
Journal of Computer and Communications, 2015, 3, 107-117
Published Online May 2015 in SciRes. http://www.scirp.org/journal/jcc
http://dx.doi.org/10.4236/jcc.2015.35014

How to cite this paper: Yan, Y.Z., Hanifi, M., Yi, L.Q. and Huang, L. (2015) Building a Productive Domain-Specific Cloud for
Big Data Processing and Analytics Service. Journal of Computer and Communications, 3, 107-117.
http://dx.doi.org/10.4236/jcc.2015.35014

Building a Productive Domain-Specific Cloud
for Big Data Processing and Analytics Service
Yuzhong Yan1, Mahsa Hanifi1, Liqi Yi2, Lei Huang1
1Department of Computer Science, Prairie View A&M University, Prairie View, TX, USA
2Intel Corporation, Hillsboro, OR, USA
Email: yyan@student.pvamu.edu, mhanifi@student.pvamu.edu, yiliqi@gmail.com, lhuang@pvamu.edu

Received March 2015

Abstract
Cloud Computing as a disruptive technology, provides a dynamic, elastic and promising computing
climate to tackle the challenges of big data processing and analytics. Hadoop and MapReduce are
the widely used open source frameworks in Cloud Computing for storing and processing big data
in the scalable fashion. Spark is the latest parallel computing engine working together with Ha-
doop that exceeds MapReduce performance via its in-memory computing and high level pro-
gramming features. In this paper, we present our design and implementation of a productive, do-
main-specific big data analytics cloud platform on top of Hadoop and Spark. To increase user’s
productivity, we created a variety of data processing templates to simplify the programming ef-
forts. We have conducted experiments for its productivity and performance with a few basic but
representative data processing algorithms in the petroleum industry. Geophysicists can use the
platform to productively design and implement scalable seismic data processing algorithms
without handling the details of data management and the complexity of parallelism. The Cloud
platform generates a complete data processing application based on user’s kernel program and
simple configurations, allocates resources and executes it in parallel on top of Spark and Hadoop.

Keywords
Cloud Computing, Spark, Seismic Data Processing, Garbage Collection

1. Introduction
Cloud computing as a disruptive technology, provides a dynamic, elastic and easy-to-use computing climate to
tackle the challenges of big data processing and analytics. Three different services cloud can provide in this re-
gard, which are categorized as Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as
a Service (IaaS) [1]. A cloud-based big data analytics platform is becoming important to support their daily
work by delivering the required storage space, processing power, and intelligent analytics capacity in many in-
dustries, such as retails, energy, oil & gas, security/surveillance, image/video, social networks, financial/trading,
and more. One challenge these industries are facing in common is the fast-growing data volume. The traditional
HPC platform focusing on increasing FLOPS will need to be revisited to shift the emphasis to the data through-
put and management instead.

http://www.scirp.org/journal/jcc
http://dx.doi.org/10.4236/jcc.2015.35014
http://dx.doi.org/10.4236/jcc.2015.35014
http://www.scirp.org
mailto:yyan@student.pvamu.edu
mailto:mhanifi@student.pvamu.edu
mailto:yiliqi@gmail.com
mailto:lhuang@pvamu.edu

Y. Z. Yan et al.

108

In this paper, we studied the oil & gas industry requirements for the domain data processing and analytics,
and then designed a domain-specific big data processing and analytics cloud for the industry. The oil & gas in-
dustry is a traditional domain that demands both high performance computing and big data storage to process
large petroleum domain data, mostly seismic data. Seismic data analysis that processes and interprets multi-di-
mensional seismic volumes plays a key role in oil & gas exploration. The seismic data processing is both com-
putation- and data-intensive, and is typically operated on top of traditional High Performance Computing (HPC)
platforms. The size of seismic data, however, is increasing dramatically nowadays, which requires a new design
for the data processing platform. Will the fast-growing seismic data benefit from the big data analytics platform
and cloud computing techniques? How is the typical performance/scalability of using such a cloud? What are
advantages/disadvantages comparable with traditional HPC programming?

