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Abstract 

Coal is one of the most popular sources of energy. However, it has a relatively 
low energy efficiency due to high humidity and a greater release of harmful 
substances during combustion. On the other hand, the coal reserve on earth is 
estimated at 500 years and the cost is relatively low. This causes the search for 
new ways of processing coal. One way to efficiently process coal, while reduc-
ing the humidity and content of harmful components is microwave treatment. 
The basic information for microwave exposure to coal is the temperature 
field. In this paper, an approximate-analytically nonlinear mathematical mod-
el for heating a flat coal mass is studied, provided that the absorbed micro-
wave energy is removing by heat radiation and convection simultaneously. 
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1. Introduction 

At present, there are many experimental confirmations [1] [2] of the prospects 
of using microwave treatment of coal material. Advantages over conventional 
processing methods (convective, infrared, conductive, etc.) include the unifor-
mity and volume character of heating; the possibility of concentrating large ca-
pacities in certain places; obtaining the required temperature distribution; low 
inertia; absence of a heat-bearing medium, etc., which significantly increases the 
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effectiveness of such an impact on energy coal. These specific features of micro-
wave radiation make it possible to search for optimal heating regimes taking into 
account changes in the characteristics of coal during the process (humidity, 
content of other components, temperature, thermophysical and electromagnetic 
inhomogeneity, etc.) [3]. A comparison was made between the economics of 
drying by various methods and the microwave advantage was demonstrated [4]. 
A number of experiments were performed showing the possibility and efficiency 
of combining different types of drying with microwave drying [5]. 

Energy costs for evaporation under the influence of microwave radiation are 
reduced to an average of two times. It is shown that with evaporation of mois-
ture, complete removal of nitrogen from wet coal samples occurs. In addition, 
there is a reduction of about 50% sulfur, 50% mercury, 30% ash, 50% chlorine 
[6].  

Even a brief analysis of the application of microwave treatment of coal massifs 
demonstrates the prospects of its use and development in modern energy tech-
nologies, which will significantly improve the environmental safety and effi-
ciency of burning coal fuel. 

2. Problem of Microwave Heating of Plane Coal Massive 

Coal is a dielectric material capable of absorbing electromagnetic radiation from 
the microwave range and thus forming an internal heat source. In this formula-
tion, it was modeled according to Bouguer’s exponential law (Equation (1)). This 
internal heat source ensures warming up, ignition and burning out of the coal 
massif. The layer itself has two boundaries. At the top-the mode of heat removal 
using two mechanisms: radiation and convection (see Figure 1), on the bottom - 
thermal insulation. Radiation is most pronounced at high temperatures (~T4), 
convection at lower temperatures (~T). However, in the general case, it is neces-
sary to take into account two parallel heat fluxes. 

The mathematical model contains the following assumptions: 
1) Thermophysical characteristics of coal are constant and isotropic; 2) The 

initial temperature of the layer is constant along the coordinate; 3) Heat from 
the surface of the array is removed by heat radiation and convection simulta-
neously; 4) The non-isothermicity of a coal massif is taken into account. 

Taking into account the above assumptions, the system of differential equa-
tions of the given problem will be written in the following form: 

0
2

2

( , ) ( , ) v kxqT x t T x ta e
t cx ρ

−∂ ∂
= +

∂ ∂
                   (1) 

0 st t≤ ≤ , 0 x l≤ ≤  

0( ,0)T x T=                            (2) 

[ ]4 4( , ) ( , ) ( , )c c
T l t T l t T T l t T

x
λ σ α
∂  − = − + − ∂

              (3) 

(0, ) 0T t
x

∂
=

∂
                          (4) 
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Figure 1. The scheme of the problem of microwave heating with heat dissipation by 
convection and heat radiation simultaneously. 
 

