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Abstract 
This article is devoted to a time series prediction scheme involving the nonli-
near autoregressive algorithm and its applications. The scheme is imple-
mented by means of an artificial neural network containing a hidden layer. As 
a training algorithm we use scaled conjugate gradient (SCG) method and the 
Bayesian regularization (BReg) method. The first method is applied to time 
series without noise, while the second one can also be applied for noisy data-
sets. We apply the suggested scheme for prediction of time series arising in oil 
and gas pricing using 50 and 100 past values. Results of numerical simula-
tions are presented and discussed. 
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1. Introduction 

Any branch of science which deals with observational data, requires a repeatedly 
usage of the mathematical concept of time series. Time series are formed by dis-
crete measurements of a specific quantity at successive time instants. They are 
used in such disciplines as statistics [1] including statistical physics and me-
chanics; astronomy including astrophysics, celestial mechanics and cosmology 
[2]; oceanography [3]; econometrics and mathematical finance including actu-
arial mathematics [4] [5]; meteorology and climatology [6]; seismology [7]; bi-
ology [8]; engineering [9]; earth science and geomechanics [10], etc. Examples of 
time series include (in an order corresponding to the disciplines above) positions 
of particles under Brownian motion; tidal heights; assets of a company; speed 
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and direction of a weather flow; seismic activity; population of species; 
load-deformation dependence of structures; displacement of the crust of the 
Earth. 

The mathematical analysis of time series is a very important branch of statis-
tics. A proper mathematical analysis may reveal the most important features of 
the temporal measurements and use the output to make a meaningful insight. 
The most desirable insight might be a prediction of future behavior of a pheno-
mena/process based on the past data. We learn that from the ancient time hu-
mans were able to do astronomical, meteorological, seismic, etc. predictions. For 
example, based on the seismic activity of a specific region, many centuries ago 
people on different continents were able to predict a time frame when the high-
est-risk seismic behavior will occur in that region and thus had an opportunity 
for safe evacuation. Another example, the analysis of astronomical data gathered 
by known astronomers such as Tycho Brahe, Johann Kepler was able to for-
mulate his law, which was laid in the foundations of celestial mechanics much 
later. 

All this and much more are now easily performed based on the fundamental 
methods of contemporary statistical analysis. One of the most powerful methods 
allowing analyzing time series and make predictions, is the nonlinear au-
to-regression algorithm (NAR). For a detailed introduction into the subject, see 
[11] [12] and the related references therein. The algorithm was developed to 
analyze periodically sampled data [13] [14] (more often equally or regularly 
spaced term is used). However, recently the algorithm has been extended to be 
applicable for analyzing equally or regularly spaced data [15]. The algorithm and 
its modifications are used by several authors to train artificial neural networks 
for predictive analysis of time series with many applications [16] [17]. 

In this article we apply the nonlinear autoregressive model for a predictive 
analysis of time series arising in gas and oil pricing. The data used in this paper 
are freely available at the Macrotrends webpage1. The paper is organized as fol-
lows. We first briefly describe the nonlinear autoregressive model we use in Sec-
tion 2. In Section 3 we present the results of numerical simulations performed in 
MatLab. In particular, among others, it is established how the performance of 
the algorithm for a specific time series depends on the number of data used for 
forecasting future values of the series. 

2. Nonlinear Autoregressive Model: Main Relations and  
Characteristics 

The nonlinear autoregressive model is defined for an order p∈ . Thus, the 
nonlinear autoregressive model of order p is defined as [17]  

( ) ( ) ( ) ( )( ) ( )1 , 2 , , ,f t F f t f t f t p tε= − − − +  

where ( )f t  is the current value and, apparently, ( ) , 1, 2, ,f t i i p− =   is the 
ith past value of the time series, F is a nonlinear function defining the 

 

 

1http://www.macrotrends.net/1369/crude-oil-price-history-chart 
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dependence of the current value on the past p values of the time series, ε  is a 
white noise. This means that every current value depends on the previous p 
values. 

The main aim of any method of statistical analysis is the low-error 
approximation of F. In the simplest case, F is a linear function, leading to  

( ) ( ) ( )0
1

,
p

i
i

f t F F f t i tε
=

= + − +∑  

where 0F  and , 1, 2, ,iF i p=   are given constants. 