The objective of the paper is to have a first attempt to explore and demonstrate the scalability and productivity
of using the big data and cloud computing techniques for seismic data processing. In order to achieve the goal, a
seismic analytics cloud (SAC) combining both big data platform and cloud computing is created to deliver a
domain-specific Platform as a Service (PaaS) to support seismic data storage, processing, analytics and visuali-
zation. We have created a variety of seismic processing templates to simplify the programming efforts in im-
plementing scalable seismic data processing algorithms by hiding the complexity of parallelism. The Cloud en-
vironment will generate a complete big data application on top of Spark based on user’s kernel program and
configurations, and deliver the required cloud resources to execute the application.

In following sections, we explain related works and background on different big data analytics platforms in
Section 2. Section 3 follows by the design and implementation of the domain-specific cloud. We then present
the performance details of a few case studies for seismic data processing in Section 4 and give performance
analysis in Section 5. Finally conclusion and future works are discussed.

2. Related Work
We describe a few related works in this section, which are also our building foundations of the domain-specific
cloud.

2.1. Apache Hadoop
Hadoop [2] with MapReduce [3] is the widely used open source framework in cloud computing for storing and
processing large amount of data in the scalable fashion. There have been many studies [4]-[6] around perfor-
mance of Hadoop on big data analysis. Hadoop with its ecosystem has been successfully deployed in many
fields that require to process big data in batch processing. Hadoop File System (HDFS) supports distributed file
system with fault tolerance feature, which provides a large, global-view, distributed file storage using loosely
connected computing node disks together. MapReduce as the main parallel programming model provides a sim-
ple but typical parallel execution model that works well for applications with map-followed-by-reduce parallel
execution pattern.

2.2. Apache Spark
Spark [7] [8] is the latest parallel computing engine working together with Hadoop that exceeds MapReduce
performance via its in-memory computing and high level programming features. Spark is developed using Scala
[9], which is a high-level programming language that supports both functional and object oriented programming.
Comparable to DryadLINQ [10] Spark is equipped with an integrated environment for programming languages.
Spark created a unique data structure called Resilient Distributed Datasets (RDDs) [11], which allows Spark ap-
plication to keep data in memory, while MapReduce relies on HDFS to keep data consistent. RDD supports
coarse grained transformation and logging them to provide fault tolerance. In time of losing a partition RDD can
re-compute information using named logs to retrieve lost dataset [11]. Based on RDD, Spark supports more pa-
rallel execution operations than MapReduce. Defining RDDs via transformations and using them in various op-
erations is the process of programming in Spark. Since transformations are lazy in Spark they won’t compute till
they are needed [12]. Moreover, Spark supports three high-level programming languages: Scala, Python and Ja-
va, while MapReduce only supports Java. Besides batch processing, Spark also supports streaming and interac-
tive programming, which dramatically attracted the interests of many real-time and analytics applications de-

Y. Z. Yan et al.

109

velopers. Spark community is very active in development, and Spark is quickly getting popular due to its unique
features. The implementation and experiments of this paper are built on top of Hadoop and Spark environment.

3. Seismic Analytics Cloud Implementation
The goal of the seismic analytics cloud (we named it SAC) is to deliver a scalable and productive cloud Platform
as a Service (PaaS) to seismic data analysis researchers and developers. SAC is designed to be able to store large
amount of seismic data with major vendor’s formats, as well as be able to process them in the scalable fashion to
meet the performance requirements. Users should be able to work on their seismic processing algorithms using
high-level programming models with very limited knowledge in parallelism and architecture.

3.1. The Architecture of Seismic Analytics Cloud
The design of SAC architecture is to emphasize twofold: one is to provide a high-level productive programming
interface to simplify the programming efforts; the other is to execute user’s applications with scalable perfor-
mance. To achieve the first goal, we provide the web interface in which user could manage seismic datasets,
programming within a variety of templates, generate complete source codes, compiling and then running the ap-
plication and monitoring the job running status in SAC.

The interface allows users to write seismic data processing algorithms using our extracted common seismic
computation templates, which lets users focus on their kernel algorithm implementation, and simplifies user’s
implementation in handling seismic data distribution and parallelism.