Here t is the current time, s; x—current Cartesian coordinate, m; ts—the mo-
ment of ignition, s; l—thickness of the coal massif, m; a—coefficient of thermal 
diffusivity, m2/s; T (x, t) is the current temperature, K; λ—coefficient of thermal 
conductivity, W/m∙K; c—heat capacity, kJ/kg∙K; α—Heat transfer coefficient at 
the upper surface, W/m2∙K; ρ—density, kg/m3; σ—Visible coefficient of thermal 
radiation, W/m2·K4; k is the absorption coefficient of microwave radiation, m−1; 
Tc—ambient temperature, K. 

In order to find a generalized solution, we turn to dimensionless variables, 
choosing as scales the quantities entering into the uniqueness conditions of the 
problem. To this end, we introduce new variables into problem (1)-(4): 

xX
l

= —dimensionless coordinate, 

2 /
tFo

l a
= —Fourier number, 

0

2
v

c

q l
Po

Tλ
= —number of Pomerantsev,  

Bu kl= —Bouguer’s number,  
( , )( , )

c

T x tX Fo
T

θ = —dimensionless temperature,  

3
cT lSk σ
λ

= —Stark number,  

lBi α
λ

= —Bio number.  

As a result, we have: 
2

2

( , ) ( , ) BuXX Fo X Fo Po e
Fo X

θ θ −∂ ∂
= + ⋅

∂ ∂
                 (5) 

0( ,0)Xθ θ=                            (6) 
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Problem (5)-(8) does not have a strict analytic solution, since the Ste-
fan-Boltzmann law is nonlinear in (7). However, as shown in our paper [7], it is 
possible to construct sufficiently effective asymptotics for such problems. Next, 
we turn to the construction of such asymptotics for small and large values of Fo. 
To this end, we translate the system (5)-(8) from the region of the originals into 
the Laplace region of images. 

The transformed system looks like this:  

0( , ) ( , ) BuX
L L

Pos X s X s e
s

θ θ θ −′′− = +                  (9) 

(1, ) ( )L Ls Ki sθ ′− =                         (10) 

(0, ) 0L sθ ′ =                           (11) 

We find the solution of this system as the sum of the solution of a homoge-
neous problem and a solution with allowance for the inhomogeneous term: 

1 2( , ) ( , ) ( , )L X s Y X s Y X sθ = +  

The solution of the homogeneous problem in the general form gives: 

1( , ) s X s XY X s A e B e⋅ − ⋅= ⋅ + ⋅  

The nonhomogeneous part must be of the form: 

0
2 ( , ) Bu XY X s C e

s
θ− ⋅= ⋅ +   

Next we substitute the general form of the solution 

0( , ) s X s X Bu X
L X s A e B e C e

s
θ

θ ⋅ − ⋅ − ⋅= ⋅ + ⋅ + ⋅ +  

for an inhomogeneous problem in Equations (9)-(11), we find the constants. 
Then the general and particular solution for the Laplace-transformed temper-

ature distribution can be written:  

3
22

0
2

( , ) 1
( )

( ) ( , )
( )

s Bu s Bu
s X s X

L s s s s

BuX
L

Po Bu e e e eX s e e
e e e es s Bu

PoKi s s X e
ss s Bu

θ

θ

− −
⋅ − ⋅

− −

−

  ⋅ − −
= + ⋅ +   − −   ⋅ −

− ⋅Φ + +
−

  (12) 

Here is Transmission function:  

( )( , ) ch s Xs X
s sh s

Φ =
⋅

 

Next, we turn to the search for asymptotic solutions for small times. 

3. Small Fo (Large s) 
We introduce the notation 1( , ) ( ) ( , )Y X s Ki s s X= − ⋅Φ —the general solution. 

2 2

0
2

( , ) 1
( )

( )

s Bu s Bu
s X s X

s s s s

BuX

Po Bu e e e eY X s e e
s s s Bu e e e e
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⋅ − ⋅
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−

  ⋅ − −
= + ⋅ + +   ⋅ ⋅ − − −   

+ +
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- A particular solution. 
Then the system of basic Equations (5)-(8) after the Laplace transform looks 

as follows: 

1 1( , ) ( , ) 0Y X s sY X s′′ − =  

1(1, ) ( )Y s Ki s′− =  

1(0, ) 0Y s′ =  

We represent the transfer function in the form of an expansion in the large 
parameter s: 

