

Weaknesses of a Dynamic ID Based Remote User Authentication Protocol for Multi-Server Environment

R. Madhusudhan, Adireddi Praveen

Department of Mathematical & Computational Sciences, National Institute of Technology Karnataka, Surathkal, India

Email: madhu nitks@yahoo.com

Received December 2013

Abstract

Currently, smart card based remote user authentication schemes have been widely adopted due to their low cost and convenient portability. With the purpose of using various different internet services with single registration and to protect the users from being tracked, various dynamic ID based multi-server authentication protocols have been proposed. Recently, Li *et al.* proposed an efficient and secure dynamic ID based authentication protocol using smart cards. They claimed that their protocol provides strong security. In this paper, we have demonstrated that Li *et al.*'s protocol is vulnerable to replay attack, denial of service attack, smart card lost attack, eavesdropping attack and server spoofing attacks.

Keywords

Authentication; Smart Card; Dynamic ID; Multi-Server Environments; Password

1. Introduction

With the rapid growth of internet technologies and mobile communication services, remote user authentication is being more and more critical in order to prevent access to illegal users. Password based authentication is one of the simplest and the most convenient authentication mechanisms over remote access networks but it is not secure over insecure communication channels. Hence a large number of smart card based authentication protocols have been proposed to overcome the drawbacks of traditional password based protocols. These can be categorized as static ID [1-3] and dynamic ID based protocols. To achieve user's anonymity, dynamic ID based authentication techniques [4-6] have been developed by many researchers.

In general, an efficient remote user authentication protocol should satisfy some functional and security requirements [7-11]. Based on the use of environment, authentications protocols can be divided into two categories: single-server and multi-server environments. Multi server architecture [12-15] provides the flexibility of using single registration across various different networks.

In 2009, Liao and Wang [16] proposed a dynamic ID based authentication protocol for multi-server environ-

How to cite this paper: Madhusudhan, R. and Praveen, A. (2014) Weaknesses of a Dynamic ID Based Remote User Authentication Protocol for Multi-Server Environment. *Journal of Computer and Communications*, **2**, 196-200. http://dx.doi.org/10.4236/jcc.2014.24026

ments. Hsiang and Shih [17] found that Liao-Wang's protocol is vulnerable to insider's attack, masquerade attack, server spoofing attack, registration center spoofing attack. To overcome these weaknesses Hsiang and Shih proposed an improved protocol. But Lee *et al.* [18] found that this protocol is also not secure and susceptible to masquerade attack and server spoofing attack. To overcome the weaknesses of Hsiang and Shih's protocol, Lee *et al.* proposed an improved protocol and claimed that their protocol can resist all kinds of attacks.

In 2013, Li *et al.* [19] found that Lee *et al.*'s protocol is vulnerable to forgery attack, server spoofing attack and proposed a dynamic ID based authentication protocol for multi-server environments. They claimed that it is secure and can resist various attacks. However, in this paper we have demonstrated that Li *et al.*'s protocol is vulnerable to replay attack, denial of service attack, smart card lost attack, eavesdropping attack and server spoofing attacks.

The rest of this paper is organized as follows. In Section 2, we have given a brief review on Li *et al.*'s protocol. Section 3 provides the cryptanalysis of Li *et al.*'s protocol. Finally we conclude this paper in Section 4.

2. Review of Li et al.'s Protocol

The notations used in this paper are described in **Table 1**.

Li *et al.*'s protocol contains three participants, the user U_i , the server S_j , and the registration center RC. RC chooses the master secret key x and a secret number y to compute h(x||y) and $h(SID_j||h(y))$, and then shares them with S_j via a secure channel. There are four phases in the protocol: registration phase, login phase, verification phase, and password change phase.

2.1. Registration Phase

When the user U_i wants to access the services, the user U_i and the registration center RC need to perform the following steps to finish the registration phase:

- 1) U_i freely chooses his identity ID_i , the password PW_i , and computes $A_i = h(b \oplus PW_i)$, where b is a random number generated by U_i . Then U_i sends ID and A_i to the registration center RC for registration through a secure channel.
- 2) Now, Registration center, RC computes $B_i = h(ID_i||x)$, $C_i = h(ID_i||h(y)||A_i)$, $D_i = h(B_i||h(x||y))$, $E_i = B_i \oplus h(x||y)$. RC stores $\{C_i, D_i, E_i, h(.), h(y)\}$ on the user's smart card and sends it to user U_i via a secure channel.
 - 3) User keys b into smart card and finally it contains $\{C_i, D_i, E_i, b, h(.), h(y)\}$.

2.2. Login Phase

Whenever U_i wants to login S_i , he must perform the following steps to generate a login request message:

Table 1. Notations used.