While the most popular-used programming models in seismic data processing include MATLAB, Python,
C/C++, Fortran, Java and more, SAC supports Java, Python and Scala natively, so that users can write their own
processing algorithms directly on our platform with these three languages; For legacy applications written in
other languages, SAC uses the so-called PIPE mode to handle input and output data as standard-in and -out,
which requires minor modifications of program source code on handling input and output.

SAC will generate complete Spark codes based on user’s kernel codes and configurations, and then launch
and monitor it on the SAC environment.

In order to support large amount data storage and scalable I/O performance, we chose Hadoop HDFS as the
underlying file system, which provides fault tolerance with duplicated copies and good I/O throughput by sup-
porting data locality information to applications. HDFS supplies out-of-the-box redundancy, failover capabilities,
big data storage and portability. Since the size of seismic data is very large and keeps increasing constantly,
HDFS provides a good solution for the data storage with fault tolerance property.

We use Spark as the parallel execution engine to start applications, since Spark works well on top of HDFS,
Mesos [13] and YARN, and it provides a big data analytics computing framework with both in-memory and
fault-tolerance support. Spark provides RDD as a distributed memory abstraction that lets programmers perform
in-memory computations on large-scale cluster/cloud in a fault-tolerant manner. To get better performance, we
need to put frequently used data into memory and processing data in memory, which is one key performance
boost comparing with MapReduce. Some other useful packages and algorithms in data analytics, such as SQL,
machine learning and graph processing, are also provided in Spark distribution version. We also integrated some
common used libraries for image processing and signal processing, such as OpenCV, Breeze and FFTW etc., to
provide a rich third party of libraries support to speed up the development process. Figure 1 shows the overall
software stack used in SAC.

Figure 2 presents the overall architecture of SAC. Based on the SAC web interface, Users are able to upload,
view and manage their seismic data, which are stored on HDFS. They can then create their application projects
by selecting a template from a list of predefined templates to start their own programming. After selected dataset
and processing pattern, writing codes and compiling successfully, users can configure the running parameters
and then submit jobs to SAC. Job status could be monitored while job is running and running results could be
checked after job is finished. On the SAC backend, a big seismic data file will be split into multi-partitions and
be constructed into RDD, which will be processed by working threads that apply user’s algorithm in parallel.
After all data are processed, the output data will be saved back to HDFS.

3.2. Input Data and Redirection
The SEG Y (also SEG-Y) file format [14] is one of several standards developed by the Society of Exploration

Y. Z. Yan et al.

110

Figure 1. The software stack of seismic analytics cloud plat-
form.

Figure 2. The architecture of seismic analytics cloud plat-
form.

Geophysicists (SEG) for storing geophysical data. This kind of big seismic data needs to be split into multiple
small partitions to be processed in parallel. However, SEG Y data could not be split directly due to its irregular-
ity, so we preprocess the SEG Y data format into a regular 3D volume data, and store the important header in-
formation into one xml file. Then the 3D volume data and xml will be feed into Spark applications. Spark uses
InputFormat, which is the base class inherited from Hadoop to split such data and construct RDD. Each split
will be mapped to one partition in RDD. The embedded InputFormat classes could not handle binary seismic
data, so we implemented SeismicInputFormat in this project. Based on configuration defined by user while
creating project, such as how many lines each split and number of overlap lines, SeismicInputFormat could spilt
the 3D volume and feed partition to each mapper. The data of 3D volume is stored trace by trace in the Inline
direction by default. For some algorithms that need to process data in cross-line or time-depth direction, we also
provide interfaces to transform Inline format RDD into cross-line or time-depth direction. In this way, we could
cache Inline format RDD in memory, thus all the transformations could be executed in memory with better per-
formance.