2

1 2
( )( , ) ( , ) ( , ) ...

s sch s X e eФ s X X s X s
ss sh s s

− −

= ≈ Ψ +Ψ +
⋅

 

As a result, the general solution in the images becomes: 
2

1 1 2( , ) ( ) ( , ) ( , ) ...
s s

L
e eY X s Ki s X s X s

ss

− − 
= − Ψ +Ψ + 

  
       (13) 

Further we substitute the solution 1( , )Y X s  into the system (9)-(11) and 
equate the terms with the same degrees of expansion. 

As a result, for 1( , )X sΨ  we get 

1 1( , ) ( , ) 0X s s X s′′Ψ − Ψ =                     (14) 

From Equation (10) it follows that 

1( ) (1, ) ( )
s

L L
eKi s s Ki s

s

− 
′− Ψ = − 

  
 

1(1, )
s

ss
e−

′Ψ =                        (15) 

1(0, ) 0s′Ψ =                          (16) 

The solution of (15) is represented in the form 

1(1, ) ( ) ( )s A sh s X B ch s XΨ = ⋅ + ⋅               (17) 

From the boundary condition (16) it follows that 

0A =  

As a result, we have: 

1( ) ( , ) ... ( )
s

L
eKi s X s B ch s X

s

− 
− Ψ + = ⋅ 

  
 

For X = 1, using (15), we find 

( )
( )

Ki sB
s sh s

= −
⋅

                       (18) 

Then 

1
( ) ( )( , )

( )
Ki s ch s XX s

s sh s
⋅

Ψ = −
⋅

                  (19) 

Further we substitute hyperbolic functions into (19): 
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( 1) ( 1)
1( , ) ( ) ( )s X s XX s Ki s e e− + −Ψ = − ⋅ +             (20) 

As a result, the solution in images becomes 

( )

3
22

( 2) ( 2) 0
2

( , ) 1
( )

( )
( )

s Bu s Bu
s X s X

L s s s s

s X s X BuXL

Po Bu e e e eX s e e
e e e es s Bu

Ki s Poe e e
ss s Bus

θ

θ

− −
⋅ − ⋅

− −

− + − −

  ⋅ − −
= + ⋅ +   − −   ⋅ −

− ⋅ + + +
−

   (21) 

Then we carry out the inverse Laplace transform. For large s it is permissible 
to assume that s Bu  and 

1
2

BuX BuXPoL e Poe Fo
s

− − − ⋅ =  
                 (22) 

For large s, the expression 

2
1

( )

s Bu s Bu
s X s X

s s s s

Po Bu e e e ee e
s s s Bu e e e e

− −
⋅ − ⋅

− −

  ⋅ − −
+ ⋅ +   ⋅ ⋅ − − −   

 

goes into 

2
s XPo Bu e

s s
− ⋅⋅

−
⋅

 

Let 

1
2

( , ) s XPo BuN X Fo L e
s s

− − ⋅⋅ 
= − ⋅ 

 

Then the final solution is written in convolution 
2 2( 2) ( 2)

4( ) 4( )

0

( )( , ) ( )
( )

( , )

X XFo
Fo Fo

BuX

KiX Fo e e d
Fo

Po e Fo N X Fo

η ηη
θ η

π η

+ −
−

− −

−

= − ⋅ +
−

+ ⋅ +

∫         (23) 

To obtain an explicit calculation expression, we expand ( )Ki η  in the Taylor 
series near Foη ≈ : ( ) ( ) ( ) ( ) ...Ki Ki Fo Fo Ki Foη η= + − ⋅ +  

Limited to the first term of the expansion, we have 
2 2( 2) ( 2)

4( ) 4( )

0

1( , ) ( ) ( )
( )

( , )

X XFo
Fo Fo

BuX

X Fo Ki Fo e e d
Fo

Po e Fo N X Fo

η ηθ η
π η

+ −
−

− −

−

= − ⋅ +
−

+ ⋅ +

∫      (24) 

