bare land’ comes 
into this issue as one of the solutions to increase their production using that 
lands which are in plenty. In this study, different training zones and testing zone 
are used.  

2.2. Data Sets Construction 

The design of the training dataset is the key to the performance of a good CNN 
classification model, and the construction of dataset is described below. All three 
datasets used in this research are contained the RGB image set from VRSS-2 
image, Google earth mapping, and data fusion images which are composed of 
the multispectral bands including RGB bands, Near-infrared (NIR), and norma-
lized difference vegetation index (NDVI). 

2.2.1. VRSS-2 Image 
VRSS-2 was launched on October 09, 2017, and owned by the Bolivarian Agency 
for Space Activities (ABAE). It contains two different cameras, High Resolution 
Camera (panchromatic and multispectral sensors) and Infrared Camera. VRSS-2 
data has a total of 10 bands including a panchromatic band (band 1) which has 1 
meter of spatial resolution, nine multispectral bands (band 2 - 10) which has the 
spatial resolution in 3 meter (band 2 - 5), 30 m (band 6 - 8) and 60m (band 9 - 
10) respectively. However, in this research, only five bands are selected (bands 1 
- 5). 

The radiometric calibration procedure is first applied to selected VRSS-2 im-
ages to generate a consistent output images. To obtain the high-quality fusion 
data, it is important to apply the data corrections for various lighting conditions 
such as overcast skies and partial cloud coverage. To correct for this aspect, we 
utilize sunlight sensors measuring the sun’s orientation and sun irradiance, as 
shown in Figure 1. 

The obtained data are stored as quantized and calibrated Digital Numbers 
(DN). The DN are converted to surface reflectance value using the Equation (1) 
with coefficients provided in metadata file and ABAE. 

( )( )2 / cosTOA
sum sL d Eρ π θ= × × ×                (1) 

where, TOAρ  is surface reflectance of the earth at the top of the atmosphere, L is 
apparent radiance at the top of the atmosphere in Watt/m2/stereo-radian/ 
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Figure 1. Radiometric calibration pattern samples. (a) Image without calibration and (b) 
image after calibration. 
 
micrometers, 2d  is average distance between the earth and the sun in atmos-
pheric units (UT), sumE  is ex-atmospheric irradiation in watt/m2/micrometers 
and ( )cos sθ  is cosine of the angle of the solar elevation. Once the Top of At-
mosphere (TOA) reflectance of required bands are calculated, they are stacked 
to get one single image. 

2.2.2. Google Earth Imagery 
Google Earth provides open and highly spatially resolved images. This platform 
contains petabyte-scale data for scientific analysis and visualization, easily ac-
cessible and user-friendly, and a convenient environment for interactive data or 
algorithm development. However, GE images have rarely been used as the main 
data source to identify crops. GE images are limited to a three-band color code 
(R, G, B), which is expected to lower the classification performance due to its 
poor spectral signature [10]. Actually, the potential for the classification of spa-
tial characteristics by Google Maps has been underestimated [11].  

2.2.3. Data Fusion 
The purpose of data fusion is to obtain more accurate and more abundant in-
formation than any single dataset by processing multi-source redundant data in 
space and time according to certain algorithms, and then generate combination 
images with new space, spectrum, and time characteristics [12]. In this study, the 
first implementation of data fusion is done between band 1 and band 2 - 5 of 
VRSS-2 which were captured under 0% cloud cover on 16 December 2018. The 
multispectral bands have a native spatial resolution of 3m, but they are pan 
sharpened to 1m by using the panchromatic band. The Gram Schmidt (GS) 
pan-sharpen method was used in this process. In the second implementation of 
data fusion, the Google earth images which have the high resolution up to 50 cm 
were fused with the infrared band of above fused VRSS-2 images. The result of 
data fusion is multispectral bands (R, G, B, NIR). After the two fusions, crop 
recognition accuracy could be increased to some degree, but it is still hard to 
differentiate similar crops by traditional classification. Therefore, to improve the 
crop detection precision, Normalized Difference Vegetation Index (NDVI) is 
computed and used, which could enhance the spectral information and increas-
ing the separability of the interested classes.  