3.3. Parallel Processing Templates for Seismic Data
Based on the general parallel execution patterns of seismic processing algorithms and applications, we prede-
fined some templates to make this framework easy to program. Every template has explicit input type and output
type. The typical templates are: Pixel pattern, which use sub-volume or one pixel as input and output one pixel;
Line pattern, which treat one line as input and one line as output; SubVolume pattern, which feed user’s applica-
tion with sub-volume and get output from it in sub-volume format. A high level SeismicVolume class has been
implemented in this project to provide user interface to access seismic volume. SeismicVolume class provides

Y. Z. Yan et al.

111

functions for constructing RDD based on processing templates user had selected, applying user’s algorithms on
RDD, and storing the final RDD on HDFS with format defined by user. To make it easy for programming, we
provide some other functions to change the linear array into 2D matrix and 3D volume class; some functional
programming interface such as iteration, map/flatMap, filter and zip could be used. We also integrated com-
monly used high-level algorithms, such as histogram, FFT, interpolating and filtering algorithms, so that user
could put more attention on data analytics logic instead of details for each algorithm.

3.4. Code Generation
After user created project and completed their own kernel codes, one component named Code Generator (CG) in
SAC will generate complete Spark codes for running on Spark platform. The CG will parse configuration of us-
er’s project and generate Spark application outlined codes, merge them with user’s codes. User could also upl-
oad existing source codes or libraries, all of which will be integrated into current working project managed by
Simple Build Tool (SBT). CG will also generate compiling and running scripts basing on user’s runtime setting.
All these scripts will be called by the web interface, on which some other information such as compiling and
running status, location of output will be shown clearly.

3.5. Driver and Job Executor
In SAC, every user’s project will be treated as one Spark application. CG will generate the main driver code for
each project. Each application could be submitted to SAC for running after compiled successfully. At execution
time, driver code will setup the Spark running time environment, call the SeismicVolume object to generate
RDD and execute user’s algorithms on top of RDD and then store the processed results on HDFS. It will clean
up the running environment and release resources after finished. To make it support multiple users, Spark Job-
server [15] was introduced to this platform. Based on the priority of application and computation resources re-
quirement of an application, an user could configure the running parameters: number of cores and memory size;
and then submit his/her own job, monitoring job status and viewing the running results. Another big advantage
of Spark Jobserver is supporting of NamedRDD that allows multiple applications share RDD but has only one
copy cached in memory. For some complicate algorithms that need multiple steps or application running in
workflow, NamedRDD is a good choice for boosting performance. After job is finished, the running results
cloud be discarded or be saved to user’s workspace basing on user’s selection.

4. Experiment and Results
We have conducted numerous experiments on our 25 nodes of computer cluster located at Prairie View A&M
University, in which one is master node and the other 24 are worker nodes. Each node of the cluster was confi-
gured with Intel Xeon E5-2640 Sandy Bridge CPU (2.5 GHz, 12 Cores), 64GB DDR3 memory. We have
created a seismic data volume with 102GB, which is generated from the public Penobscot [16] seismic data
from OpendTect [17] website with duplication and resampling. All of these experiments are performed with
Spark 1.2.1 on Java 1.8.0 using different garbage collector setting [18] to be able to reduce garbage collection
time as much as we can to improve the performance. Three test applications in seismic analysis are implemented
and tested for the experiments: Seismic Calculator, Histogram, and Fast Fourier Transform (FFT). We have run
these applications using different numbers of CPUs to show the scalability. We also changed the data split gra-
nularity to test performance impact: using 1 inline, 10 inlines, and 30 inlines per split.

All of these applications are tested in two ways: by running in Spark Shell using both cache option and
un-cached one, and by submitting to Jobserver. We present the speedup by comparing with the corresponding
sequential programs at the end. Spark performance web monitor UI, Spark Metrics and Nigel’s performance
Monitor (nmon) are used to observe detailed information about running times and performance of these tests.
Nmon Analyzer [19] is used for following and observing cluster performance and finding the bottlenecks on the
system. Table 1 shows all results using various configurations in number of cores and splits.

4.1. SAC Web UI
Figure 3 shows the user interface of SAC. What user need for accessing seismic data hosted at cloud and veri-
fying algorithm on it is only browser and an account. There are several tabs in SAC, such as Dashboard, Project,

Y. Z. Yan et al.

112

Figure 3. The SAC user interface.

Table 1. Running time for applications with various configurations (in seconds).

