
Journal of Computer and Communications, 2015, 3, 107-117
Published Online June 2015 in SciRes. http://www.scirp.org/journal/jcc
http://dx.doi.org/10.4236/jcc.2015.36011

How to cite this paper: Chaibou, A. and Sie, O. (2015) Comparative Study of the Parallelization of the Smith-Waterman Al-
gorithm on OpenMP and Cuda C. Journal of Computer and Communications, 3, 107-117.
http://dx.doi.org/10.4236/jcc.2015.36011

Comparative Study of the Parallelization of
the Smith-Waterman Algorithm on OpenMP
and Cuda C
Amadou Chaibou1, Oumarou Sie2
1Laboratoire de Mathématiques et Informatique (LAMI), Université de Ouagadougou, Ouagadougou,
Burkina Faso
2Département de Mathmatiques et Informatique, Université de Ouagadougou, Ouagadougou, Burkina Faso
Email: chaibouam@univ-ouaga.bf, chaibouam@yahoo.fr, sie@univ-ouaga.bf

Received 14 April 2015; accepted 15 June 2015; published 18 June 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
In this paper, we present parallel programming approaches to calculate the values of the cells in
matrix’s scoring used in the Smith-Waterman’s algorithm for sequence alignment. This algorithm,
well known in bioinformatics for its applications, is unfortunately time-consuming on a serial
computer. We use formulation based on anti-diagonals structure of data. This representation fo-
cuses on parallelizable parts of the algorithm without changing the initial formulation of the algo-
rithm. Approaching data in that way give us a formulation more flexible. To examine this approach,
we encode it in OpenMP and Cuda C. The performance obtained shows the interest of our paper.

Keywords
Cuda, GP-GPU, OpenMP, Parallel Computing, Smith-Waterman

1. Introduction
In this paper, we discuss the parallelization of the Smith-Waterman algorithm [1]-[3] on the proteins sequences
alignment. This algorithm permits to compare protein sequence of large sizes. The sequence alignment analyses
sequences of amino acids to extract similar subsequences. The results of such analysis answer questions such as:

• Is that a new sequence fully or partially in the database?
• Does this sequence contain a given gene?
• How a gene can migrate from other previously identified genes?
• etc.

http://www.scirp.org/journal/jcc
http://dx.doi.org/10.4236/jcc.2015.36011
http://dx.doi.org/10.4236/jcc.2015.36011
http://www.scirp.org
mailto:chaibouam@univ-ouaga.bf
mailto:chaibouam@yahoo.fr
mailto:sie@univ-ouaga.bf
http://creativecommons.org/licenses/by/4.0/

A. Chaibou, O. Sie

108

Answers to these questions can help to simulate changes or mutations used in medicine, the recognition of
body (from the classification of individuals based on genetic maps), phylogeny (comparing very similar se-
quences for inferring evolutionary relationships of proteins within families), etc.

Many algorithms are used in sequence alignment. They can be classified into two types:
• Approach gives rigorous results but is extremely slow. The algorithm of Needleman and Wusch [4] for

global search and the Smith-Waterman’s algorithm for local search belong to the algorithms of this category.
• Very fast approach but with results less satisfactory for very large databases. This is a compromise between

speed and sensitivity. BLAST1 [5] and FASTA2 [6] are two algorithm of this category. BLAST algorithm uses a
heuristic to detect the anchor points to locate areas of identical sequences. FASTA is used for a quick compari-
son of protein or nucleotide.

Our works focuses on the search for satisfactory solutions with reduced execution time.

2. Preliminaries
The Smith-Waterman algorithm is used to find the large alignment between two sequences based on the substi-
tution matrix and the fixed penalty. It allows to extract the longest similar segments in the two aligned se-
quences.

2.1. Principle of the Algorithm
To determine similarity between two nucleotide or protein, the Smith-Waterman algorithm compares all possi-
ble segments and assigns a score. It returns segment with the highest score. For example, consider s and t two
sequences to be compared. The algorithm begins by creating a matrix M of dimensions equal to the lengths of
the sequences s and t. Then the cell values of matrix M are calculated starting from the cell in the upper left cor-
ner to the cell at the bottom right corner. Formula (1) gives the expression of [][]M i j 1 ,i j N≤ ≤ .