2.3. Methods 

This Section describes the proposed methodology for crop detection. It is di-
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vided into three steps: First, fusion between two selected remote sensing image-
ries are made and NDVI band is computed, and then these newly produced im-
ages are used as input in the training dataset labeling. Second, we have employed 
a self-designed data sets and semantic segmentation network to provide a per 
pixel semantic labeling of the input data. Finally, the accuracy assessment is 
conducted. Two experiments are designed and implemented in this research ac-
cording to the different datasets used.  

2.3.1. Data Preparation 
SegNet architecture cannot directly deal with one scene of VRSS-2 image, due to 
the limitation of GPU memory and other factors. Resizing images to a proper 
size is a common idea, but it will result in the loss of large amounts of informa-
tion. In this paper, we propose a patch-wise to deal with this problem. Firstly, 
the VRSS-2 image was resized into 120 scenes of 3200 × 2400 pixels which are at 
the same amount and size as the Google scenes, which are subsequently merged. 
Secondly the image was split into many local patches with an appropriate size 
according to the dataset and the GPU capacity (the size of a local patch for our 
dataset was 480 x 480 pixels). Sample datasets can be seen in Figure 2. 

As to the dataset production, we first separated all images used for training 
into three semantic classes and labeled them as banana, pasture and bare land 
separately. The challenges in creating such datasets lie in that there are so many 
patterns, different shapes and colors, confusing details caused by low attitude, 
and complex land cover types in the object area. The sample dataset is show in 
Figure 3. In our experiment, we divide these annotated datasets into three sets:  
 

 
Figure 2. Samples with different size, band combination. (a) Image bands with 3200 x 
2400 pixels and from left to right: true color, color-infrared, NDVI, GNDVI and SPEAR 
Vegetation Delineation, (b) according bands with 480 × 480 pixels. 
 

 
Figure 3. Data fusion samples, where different crops areas are visualized. (a) Banana 
crops, (b) bare land area and (c) pasture zones. 
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750 sets for training, 20% of randomly selected from the training set for validat-
ing, and 50 sets for testing. The testing set is captured from different areas com-
pared to the training sample set. 

Figure 3(a) shows some scenes with banana plantation where you can see 
different levels of growth, even within the plantations there are irregular areas 
without crops. Figure 3(b) shows the bare lands with various color and some 
sample observations of different types of land conversions. The Figure 3(c) 
shows diverse kinds of pasture with mixed colors, managed with agricultural 
practices of seeding, irrigation and with practices like controlled burning and 
regulated intensity of grazing. In order to annotate the crop types, Labelme 
software is selected in this research to label and design a preprocessor for build-
ing labeled dataset. By artificial labeling, a large number of annotations for dif-
ferent crops classes was created. All data are classified into four datasets. The 
first dataset bases on the data fusion of VRSS-2 satellite images between 
pan-sharpening image with multispectral bands (R, G, B), which is called 
VRSS-2 dataset here. The second dataset as named GI is the RGB image from 
Google earth imagery which consists of RGB bands. The third dataset is the data 
fusion of VRSS-2 with Google earth images, which is called data fusion dataset. 
Lastly, the fourth dataset is the combination of data fusion dataset and addition-
al feature bands which comprise the RGB image, NIR, and NDVI image. The 
four datasets will be evaluated the performance on crop extraction following the 
experiment design. 