Application Best
Speedup Split

No. of Cores

64 144 288

Calculator 120

1 36 19 15

10 29 19 17

30 56 44 46

FFT 116

1 132 66 58

10 90 54 51

30 108 66 58

Histogram 115

1 108 84 72

10 228 240 270

30 840 840 720

Datasets, Jobs, Workflow and some other useful tools. Dashboard will give user a brief view about how many
projects he/she had created and usage statistics of cluster. In Project tab, user could create new project, edit ex-
isting project, compile and run project. Jobs tab will show status of all running and finish jobs. User could view
data sets and select on them to analyze in Datasets tab. Workflow is designed for complicate algorithms or batch
jobs but still provide flexibility and usability to user for configuration.

4.2. Seismic Calculator
Seismic calculation is a simple, useful but time consuming process when seismic data is big. In addition to the
operations between two volumes, various types of arithmetic operations can be performed on a single seismic
volume. These operations include arithmetic and logic ones that apply to every single sample in the volume.

4.3. Fast Fourier Transform (FFT)
FFT is the most popular algorithm for computing discrete Fourier transform (DFT), which is widely used in
science and engineering. In seismic velocity model and image analysis, FFT is almost first and fundamental step.
There are different implementations of FFT, such as FFTW, OpenCV, Kiss FFT, Breeze etc. Breeze is one of li-
braries in ScalaNLP, which includes a set of libraries for machine learning and numerical computing. Spark it-

Y. Z. Yan et al.

113

self already includes Breeze in its release, so we choose FFT algorithm in Breeze for experiment.

4.4. Histogram
This is the third application used for performance analysis. Histogram is to compute the data range distribution,
which is used for estimation of the probability distribution of continuous quantitative variable. It is also a basic
method for seismic data analytics. Spark already provides function to get histogram information from RDD di-
rectly. The bin size we choose for experiment is 10.

5. Performance Analysis
From the experiment results shown in Table 1, the speedup of parallel codes is apparent. In this section, we will
discuss the usability of SAC, and make deep performance analysis to find the bottleneck, which will also con-
duct performance tuning in the future.

5.1. Usability Analysis
In the traditional seismic data processing methods using HPC, the product development flow requires a lot of
geophysicists and IT developers involved: verifying algorithm with small sample data at first, then transferring
into MPI codes with parallel optimization to handle actual big data. The whole process is time consuming and
low efficient, and sometime even lead in consistent results between experiment data and actual data. On SAC,
geophysicists and data scientists could verify their algorithms and directly experiment them with actual data.
SAC could handle data distribution, code generation and execute the application in parallel automatically, but
could provide fault tolerance natively and scalability. Take the 2D FFT case as example, user only needs to se-
lect template, write FFT algorithm or call other existing APIs, and type this piece of codes in SAC, in such func-
tion the input plane and output plane are already defined by SAC. The only things left are selecting data sets,
compiling and running application, then viewing the results. In short, user only needs to take care about algo-
rithm, and SAC will handle most of others, thus improve productivity apparently.

5.2. Performance Analysis of Seismic Calculator
Among all three different number of split sizes, the best results for calculator is achieved with 288 cores in first
two, which indicates that more computing resource could get better performance.

Closer look at the system with nmon-analyzer during run-time gives an interesting chart in network situation,
CPU usage and the I/O of the system. Figure 4 shows these data versus each other. Figure 4(a) shows CPU
performance while on the other hand Figure 4(b) shows the network packets sending and receiving. It is ob-
vious in the diagram that at the peak time for network CPU is not busy and at some points it became idle be-
cause of waiting for data. Increasing in network speed to have a better response for I/O request seems to be a
key point in boosting the performance.