[][]
[][]

[][]
[][] [] [] [] []
[][] []
[][] []

0 0;

0 0;

0

1 1 if
max

1 if

1 if

M i

M j

M i j S s i t j t j s i
M i j

M i j d s i

M i j d t j






 =
 =



    − − +     =  − + −  − + − 

 (1)

Where:
-S is a “Blosum Scoring matrix”3.
-d is a fixed constant corresponding to the alignment of a letter and an empty score (-).
-t [j] s [i] means that t [j] and s [i] are animo acide.
-s[i] and t[j]—correspond respectively to the alignement of the—a animo acide (animo acide with-).
-M [i] [j] is intuitively the score of an alignment ending with t [i] s [j]. At each step, when a maximum value is

calculated, it is stored along the direction in which it is obtained: on the diagonal (i − 1, j − 1), just above (i − 1, j)
or to the left (i, j − 1). Computing the matrix M and the information regarding the directions in which the highest
values are obtained, require much time and memory space.

To restore the best alignment, we proceed as follows:
• Find the maximum value in the matrix M. This is the end of the local alignment with the best score.

1Basic Local Alignment Search Tool.
2FAST-ALL.
3A Blosum (BLOcks SUbstitution Matrix) matrix is a substitution matrix for sequence alignment of proteins. It is used to score alignments
between evolutionarily divergent protein sequences.

A. Chaibou, O. Sie

109

• Go to (the) cell (s) adjacent(s) Maximum score:
-movement on the diagonal shows an alignment of the letters t [i] and s [j];
-an horizontal movement means of a bias t [i] and a blank (−) between s [j − 1] and s [j];
-an vertical movement is analogous to the horizontal displacement;
-when the maximum score is 0, it means that the optimal local alignment starts at M [i + 1] [j + 1].
• The optimum score is given by the equation:

[][], 1, ,max .opt i j NScore M i j==


2.2. Application Example
Here are two sequences to be compared:

t: CGGGTATC
s: CCCTAGGT
Figure 1 shows the values in the matrix of scores at the end of the execution of the Smith Waterman algo-

rithm:
Once all the cells of the matrix scores are calculated to find the best local alignment, we start with the cell

where the maximum score has been identified, then back to the cell that was used to determine the score and so
on. And the optimal local alignment in the Smith-Waterman algorithm is:

C G G G --A T
---C T A G G T

2.3. Highlighting Parallelizable Calculations
As shown in Figure 2, calculations are done in parallel according to the anti-diagonal.

At time T1, a single cell is calculated, at time T2, two cells are calculated, at time T3, three cells are calculated,
etc.

Generally, the cell M(i,j) is computed at time Tij = i + j – 1.

2.4. Linear Representation of Cells
The number of cells calculated at each iteration Ti is given as above.

T1 at first, then T2 and T3, and so on. We obtain the representation in Figure 3.

Figure 1. Example of sequence alignment.

Figure 2. Cases calculable at the same time Ti.

A. Chaibou, O. Sie

110

Figure 3. Linear representation of the parallelizable boxes.

This representation of the scoring matrix clearly shows the tasks that can be performed simultaneously.

2.5. Evolution of the Number of Cells at the Same Step
Suppose we have two sequences of identical size N. The number of computable Nbi cells at the same time Ti is
given by the Formula (2).

 if 1
2 if 1 2 1

i

i

Nb i i N
Nb N i N i N

= ≤ ≤
 = − + ≤ ≤ −

 (2)

We assume Nb the sum of Nbi. Formula (3) permits to verify that the new approach takes into account the N2
cells of the scoring matrix.

() () ()2 1 2 1
2

1 1 1

1 1
2

2 2

N N N

i
i i i N

N N N N
Nb Nb i N i N

− −

= = = +

+ −
= = + − = + =∑ ∑ ∑ (3)

Thus without taking into account the dependancies between the cells during the computation, the number of
iterations to calculate the N2 cells is 2N − 1.