After taking the integral, we get: 

( ) ( )( )
2

2

4

( 2)
2

( 2)
2

0

( , ) (1, ) 1 (1, ) 1

2 ( 2) 2
2 2 2

2 ( 2) 2
2 2 2
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X
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X
Fo

BuX

X Fo Sk Fo Bi Fo

X X X Xerf e
X Fo Fo
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X X Xerf e
X Fo Fo
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π π
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  − − −   − ⋅ + −    ⋅   
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     (25) 
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The boundary temperature is found by substituting X = 1 in (30): 

( ) ( )( )
2 2

4

3 1
2 2

0

(1, ) (1, ) 1 (1, ) 1

1 3 3 1 1
2 22 2

(1, )

Fo Fo

Bu

Fo Sk Fo Bi Fo

Foerf erf e e
Fo Fo

Po e Fo N Fo

θ θ θ

π π

θ

   − −   
   

−

= − + −

       ⋅ − + − − +           
+ ⋅ + +

 

As a result, the surface temperature is calculated by the following expression: 

( )
( )( ) 1

2 1
1,

2

b c b c Bi Sk b c
Fo aθ

−
+ ± − − + − +

= +        (26) 

Here are new variables:  

0 (1, )Bua Po e Fo N Foθ−= + ⋅ + +  

( )

1
3

1
32 4 2 3 3

4 2

27 ( 1) 729( 1) ( ) 6912 ( )

ab

Bi d Sk d Bi d Sk d a Sk d

⋅
=

⋅ ⋅ − ⋅ + ⋅ − ⋅ − ⋅ ⋅

 

( )
1
32 4 2 3 3

1
3

27 ( 1) 729( 1) ( ) 6912 ( )

3 2

Bi d Sk d Bi d Sk d a Sk d
c

Sk d

⋅ ⋅ − ⋅ + ⋅ − ⋅ − ⋅ ⋅
=

⋅ ⋅
 

2 23 1
2 21 3 3 1 1

2 22 2
Fo FoFod erf erf e e

Fo Foπ π

   − −   
   

       = − + − − +           

 

4. Large Fo (Small s) 

We take the inverse transformation from the term with the source as we do on 
previous stage, but now we calculating expressions with assumption of small s. 
Let’s set new variable: 

( ) ( )1
2 2

1
( , ) 1

Bu
Bu

e Fo PoPo BuM X Fo L e
Bus Bu

−
− −

− ⋅⋅ = − =  
 

We shall construct the asymptotics for large times-for this purpose we expand 
the transfer function in a series with respect to the small parameter s: 

2
0 1 2( , ) ( , ) ( , ) ( , )Ф s X s X s s X s s Xϕ ϕ ϕ= + + +            (27) 

Substituting (27) into the basic Equation (9) and equating the terms with the 
same powers of s, we obtain a system for determining 0ϕ , 1ϕ , 2ϕ  

The system that is used for this: 

1 1( , ) ( , ) 0Y X s s Y X s′′ − ⋅ =  

1(1, ) ( )LY s Ki s′− =  

1(0, ) 0Y s′ =  

As a result, we get  
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0 1 0 2 1( , ) 0, ( , ) , ( , )X s X s X sϕ ϕ ϕ ϕ ϕ′′ ′′ ′′= = =               (28) 

Each equation in (28) requires 2 boundary conditions for finding two con-
stants. 

The boundary condition: 

0 0 1 0 2 00, 0, 0X X Xϕ ϕ ϕ= = =′ ′ ′= = =                   (29) 

The second constant is found from the integral relations: 
1 1 1 1 1

0 1 0 2 1
0 0 0 0 0

0, ,dX dX dX dX dXϕ ϕ ϕ ϕ ϕ′′ ′′ ′′= = =∫ ∫ ∫ ∫ ∫             (30) 

We solve the system, finding for the asymptotics in the originals with allow-
ance for the two terms of the series (27). As a result, we have 

2

0

0

1 3( , ) ( ) ( )
6

( , )