5.3. Performance Analysis of FFT
For FFT, it is a computing intensive workload hunger for CPU cycles instead of IO bandwidth. One system form
the cluster was picked to show the performance characteristics in the run time. In Figure 5(a), CPU utilization
quickly ramps up to 95% user time and mostly stays at the same level with several dips till the end of execution.
There was not much time spend in kernel mode or waiting for disk/network IO. There could be a little space for
performance tuning to shorten the ramping up time in the start stage and remove the dips during the run. Figure
5(b) shows the disk read and write during the lifetime of the job. The maximum write is about 70 MB/s and the
peak read is 50 MB/s. Both the read and write have not reached the bandwidth ceiling of the system. Same as the
disk utilization, the network bandwidth was under 10 MB/s, which indicates underutilized network. The memory
utilization in Figure 5(d), shows that memory was 60% occupied by FFT.

The best results for this application are gained by using number of split size with 10 and number of cores 288.
From the performance characteristics described earlier, FFT being a computing hunger workload, adding more
computing power always will be beneficial, till other resources got over subscribed.

Y. Z. Yan et al.

114

(a)

(b)

Figure 4. (a) CPU and I/O and (b) Network packets for calculator.

5.4. Performance Analysis of Histogram
Similar with FFT, Histogram could also be qualified as computing intensive workload, where computing power
is the primary factor influencing performance. There are, however, two differences from FFT. First, Histogram
has two distinct stages in the run time. The first stage last from the start of the run till the middle. In this stage,
CPU utilization is considerably high with peak user time close to 90%. And the second stage is from the middle
to the end. Where user time is below 30% most of the time with maximum a little above 50%. Second, in the
more CPU cycle hunger stage, the CPU utilization is not as high as that in FFT, which was above 95% most of
the time. System and IO wait is not high, indicating no bottle neck comes from IO or system activities. Figure
6(b) shows the disk read and write behavior. The disk was under utilized both for the read and write. And from
Figure 6(c), similar behavior with FFT case, traffic peaks below 10 MB/s. Memory got utilized more comparing
to FFT, here the unused memory is 27%, as shown in Figure 6(d).

For Histogram, the best performance is also using small split. However, there is one case where 28MB data
split is used and 144 core case out performs 288 core case. One possible reason could be explained by the larger
memory foot print of this workload and the GC activities of Java virtual machine. As we all know, when
processing larger data size with the same heap size, JVM has a tendency to get involved in longer GC pauses.
And all the GC pauses will add up to the final run time, making the entire run slower.

6. Future Work and Conclusion
We continue to work on SAC to make it more productive in development and scalable in performance. One

Y. Z. Yan et al.

115

(a)

(b)

(c)

(d)

Figure 5. (a) CPU; (b) Disk I/O; (c) Network activity; (d) Memory utilization for FFT.

Y. Z. Yan et al.

116

(a)

(b)

(c)

(d)

Figure 6. (a) CPU; (b) Disk I/O; (c) Network activity; (d) Memory utilization for histogram.

Y. Z. Yan et al.

117

main focus we are working on is to provide a workflow framework to allow users to drag-and-drop to create a
complete workflow by combining a sequence of programs. SAC will be able to connect them and launch in a
single Spark context to reuse and keep data in memory as much as possible. We will also enhance the overall
performance and visualization capability. We plan to open SAC to industry to collect more feedback for further
improvement.

Acknowledgements
This project is supported in part by National Science Foundation CRI program award \#1205699.

Opinions, findings, and conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science Foundation.

References
[1] Agrawal, D., Das, S. and El Abbadi, A. (2011) Big Data and Cloud Computing: Current State and Future Opportunities.

Proceedings of the 14th International Conference on Extending Database Technology, ACM, 2011, 530-533.
http://dx.doi.org/10.1145/1951365.1951432

[2] Hadoop Introduction (2014). http://hadoop.apache.org/
[3] Ghemawat, J.D.S. (2008) MapReduce: Simplified Data Processing on Large Clusters. Communications of the ACM, 51,

107-113. http://dx.doi.org/10.1145/1327452.1327492
[4] Islam, N.S., Rahman, M., Jose, J., Rajachandrasekar, R., Wang, H., Subramoni, H., Murthy, C. and Panda, D.K. (2012)

High Performance RDMA-Based Design of HDFS over InfiniBand. Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, 35. http://dx.doi.org/10.1109/SC.2012.65

[5] Kim, K., Jeon, K., Han, H., Kim, S.-G., Jung, H. and Yeom, H.Y. (2008) Mrbench: A Benchmark for Mapreduce
Framework. 14th IEEE International Conference on Parallel and Distributed Systems, 2008, 11-18.
http://dx.doi.org/10.1109/ICPADS.2008.70

[6] Lu, X., Wang, B., Zha, L. and Xu, Z. (2011) Can MPI Benefit Hadoop and MapReduce Applications? 2011 40th In-
ternational Conference on Parallel Processing Workshops (ICPPW), 2011, 371-379.