So, if iNb represents the average number of cells computable per passage we have in (4),
2i
NNb 

2

2 1 2i
N NNb
N

=
−
 (4)

3. Proposed Models and Materials
To evaluate the matrix scoring, most of the existing approaches use directly the matrix in Figure 2 through a
double iteration on the rows and columns.

These approaches have the merit of simplicity. However, given the dependencies between the cells, the value
of a cell may not be calculated during the first passage so that the matrix scoring requires more than 2N itera-
tions.

To remedy this situation, we use a approach that consists of a transformation of the initial matrix [7]-[10],
which doesn’t change its essential properties but rather optimizes the calculation order of cells.

3.1. Transformation of the Matrix of Scores
M represents the matrix of scores, i the line number and j the column number.

We define an application f as follows:
For each cell referenced (i, j):

[][] [][]1 ,

if 1
: :

1 if 1i j N

i i i N
f M i j m i j

j i j i j i N≤ ≤

′ ′= ≤ ≤′ ′  ′ ′ ′ ′= + − ≤ ≤ + −


f is an bijective application. It transforms the matrix in Figure 2 to the matrix in Figure 3.
In fact f is a change of reference from (i, j) → (i, i + j − 1).
The function f represents a rotation of the scoring matrix cells which transforms antidiagonals to columns.

However, we must keep in mind the treatments which must be applied on sequences to be aligned.

A. Chaibou, O. Sie

111

3.2. Dependency of the Calculations in the New Representation
In the original representation, M [i] [j] depends on the values of cells M [i] [j − 1], M [i − 1] [j] and M [i − 1] [j −
1], as shown in Figure 4.

In the new representation, computing m [i] [j] depends on m [i-1] [j − 2], m [i − 1] [j − 1] and m [i] [j − 1] as
shown in Figure 5.

The change of representation permits to calculate values of cells on the same column. So, the genomic se-
quence located on the column reference changes as we have shown in Figure 5. It follows a refitting of the val-
ue S [s [i]] [t [j]] used in the research of the value of m [i] [j] which becomes S [s [i’]] [t [j’ − i’]] for m [i’] [j’].

3.3. Reconstitution of the Solution
Once all the values of the matrix scores are calculated, we must produce the results. The score is obtained in the
same way as in the original form, i.e. the maximum value of cells, but acids are obtained using function 1f − .

[][] [][]1
1 , 1

if 1
: :

1 if 1i N i j i N

i i i N
f m i j M i j

j j i j N
−

′ ′ ′ ′≤ ≤ ≤ ≤ + −

′= ≤ ≤′ ′  ′ ′= − + ≤ ≤


3.4. Materials

3.4.1. Dataset
To examine the acceleration rate, we use the Smith-Waterman algorithm on the alignment of genomic sequences.
This algorithm has been subject of several parallel implementations [2] [11]. For illustration, we will consider
the computation of cell values of the dynamic matrix used in this algorithm. The sequences we use have been
downloaded from the existing genomic databases. The substitution matrix used is BLOSUM [62] with penal-
ty-2.

3.4.2. Specifications of the Sequential Computer Used
It has the following features:

Processor: Pentium (R) Dual-Core CPU E5500 @ 2.80 Ghz 2.80 Ghz;

Figure 4. Calculating M[i][j] dependency.

Figure 5. New dependencies computing m[i][j].

A. Chaibou, O. Sie

112

Ram: 3.00 Go HD: 500 Go
Operating System: Ubuntu 11.10.
C compiler used: gcc version 4.4.6.

3.4.3. GP-GPU Specifications
The graphic’s card used is a NVIDIA GeForce GTX 670, which consists of seven multiprocessors equivalent to
1344 CUDA cores, clocked at 1.4 GHz, two (2) gigabytes of memory shared between cores hearts, 64 KB con-
stant memory and 64 KB of shared memory per CPU.