Fo

L

BuX

XX Fo Ki d Ki Fo

Po Fo e M X Fo

θ η η

θ−

−
≈ − +

+ ⋅ ⋅ + +

∫              (31) 

The unknown surface temperature (1, )Foθ  is found from the Voltaire 
integral equation of the second kind, while denoting ( ) (1, )w Fo Foθ θ= : 

4

0

4
0

( ) ( ( ) 1) ( ( ) 1)

1 ( ( ) 1) ( ( ) 1) (1, )
3

Fo

w w w

Bu
w w

Fo Bi Sk d

Bi Fo Sk Fo Po Fo e M Fo

θ θ η θ η η

θ θ θ−

 ≈ − − + − 

 − − + − + ⋅ ⋅ + + 

∫
  (32) 

The solution of (32) is  

*
1 13 , ,w w

Bi BiSk Fo F F
Sk Sk

θ θ   ⋅ = −      
                (33) 

where the function F1 has the form  

( )

1 3 1 1
4 4

4

12 4
4

12 4

2 2
[ ] 2 arctan 1 2 arctan 1

4 2

2
ln ln

2

w w
w

w w
w

w w

AF
B BB

B B Sk B
B B

θ θ
θ

θ θ
θ

θ θ

    ⋅ ⋅
= − ⋅ − − ⋅ +           ⋅

 − ⋅ ⋅ +  + + ⋅ +
 + ⋅ ⋅ + 

 

Here *
wθ  is the initial value in the integral Equation (32). We find it substi-

tuting Fo = 0: 

* * *4
0

1 ( 1) ( 1)
3w w wBi Skθ θ θ θ = − − + − +                (34) 

The solution of (34) is: 

* 1 1
2 2w A B A B Cθ = − + − − +                 (35) 

where 

( )

( ) ( ) ( )( )

1
3

0

1
332 4 2 3

0

24 3
3

9 3 3 27 3 256 3

Bi Sk
А

Bi Sk Bi Sk Sk Bi Sk

θ

θ

  + + 
 =

 + ⋅ + + ⋅ + ⋅ + + 
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( ) ( ) ( )( )
1
332 4 2 3

0

1 2
3 3

9 3 3 27 3 256 3

2 3

Bi Sk Bi Sk Sk Bi Sk
B

Sk

θ + ⋅ + + ⋅ + ⋅ + + 
 =

⋅ ⋅
 

( )2 3 Bi
C

Sk A B
⋅ +

=
⋅ − +

 

Knowing the surface temperature, you can calculate the required temperature: 

4 1 3( , ) ( ) ( ( ( ) 1) ( ( ) 1)) ...
6L w w w

BuX

XX Fo Fo Bi Fo Sk Fo

Po Fo e

ϑ θ θ θ

−

−
≈ − ⋅ − + − ⋅

+ ⋅ ⋅

    (36) 

A typical temperature distribution obtained from this solution is demonstrat-
ed on Figure 2. 

The stationary solution for large times is found from the basic Equation (5) 
and looks as follows: 

( ) 2, BuXPoX e
Bu

θ −∞ =                      (37) 

5. Conclusions 

This article is a construction of a nonlinear model of heating a coal layer by mi-
crowave energy. At the same time internal heat sources are generated inside, 
which are modeled according to Bouguer’s law. On the upper surface, a heat re-
lease is prescribed according to the law of heat radiation and convection. Since 
they are decisive in the process of heating the coal to the ignition temperature. 
The lower boundary is considered to be insulated in the problem. The task itself 
to simplify the recording of the solution has been translated into dimensionless 
variables. The problem was analyzed using the Laplace transform. Because of the 
Stefan-Boltzmann law, the problem is nonlinear and, generally speaking, does  
 

 
Figure 2. Temperature distribution over the depth of the layer. 
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not have a rigorous analytical solution. To do this, we searched for asymptotic 
solutions for large and small times. 

The resulting temperature fields will be used in future to calculate thermal 
stresses, find the moment of ignition, optimum conditions, conduct microwave 
processing, taking into account ecology, energy saving, safety, etc. 
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