[7] Spark Lightning-Fast Cluster Computing (2014). http://spark.incubator.apache.org/
[8] Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S. and Stoica, I. (2010) Spark: Cluster Computing with Working

Sets. Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing, Berkeley, 2010, 10.
http://dl.acm.org/citation.cfm?id=1863103.1863113

[9] Odersky, M., Spoon, L. and Venners, B. (2008) Programming in Scala.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.202.9255n&rep=rep1n&type=pdf

[10] Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, U., Gunda, P.K. and Currey, J. (2008) Dryadlinq: A System for
General-Purpose Distributed Data Parallel Computing Using a High-Level Language. OSDI, 8, 1-4.

[11] Mosharaf Chowdhury, M.Z. and Das, T. (2012) Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-
Memory Cluster Computing. NSDI’12 Proceedings of the 9th USENIX Conference on Networked Systems Design and
Implementation, San Jose, USENIX Association Berkeley, April 2012.

[12] Su, X., Swart, G., Goetz, B., Oliver, B. and Sandoz, P. (2014) Changing Engines in Midstream: A Java Stream Com-
putational Model for Big Data Processing. Proceedings of the VLDB Endowment, 7.

[13] Mesos: A Distributed Systems Kernel (2014). http://mesos.apache.org
[14] S. T. S. Committee (2002) SEG Y rev 1 Data Exchange Format.
[15] Spark Jobserver: REST Job Server for Spark (2014). https://github.com/ooyala/spark-jobserver
[16] Penobscot 3D-Survey (2015). https://opendtect.org/osr/pmwiki.php/Main/PENOBSCOT3DSABLEISLAND
[17] Free Open Source Seismic Interpretation Platform (2015). http://opendtect.org/
[18] Part #1-Tuning Java Garbage Collection for HBase (2015).

https://software.intel.com/en-us/blogs/2014/06/18/part-1-tuning-java-garbage-collection-for-hbase
[19] nmon_analyser (2015).

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Power%20Systems/page/nmon_analyer

http://dx.doi.org/10.1145/1951365.1951432
http://hadoop.apache.org/
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1109/SC.2012.65
http://dx.doi.org/10.1109/ICPADS.2008.70
http://spark.incubator.apache.org/
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.202.9255n&rep=rep1n&type=pdf
http://mesos.apache.org/
https://github.com/ooyala/spark-jobserver
https://opendtect.org/osr/pmwiki.php/Main/PENOBSCOT3DSABLEISLAND
http://opendtect.org/
https://software.intel.com/en-us/blogs/2014/06/18/part-1-tuning-java-garbage-collection-for-hbase
https://www.ibm.com/developerworks/community/wikis/home?lang=en%23!/wiki/Power%20Systems/page/nmon_analyer

	Building a Productive Domain-Specific Cloud for Big Data Processing and Analytics Service
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	2.1. Apache Hadoop
	2.2. Apache Spark

	3. Seismic Analytics Cloud Implementation
	3.1. The Architecture of Seismic Analytics Cloud
	3.2. Input Data and Redirection
	3.3. Parallel Processing Templates for Seismic Data
	3.4. Code Generation
	3.5. Driver and Job Executor

	4. Experiment and Results
	4.1. SAC Web UI
	4.2. Seismic Calculator
	4.3. Fast Fourier Transform (FFT)
	4.4. Histogram

	5. Performance Analysis
	5.1. Usability Analysis
	5.2. Performance Analysis of Seismic Calculator
	5.3. Performance Analysis of FFT
	5.4. Performance Analysis of Histogram

	6. Future Work and Conclusion
	Acknowledgements
	References