4. Experiments and Results

4.1. Classical Approach versus Our Approach in Sequential Mode
In Figure 6, we have compared the sequential computation time of the matrix’s scoring in its initial representa-
tion and the new reorganization. We note that the new representation has almost the same performance as the in-
itial representation for sequences of length less to fourteen thousand (14,000) nucleotides. This experiment aims
to show that the two representations of the matrix’s scoring are equivalent, sequentially in the range of se-
quences that we study: no spare time. This enables us to guarantee for the continuation of the study that consi-
dering the new representation of the matrix’s coring did not induce additional execution time. For the rest, we
will use the same interval of sequences.

Note that, we have been limited in trying to go beyond this size of sequence due to our calculation capabili-
ties.

4.2. OpenMP Implementation of Our Method
OpenMP is based on the principle of shared memory [12]-[15]. The computation to be performed is decomposed
into multiple tasks. Tasks are performed by the available computational units. The treatment to be performed,
and data variables can be stored in a location accessible to all processing units. Shared variables are declared in
the Shared() option while thread-specific variables are in the Private() optional list().

Experiments were performed on DNA sequences of various lengths using OpenMP. As we shall see, the op-
timum dosages of the block size depend mainly on the size N of the sequences to align.

We propose two opportunities for parallelization of the calculation of the values of cells in the matrix scoring
by the Smith-Waterman algorithm.

The scoring matrix is reorganized: all cells in a column can be calculated simultaneously. Thus at each itera-
tion, the cells of a single column are calculated. Each thread will calculate elements of one or more cells.

A thread can read the updated content elements from another thread to calculate its own elements.

Figure 6. Original version versus the new version.

A. Chaibou, O. Sie

113

This solution has the advantage of providing the list of computable elements in an iteration but has the disad-
vantage of combining expectations.

It should also be noted that at this level, it is possible to calculate in multiple loops. At each loop, _nb threads
threads are created.

As there’s no extra time outside access for reading or writing to the different cells of the matrix, the runtime
in both cases are the same. So, we will treat one case.

4.2.1. Mathematical Modeling of the OpenMP Runtime
We assume:

N: length of the sequences to be aligned;
eT : time performance of each iteration (i, j). It is also the time to treat; the value of a cell of the matrix;
α : initialization time before starting calculations;
β : latency time: wait time for all threads to finish their tasks in iterated;
E(x): denotes the integer portion of x.
From these assumptions:
The sequential computational time of the cell values of the scoring matrix is given in (5).

()()2 2
Seq eT T N O N= × (5)

As we shall see, the optimum dosages of the block size depend mainly on the size of the sequences to align N.
So that, we propose two (2) opportunities for the parallelization of calculation of the scoring matrix cells using
the Smith-Waterman algorithm.

During the kth executing of the loop, 1 k N≤ ≤ , there are exactly k cells to calculate.
If 2N k N< ≤ there are N-(k-N) (or 2N-k) cells to calculate. At each iteration, each thread is responsible for

computing
_

N
nb threads

 cells (first phase) and then 2
_
N k

nb threads
− .

We deduce T the total time calculation using OpenMP as follows:

()

2

1 1

2

1 1

2
_ _

_
_

2
_ _

e e

N N k

e e
k k N

N N
e e

k k N

k N kT T T
nb threads nb threads

kT T nb threads
nb threads

T T
N k N N k

nb threads nb threads

β β

β β

β β

−

= = +

= = +

−
= × + + × +

= + + +

   
= + + + −   

   

∑ ∑

∑ ∑

Hence T is given in Formula (6)

22
_

eT
T N N

nb threads
β= + (6)

4.2.2. Determining the Optimum Value of nb−Threads

22
_

eT
T N N

nb threads
β= +

Differentiating the expression of T relative to nb−threads, we obtain:

()

2

2_ _
eT NT

nb threads nb threads
−∂

=
∂

()

2

20 0
_ _

eT NT
nb threads nb threads

−∂
= ⇒ =

∂

No value of _nb threads cancels the derivative.