Structure of the Nonlinear Autoregressive Model Based Artificial 
Neural Network 

The nonlinear autoregressive model based neural network, is a feed-forward 
network aiming to approximate F in the above definition. The feed-forward 
algorithm is defined by [17]  

( ) ( ) ( ) ( )( )ˆ ˆ 1 , 2 , , ,f t F f t f t f t p= − − −              (1) 

( ) ( )0
1 1

ˆ ,
pN

i k ik
i k

f t A w f tα α β
= =

 
= + + 

 
∑ ∑               (2) 

where , 1, 2, ,i i Nα =   are constants, A is the activation function, ikw  are the 
weights, kβ  are the biases. 

NAR methods are efficiently used for forecasting as deterministic models, as 
well as stochastic models. In this study, we consider a three-layer neural network, 
in which the feed-forward algorithm (1), (2) is learned using the well-known 
supervised learning algorithm scaled conjugate method developed in [18], as 
well as the Bayesian regularization presented in [19] in details. 

3. Application of the Nonlinear Autoregressive Model for  
Prediction of Gas and Oil Prices 

Let us proceed with the implementation of the algorithm described in the 
previous two sections. For simplicity, let the time series of past values be 
composed of 50 data. This means that the nonlinear autoregressive model of 
order p = 50 must be involved. To measure the error between the target and 
output, we use the mean square error function  

( ) ( )2

1
Er , ,

N

i i i i
i

o t o t
=

= −∑  

with io  being the outputs and it  being the targets. We also compute the 
correlation coefficient to compare the statistical properties of the analysis for 
different order NAR models:  

( ) ( ) ( )( )
1

1 .
Er , Er ,

N

i i
ii i

C o o t t
o o t t =

= − −
⋅ ∑  

As a training algorithm we use the scaled conjugate gradient algorithm. After 
19 iterations (epochs), the performance of the neural network is plotted on 
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Figure 1. At this, the best performance occurs at 13th iteration and is equal to 
1512.9115. The gradient and validation check results are plotted in Figure 2. It is 
evident that the gradient is a locally decreasing function of epochs, which means 
that if more iterations are involved, the error should be decreased. On the other 
hand, we see that the validation checks increase when the number of epochs 
increases. 

From Figure 3, where the error histogram is plotted, it is easy to observe that 
near the zero error (i.e., when the target and output are equal) the training errors 
for positive difference is comparably higher than for negative difference. It is 
also noteworthy that the training regression plot shows a high efficiency of the 
fitting tool of the algorithm (see Figure 4). 

Finally, let us summarize the main result of the numerical simulation. As it is  
 

 
Figure 1. Performance of the neural network: p = 50. 
 

 
Figure 2. The training state, i.e., gradient and validation checks against iteration number: 
p = 50. 
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Figure 3. Error histrogram: the dependence of the target and output difference on time 
instances: p = 50. 
 

 
Figure 4. Training regression: p = 50. 

 
shown in Figure 5, there is a specific interval containing both target and outputs. 
In other words, the analysis based on the nonlinear autoregression algorithm of 
order p = 50, allows predicting future data with a specific accuracy. Increasing 
the model order, generally, it will be possible to make the prediction more 
accurate. However, it is not always the case because of the overfitting 
phenomenon. Nevertheless, it is the case in the present study. Indeed, Figures 
7-12 show that the training, performance and output parameters are better 
compared with those for p = 50. Note that in this case 55 iterations (epochs) are 
performed. Finally note that, as it is seen from Figure 6 and Figure 12, the error 
autocorrelation is lower when p = 100. 
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Figure 5. Output element response for the time series: p = 50. 
 

 
Figure 6. Autocorrelation of error: p = 50. 
 

 
Figure 7. Performance of the neural network: p = 100. 
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Figure 8. The training state, i.e., gradient and validation checks against iteration number: 
p = 100. 
 

 
Figure 9. Error histrogram: the dependence of the target and output difference on time 
instances: p = 100. 
 

 
Figure 10. Training regression: p = 100. 
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Figure 11. Output element response for the time series: p = 100. 

 

 
Figure 12. Autocorrelation of error: p = 100. 

4. Conclusion 

In this article we show the efficiency of the nonlinear autoregression algorithm 
based artificial neural network in time series analysis and prediction. As a 
particular model we choose the time series generated by daily prices of gas and 
oil (the data are freely available at www.mactrotrends.com). The artificial neural 
network consists of 3 layers: an input layer, a hidden layer, an output layer. 
Using the scaled conjugate gradient method to learn the neurons, we test the 
algorithm for 50 and 100 number of past values. The main characteristics of the 
neural network performance are reported. In particular, a significant improve is 
observed in validation and regression, the gradient is decreased, the target/output 
error is decreased almost two time and autocorrelation error is decreased almost 
2.5 times. 
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