2.3.2. SegNet-Based Semantic Segmentation 
The aim of semantic segmentation is to generate human-interpretable labels for 
each pixel in a given image. Recently, CNN have been proved to be efficient and 
reliable models to achieve remarkable performance for image classification and 
object detection tasks [13], Moreover, it has been demonstrated that pre-trained 
CNN architectures can play an important role in terms of features extractors and 
allow high classification performance. [14]. The CNN model for crop detection 
classification presented in this section aims to provide a general architecture to 
be used with RS data from different sources and characteristics such as VRSS-2 
images, Google imagery and fusion data. In this paper, we used SegNet architec-
ture which is developed by Badrinarayanan, V et al. [15]. CNN used for semantic 
pixel-wise labeling commonly called semantic segmentation. Networks used for 
semantic segmentation took first an RGB image as input data which is a “n” 
channel image, where “n” is the number of labels involved. Each channel cor-
responded to a label, for example in this research was: banana, bare lands and 
pasture; then each pixel in a certain channel is given a numerical value depend-
ing on whether that pixel belongs to the labeling corresponding to that channel. 
The SegNet architecture is displayed in Figure 4 consists of layers called encod-
ers and decoders. Each of the architecture's encoders applies a series of proce-
dures such as: convolution, batch normalization and non-linearity, later it is ap-
plied max pooling on the result. Decoders are similar to the encoders, the  
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Figure 4. SegNet is composed of: the encoder (left) and the decoder (right). The input is an RGB image and the output is a 
segmentation image. 

 
difference is that they do not have a non-linearity, and they up sample their in-
put, using indices stored from the encoding stage. After the final decoder, the 
output is fed to a softmax classifier that gives the final prediction. SegNet is 
clearly structured and it is easy to understand the convolutional network of the 
model. In the model, dropout and batch normalization layers are introduced in 
the architecture, and dropout is applied at the fully connected layer, while batch 
normalization is used at every convolution. Furthermore, it was employed the 
ReLU function after all convolution layers. The max-pooling is applied with a 
stride of two in order to subsequently reduce the spatial dimension of the patch 
and focusing on the central pixel. 

2.4. Accuracy Assessment 

The semantic image segmentation challenge is evaluated using the mean Inter-
section over Union (mIoU) metric. The mIoU is a standard measure metric that 
represents the ratio of intersection to union between the prediction and ground 
truth. For evaluate the classification models was used overall accuracy (OA). In 
addition, the overall F1 score for all the classes in each data sets was computed. 

3. Results 

3.1. Experiment: Crops Extraction Based on Google Imagery,  
VRSS-2 and Finally Data Fusion (RGB) 

The accuracy results of the proposed SegNet architecture it is displays in Figure 
5. As it can be observed, the data fusion provides the most competitive results 
with an overall accuracy of 90.85%, F1 score of 87.65% and mIoU of 83.26%. It 
also achieves the high accuracies for every classes: banana 91.05%, pasture 90.33 
and bare lands 89.03. However, with only Google imagery and VRSS-2 data 
show a lower results which obtaining overall accuracies below 90%. With regard 
to the VRSS-2 images results, it has a lower spatial resolution, the accuracy result 
is below to 86% since the pixels cover a larger area of land. It is difficult to  
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Figure 5. Cross validation overall accuracy of different data sets: only Google Imagery 
(GI), only VSRR-2 and data fusion only RGB images. 
 
differentiate accurately the different types of crops which makes it more errors 
for SegNet to locate the common features, because of its structure containing a 
single convolutional network.  

In the case of the pasture and bare land classes the model is able to distinguish 
some plantation with a low level of accuracy below to 75%. The GI results show 
how large fields of different crops are properly mapped especially banana and 
bare land zones. Comparing the GI and VRSS-2 results, we see that GI yielded 
has 6% increasing in overall accuracy and 7% in F1 score. It demonstrates that 
crops extraction can boost classification performance for high-resolution im-
agery. However, the results present problems on pixels closer to the pasture area. 
Visual comparisons show that the segmentation results of SegNet architecture 
are more accurate in data fusion. Figure 6 shows different banana, bare land and 
pasture crops, but visually the samples grouped in left side they are a bit differ-
ent with respect to the samples displayed in right side, because they have others 
patterns, color and shape, also shows diverse kind of pasture with mixed colors, 
managed through more intensive agricultural practices of seeding, even within 
the banana plantations there are irregular areas without crops, also the sunlit 
and shaded banana plant leaves and torn banana plant leaves and the bare lands 
with various color and some sample observations of different types of land con-
versions. 