A. Chaibou, O. Sie

114

4.2.3. Estimation of the Theoretical Acceleration
Acceleration is calculated in Formula (7).

2

22
_

sequentiel e

eparallel

T T N
TT N N

nb threads
β

=
+

;

Lim _sequentiel
N

parallel

T
nb threads

T→+∞ = (7)

4.2.4. Measured Accelerations
We distinguish two cases:

Case 1: one calculation for each thread per iteration
As shown in Figure 7, the parallelization with OpenMP does not significantly affect system performance. For

sequences of 2500 and 5000 nuclides, peak is reached with two threads and acceleration is 1.5. Sequences of
10,000 nuclides, optimum acceleration is 1.5 and is obtained with 8 threads. The sequence of 14,000 nuclides
gives maximum acceleration of 1.13 with 2 threads. In summary, with OpenMP, the best results are obtained
with two threads.

Case 2: several calculations for each thread by iteration
We also tested if a thread performs a set of calculations rather than one. The results we have in this imple-

mentation are very similar to those obtained in the previous implementation. There is a very sleazy performance
improvement of the order of a few hundredths of a second in some cases. Figure 8 recapitulates the results ob-
tained for two (2) threads by varying the cell size to calculate each thread, per iteration.

4.3. GP-GPU Implementation of Our Method
Initial form of the Smith Waterman algorithm has many implementation on GP-GPU as in [16]-[20]. To perform
the calculation on GP-GPU, the scoring matrix is represented in vector form. Each ring launched calculates the
elements of a column of the new representation. These elements are identified from the parameters (i, j). In total
2N iterations are launched.

4.3.1. Mathematical Modeling of the GP-GPU’s Runtime
A GP-GPU implementation starts on a CPU then uses a kernel (program running on GP-GPU). So there is co-
operation between the CPU and the GPU cores. Communications between GPU and CPU are simulated out
through the GP-GPU memory. The CPU copies data to be used by the GP-GPU there and CPU also reads the
contents of the GP-GPU memory for reuse in sequential calculations or simply confirm.

Figure 7. Performance based on the number of threads.

A. Chaibou, O. Sie

115

Figure 8. Performance with two threads, varying chunk size per iteration.

The Kernel
We assume:

α : kernel initialization time;
NB: number of blocks per multiprocessor;
NWP: number of warps;
NTW: number tasks per warp;

egT : iteration’s execution time per warp;
The theoretical time of calculating the scoring matrix is given in (8)

() 2GPU egT T Nα= + × (8)

To speed up the calculations, we transferred the data in memory GP-GPU and selected a grid of 512 × 512 ×
512. This setting is sufficient for processing sequences that we handle.

4.3.2. Performance on GP-GPU
Figure 9 presents the results obtained with GP-GPU.
We note that the acceleration increases with the size of the sequences examined.

4.4. Comparison of the Implementations on OpenMP and GP-GPU
Figure 10 represents the results obtained.

For OpenMP we examine three (3) cases. The first case uses two (2) threads.
The second uses also two (2) threads with a chunk of fifty (50) and the last one two (2) threads with a chunk

of two hundred and fifty (250).
The best case is the second one. We notice also that beyond 14,000 acids per sequence, the three cases have

equivalent results.
The implementation on GP-GPU gives better acceleration compared to OpenMP. For sequences used, the

performance is improved more than 25 times.

5. Conclusions
In this paper, we present a method based on the rotation of the scores matrix in order to improve the implemen-
tation of the Smith Waterman algorithm.

This transformation explicits the parallelism contained in this algorithm and facilitates its exploitation across
different platforms of parallelization.

We validate the application of this method with OpenMP and Cuda C. For each representation, we also meas-
ure the performance while executing the loop of the Smith-Waterman algorithm. It appears that the number

A. Chaibou, O. Sie

116

Figure 9. Performance on GP-GPU.

Figure 10. Performance based on the number of threads.

of threads used with OpenMP increases performance but depends on the size of the sequences to be compared.
Similarly, on GP-GPU the choice of grid dimensions is an essential element of improving performance. We note
a little performance with OpenMP and performance increases with the size of the sequences on the GP-GPU. At
the end, GP-GPU improves performance of computing the Smith-Waterman algorithm. For the sequences used,
the performance is improved more than 25 times compared with OpenMP. Ultimately, this study allows the fol-
lowing conclusions:

• Expanding the use of GP-GPU to parallel computing in addition to graphics for which they are at the basis
created. The relatively low cost of GP-GPU will make parallel computing more accessible to the public.