$U_{\rm i}$	The ith user
ID _i	The identity of U _i
PW_{i}	The password of U_i
\mathbf{S}_{j}	The jth server
RC	Registration center
SID_j	Identity of S _j
CID_i	dynamic ID of Ui
X	master secret key maintained by registration center
y	secret number generated by RC
h(.)	one-way hash function
\oplus	Exclusive-or operation
	Message concatenation operation
\rightarrow	A common channel
\Rightarrow	A secure channel

- 1) U_i inserts his smart card into the card reader and inputs ID_i and PW_i . Then the smart card computes $A_i = h(b \oplus PW_i)$, $C_i^* = h(ID_i||h(y)||A_i)$, and checks whether the computed C_i^* is equal to C_i . If they are equal, U_i proceed the following steps. Otherwise the smart card aborts the session.
- 2) The smart card generates a random number N_i and computes $P_{ij} = E_i \oplus h(h(SID_j||h(y))||N_i), CID_i = A_i \oplus h(D_i||SID_j||N_i), M_1 = h(P_{ij}||CID_i||D_i||N_i)$ and $M_2 = h(SID_j||h(y)) \oplus N_i$.
 - 3) U_i submits {P_{ij}, CID_i, M₁, M₂} to S_j as a login request message.

2.3. Verification Phase

After S_j receiving the login message $\{P_{ij}, CID_i, M_1, M_2\}$, S_j and U_i perform the following steps for mutual authentication and session key agreement.

- $1) \ S_j \ computes \ N_i = M_2 \ \oplus \ h(SID_j||h(y)), \ E_i = P_{ij} \ \oplus \ h(h(SID_j||h(y))||N_i), \ B_i = E_i \ \oplus \ h(x||y), \ D_i = h(B_i||h(x||y)) \ and \ A_i = CID_i \ \oplus \ h(D_i||SID_i||N_i) \ by \ using \ \{P_{ij}, CID_i, M_1, M_2\}, \ h(SID_i||h(y)) \ and \ h(x||y).$
- 2) S_j computes $h(P_{ij}/\!\!/ CID_i/\!\!/ D_i/\!\!/ N_i)$ and checks whether it is equal to M_1 . If they are not equal, S_j rejects the login request and terminates this session. Otherwise, S_j accepts the login request message. Then S_j generates a nonce N_j and computes $M_3 = h$ ($D_i||A_i||N_j||SID_j$), $M_4 = A_i \oplus N_i \oplus N_j$. Finally, S_j sends the message $\{M_3, M_4\}$ to U_i .
- 3) After receiving the response message $\{M_3, M_4\}$ sent from S_j , U_i computes $N_j = A_i \oplus N_i \oplus M_4$, $h(D_i||A_i||N_j||SID_j)$ and checks this with the received message M_3 . If they are equal, U_i successfully authenticates S_j . Then, the user U_i computes the mutual authentication message $M_5 = h(D_i||A_i||N_i||SID_i)$ and sends $\{M_5\}$ to the server S_i .
- 4) Upon receiving the message $\{M_5\}$, S_j computes $h(D_i||A_i||N_i||SID_j)$ and checks it with the received message $\{M_5\}$. If they are equal, S_j authenticates U_i . User U_i and the server S_j compute $SK = h(D_i||A_i||N_j||SID_j)$, which is taken as their session key for further communication.

2.4. Password Change Phase

This phase is invoked whenever U_i wants to change his password PW_i to a new password PW_{new} . There is no need for a secure channel for password change and it can be finished without communicating with the registration center RC.

- 1) U_i inserts smart card into the card reader and inputs ID_i and PW_i.
- 2) The smart card computes $A_i = h(b \oplus PW_i)$, $\overline{C_i}^* = h(ID_i||h(y)||A_i)$, and checks whether the computed C_i^* is equal to C_i . If they are not equal, the smart card rejects the password change request. Otherwise, the user U_i inputs a new password PW_{new} and a new random number b_{new} .
 - 3) The smart card computes $A_{inew} = h(b_{new} \oplus PW_{new})$ and $C_{inew} = h(ID_i||h(y)||A_{inew})$.
 - 4) Finally, the smart card replaces C_i with C_{inew} to finish the password change phase.

3. Cryptanalysis of Li et al.'s Protocol

In this section, we demonstrate that Li *et al.*'s protocol is vulnerable to replay attack, denial of service attack, smart card lost attack, eavesdropping attack and server spoofing attacks.

3.1. Vulnerable to Replay Attack

Assume that a malicious attacker can eavesdrop the communication channel and intercepts the message $\{P_{ij}, CID_i, M_1, M_2\}$. Now if he resends this message, server S does not verify the freshness of nonce, N_i and computes $N_i = h(SID_j||h(y)) \oplus M_2$, $E_i = P_{ij} \oplus h(h(SID_j||h(y)||N_i)$, $B_i = E_i \oplus h(x||y)$, $D_i = h(B_i||h(x||y))$ and $h(P_{ij}||CID_i||D_i||N_i)$ and compares with M_1 . The condition satisfies and S accepts the login request.

Now, S computes $M_3 = h(D_i||A_i||N_j||SID_j)$, $M_4 = A_i \oplus N_i \oplus N_j$ and sends $\{M_3, M_4\}$ to U_i . Here the attacker cannot find N_j but he is successful in wasting server's valuable computing resources. A large number of replay attacks launched at the same time can also form denial-of-service attack.