3.2. Experiment 2: Crops Extraction Based on Data Fusion (RGB)  
and Additional Feature Bands 

The experiment results are shown in Figure 7. The data fusion with additional 
feature bands achieves an overall accuracy of 93.17%, F1 score of 90.16% and 
mIoU reports 85.94%, whereas data fusion (RGB) achieves an overall accuracy of 
90.85%, F1 score of 87.65% and mIoU reaches 83.26%. It also achieves the high 
accuracies for every classes: banana 92.89%, pasture 91.53% and bare lands  
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Figure 6. Visual segmentation results on testing set which consist of input ground true 
image (a), label data (b), crops extraction result from Google imagery (c), crops 
extraction result VRSS-2 RGB images (d) and crops extraction result Data fusion RGB 
images (e). 
 

 
Figure 7. Cross validation overall accuracy between data fusion (RGB) and data fusion 
with multiple bands. 
 
90.24%. CNN-based crop detection with data fusion model achieved better de-
tection results than data fusion with only RGB bands. On banana class achieved 
higher precision, 92.89% versus 91.05%, bare lands, 91.53% versus 90.33%, and 
pasture, 90.24% versus 89.03%. More noticeable, on others data sets, data fusion 
with multiple bands achieved significantly better overall accuracy 93.17% versus 
78.04% (VRSS-2), and 84.65% (GI). For both data fusion RGB and data fusion 
with additional feature bands, higher accuracies can be achieved compared to 
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the use of each sensor individually.  
The improvement of the results is due to the spectral fusion, spatial informa-

tion and the vegetation indices. Meanwhile, when is add multiple bands the clas-
sification networks lead to higher overall accuracy, F1 score and mIoU for all 
three data sets. In addition, the proposed method achieves the highest accuracies 
on all classes. The results are also presented when the multiple bands are ap-
plied, which provides an average improvement of almost 3% in accuracy. As it 
can be seen, the training data provided is limited with respect to public datasets. 
Nevertheless, the proposed network is able to produce smooth classification re-
sults for all cases, considering the three classes involved and the different cha-
racteristics of the images. 

Comparing these results, we see that data fusion with multiple bands yielded a 
2 percent increasing in overall accuracy. It demonstrates that VIs allowed the 
enhancing of the spectral information and increasing the separability of the in-
teresting classes. Through the results, it is possible to verify that the datasets 
prepared with the data fusion with multiple bands are considerably better than 
the data from a single sensor such as Google imagery or VRSS-2. Visual com-
parisons show that the segmentation results of SegNet architecture are more ac-
curate in data fusion. See Figure 8. Our CNN learnt and performed better on 
higher resolution images with multiple bands. When the image spatial resolution 
is high, and it added more additional bands extracted from the Vis. the accuracy 
show a better result. This also implies that, if CNNs are trained on high-resolution 
images with NDVI, GNDVI, ENDVI or other bands the performance will be 
better. 

4. Conclusion 

In this paper, we proposed a data fusion model based on SegNet architecture to  
 

 
Figure 8. Visual segmentation results on testing set which consist of input ground true 
image (a), label data (b), crops extraction result from data fusion RGB (c) and crops 
extraction result Data fusion with multiple bands (d). 
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perform crops detection with the remote sensing imagery of different sources. 
To build the training datasets, we selected two different area of the study area. 
The first one has been used to collect training data, and the second one was used 
for test data collection. Data fusion between VRSS-2 images and Google imagery 
was applied through the Gram Schmidt pan-sharpen method. Our study dem-
onstrate that data fusion combined with DL is highly feasible to crop extraction 
from satellite images and GE imagery, as it has showed promising results for all 
the images have been studied, given that they are from different sources and 
distinct characteristics. It also proves that deep learning techniques can serve as 
invaluable tools for larger remote sensing data fusion frameworks. Moreover, 
data fusion model with the SegNet architecture allowed the full utilization of the 
strength of the convolution in the extraction of spatial semantics and made ap-
propriate use of the rich information contained in the pixels of the remote 
sensing images, thus achieving a more accurate segmentation. The model pre-
sented in this paper provides a solution for the crop’s extraction or the segmen-
tation of the crop’s plantation using VRSS-2 images and GI. The future work 
should include a deeper study on the data fusion level integrating lidar informa-
tion with radar and hyper spectral images. 
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