• In the case of the Smith-Waterman algorithm, we conclude that the GP-GPU accelerates it more than
OpenMP.

• In general, it is recommended to use GP-GPU than OpenMP for massively parallel and long calculations.
• We propose a mathematical modeling of time calculating of the matrix’s scoring on the OpenMP and

GP-GPU. This equation setting allows us to make wise choices in the number of thread (OpenMP) and the size
of the grid computing (GP-GPUs).

A. Chaibou, O. Sie

117

References
[1] Smith, T.F. and Waterman, M.S. (1981) Identification of Common Molecular Subsequences. Journal of Molecular Bi-

ology, 147, 195-197. http://dx.doi.org/10.1016/0022-2836(81)90087-5
[2] Boukerche, A., Melo, A.C.M.A., Ayala-Rincon, M. and Santana, T.M. (2005) Parallel Smith-Waterman Algorithm for

Local Dna Comparison in a Cluster of Workstations. Experimental and Efficient Algorithms, 3503, 464-475.
www.springerlink.com/content/xwn2q2qfm4hgvr3t

[3] Nguyen, V.-H. and Lavenier, D. (2009) PLAST: Parallel Local Alignment Search Tool for Database Comparison.
BMC Bioinformatics, 10, 329.

[4] Needleman, S.B. and Wunsch, C.D. (1970) A General Method Applicable to the Search for Similarities in the Amino
Acid Sequence of Two Proteins. Journal of Molecular Biology, 48, 443-453.
http://dx.doi.org/10.1016/0022-2836(70)90057-4

[5] Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic Local Alignment Search Tool. Jour-
nal of Molecular Biology, 215, 403-410.

[6] Pearson, W.R. and Lipman, D.J. (1988) Improved Tools for Biological Sequence Comparison. Proceedings of the Na-
tional Academy of Sciences of the United States of America, 85, 2444-2448. http://dx.doi.org/10.1073/pnas.85.8.2444

[7] Aluru, S., Futamura, N. and Mehrotra, K. (2003) Parallel Biological Sequence Comparison Using Prefix Computations.
Journal of Parallel and Distributed Computing, 63, 264-272.

[8] Edmiston, E.W., Core, N.G., Saltz, J.H. and Smith, R.M. (1988) Parallel Processing of Biological Sequence Compari-
son Algorithms. International Journal of Parallel Programming, 17, 259-275. http://dx.doi.org/10.1007/BF02427852

[9] Rajko, S. and Aluru, S. (2004) Space and Time Optimal Parallel Sequence Alignments. IEEE Transactions on Parallel
Distributed Systems, 15, 1070-1081. http://dx.doi.org/10.1109/TPDS.2004.86

[10] Sarje, A. and Aluru, S. (2009) Parallel Genomic Alignments on the Cell Broadband Engine. IEEE Transactions on
Parallel and Distributed Systems, 20, 1600-1610.

[11] Lander, E., Mesirov, J.P. and Taylor, W. (1988) Protein Sequence Comparison on a Data Parallel Computer. Proceed-
ings of the International Conference on Parallel Processing, 3, 257-263.

[12] Eigenmann, R. and Voss, M. (2001) OpenMP Shared Memory Parallel Programming. Lecture Notes in Computer Sci-
ence 2104. Springer-Verlag, Heidelberg.

[13] Ferrer, M.M.R., Gajinov, V., Unsal, O.S., Cristal, A., Ayguad, E. and Valero, M. (2008) Nebelung: Execution Envi-
ronment for Transactional OpenMP. International Journal of Parallel Programming, 36, 326-346.

[14] Chapman, B., Jost, G. and van der Pas, R. (2008) Using OpenMP Portable Shared Memory Parallel Programming. The
MIT Press, Cambridge.

[15] Gonzalez, M., Ayguad, E., Martorell, X. and Labarta, J. (2001) Defining and Supporting Pipelined Executions in
OpenMP. Proceedings of the 2nd International Workshop on OpenMP Applications and Tools, Lafayette, IN, 30-31
July 2001, 155-169. http://dx.doi.org/10.1007/3-540-44587-0_14

[16] Ligowski, L. and Rudnicki, W. (2009) An Efficient Implementation of Smith Waterman Algorithm on GPU Using
CUDA, for Massively Parallel Scanning of Sequence Databases. Proceedings of the 2009 IEEE International Sympo-
sium on Parallel & Distributed Processing, Rome, 23-29 May 2009, 1-8.
http://dx.doi.org/10.1109/IPDPS.2009.5160931

[17] Liu, Y., Huang, W., Johnson, J. and Vaidya, S. (2006) GPU Accelerated Smith-Waterman. Proceedings of the Interna-
tional Conference on Computational Science, Reading, UK, 28-31 May 2006, 188-195.
http://dx.doi.org/10.1007/11758549_29

[18] Liu, Y., Schmidt, B. and Maskell, D.L. (2009) MSA-CUDA: Multiple Sequence Alignment on Graphics Processing
Units with CUDA. Proceedings of the 20th IEEE International Conference on Application-Specific Systems, Architec-
tures and Processors, Boston, 7-9 July 2009, 121-128.

[19] Voss, G., Muller-Wittig, W. and Schmidt, B. (2005) Using Graphics Hardware to Accelerate Biological Sequence Da-
tabase Scanning. Proceedings of the TENCON 2005—2005 IEEE Region 10 Conference, Melbourne, 21-24 November
2005, 1-6.

[20] Liu, W.G., Schmidt, B., Voss, G., Schroder, A. and Muller-Wittig, W. (2006) Bio-Sequence Database Scanning on a
GPU. Proceedings of the 20th International Parallel and Distributed Processing Symposium, Rhodes Island, 25-29
April 2006, 8.

http://dx.doi.org/10.1016/0022-2836(81)90087-5
http://www.springerlink.com/content/xwn2q2qfm4hgvr3t
http://dx.doi.org/10.1016/0022-2836(70)90057-4
http://dx.doi.org/10.1073/pnas.85.8.2444
http://dx.doi.org/10.1007/BF02427852
http://dx.doi.org/10.1109/TPDS.2004.86
http://dx.doi.org/10.1007/3-540-44587-0_14
http://dx.doi.org/10.1109/IPDPS.2009.5160931
http://dx.doi.org/10.1007/11758549_29

	Comparative Study of the Parallelization of the Smith-Waterman Algorithm on OpenMP and Cuda C
	Abstract
	Keywords
	1. Introduction
	2. Preliminaries
	2.1. Principle of the Algorithm
	2.2. Application Example
	2.3. Highlighting Parallelizable Calculations
	2.4. Linear Representation of Cells
	2.5. Evolution of the Number of Cells at the Same Step

	3. Proposed Models and Materials
	3.1. Transformation of the Matrix of Scores
	3.2. Dependency of the Calculations in the New Representation
	3.3. Reconstitution of the Solution
	3.4. Materials
	3.4.1. Dataset
	3.4.2. Specifications of the Sequential Computer Used
	3.4.3. GP-GPU Specifications

	4. Experiments and Results
	4.1. Classical Approach versus Our Approach in Sequential Mode
	4.2. OpenMP Implementation of Our Method
	4.2.1. Mathematical Modeling of the OpenMP Runtime
	4.2.2. Determining the Optimum Value of nb(Threads
	4.2.3. Estimation of the Theoretical Acceleration
	4.2.4. Measured Accelerations

	4.3. GP-GPU Implementation of Our Method
	4.3.1. Mathematical Modeling of the GP-GPU’s Runtime
	The Kernel
	4.3.2. Performance on GP-GPU

	4.4. Comparison of the Implementations on OpenMP and GP-GPU

	5. Conclusions
	References