3.2. Vulnerable to Denial-of-Service Attack

n active attacker who is also a valid user knowing h(y) can fabricate the message M_2 using different nonce, say N_A and sends the fabricated message $\{P_{ij}, CID_i, M_1, M_2\}$ to server, S_j where $M_2 = h(SID_j||h(y)) \oplus N_A$. After

performing the steps mentioned in 2.3.1, server S_j rejects the login request of U_i , who is a legitimate user, as $h(P_{ij}||CID_i||D_i||N_i)$ does not equal to the received M_1 . Hence, denial-of-service attack is possible.

3.3. Vulnerable to Smart Card Lost Attack and Password Guessing Attack

Assume that the user's smart card has been lost or stolen. The attacker can extract the information $C_{i,}D_{i,}E_{i}$, h(.), h(y), b from the smart card [20,21]. By previously intercepted message, attacker can find N_{i} , E_{i} using the following calculations.

```
\begin{split} N_i &= M_2 ~\oplus ~h(SID_j || h(y)), \\ E_i &= P_{ij} ~\oplus ~h(h(SID_j || h(y)) || N_i) \\ Now, ~A_i &= CID_i ~\oplus ~h(D_i || SID_i || N_i). \end{split}
```

Using offline dictionary attack, attacker can find the ID, password PW of U_i by performing following operations:

- 1) Compare C_i with $h(ID_{guess}||h(y)||A_i)$. Whenever it equals, ID_{guess} is ID_i of the user U_i .
- 2) Compare A_i with h(b \oplus PW_{guess}). Whenever it equals, PW_{guess} is the original PW of U_i.

As the ID and Password are known, attacker can use the smart card impersonating the original user.

3.4. Vulnerable to Eavesdropping Attack

Assume that attacker found the smart card details. He can intercept the message $\{P_{ij}, CID_i, M_1, M_2\}$. He can find $N_i = h$ $(SID_j||h(y)) \oplus M_2$ and $A_i = ID_i \oplus h(D_i||SID_j||N_i)$, intercepts the message $\{M_3, M_4\}$ from server and computes $N_j = A_i \oplus N_i \oplus M_4$. Now he acquires the session key, $SK = h(D_i||A_i||N_i||N_j||SID_j)$. Hence, the entire communication is compromised using this passive attack as the attacker has known the session key.

3.5. Vulnerable to Server Spoofing Attack

If we assume the attacker, A broke into a server or acquired a malicious server, then attacker have h(x||y) and $h(SID_i||h(y))$. Attacker, A can masquerade as server, S_i to spoof user, U_i .

After intercepting the login request message $\{P_{ij}, CID_i, M_1, M_2\}$, A can compute $N_i = h(SID_j||h(y) \oplus M_2$, $E_i = P_{ij} \oplus h(h(SID_j||h(y))||N_i)$, $B_i = E_i \oplus h(x||y)$, $D_i = h(B_i||h(x||y))$, $A_i = CID_i \oplus h(D_i||SID_j||N_i)$. A can choose a nonce, N_A and compute $M_3 = h(D_i||A_i||N_A||SID_j)$, $M_4 = A_i \oplus N_i \oplus N_A$. A then sends the message $\{M_3, M_4\}$ to user U_i masquerading as server S_j . U_i computes $N_A = A_i \oplus N_i \oplus M_4$, and compares M_3 with $h(D_i||A_i||N_A||SID_j)$. Then U_i computes mutual authentication message $M_5 = h(D_i||A_i||N_i||SID_j)$ and sends to attacker, A who is masquerading as S_j . Then A verifies M_5 and mutual authentication is done. Finally attacker, A and User, U_i computes the session key, $SK = h(D_i||A_i||N_i||SID_j)$.

4. Conclusion

In this paper, we have shown that Li *et al.*'s dynamic ID based authentication protocol cannot resist many attacks and is vulnerable to replay attack, denial of service attack, smart card lost attack, eavesdropping attack and server spoofing attacks. We strongly feel that a remote user authentication protocol should provide security against the above mentioned attacks so that it can be used in the real world applications.

References

- Hsiang, H. and Shih, W. (2009) Weaknesses and IMPROVEMENTs of the Yoon-Ryu-Yoo Remote User Authentication Scheme Using Smart Cards. Computer Communications, 32, 649-652.
 http://dx.doi.org/10.1016/j.comcom.2008.11.019
- [2] Yoon, E.J., Ryu, E.K. and Yoo, K.Y. (2004) Further Improvement of An Efficient Password Based Remote User Authentication Scheme Using Smart Cards. *IEEE Transactions on Consumer Electronics*, 50, 612-614. http://dx.doi.org/10.1109/TCE.2004.1309437
- [3] Wang, X., Zhang, W., Zhang, J. and Khan, M.K. (2007) Cryptanalysis and Improvement on Two Efficient Remote User Authentication Scheme Using Smart Cards. Computer Standards and Interfaces, 29, 507-512. http://dx.doi.org/10.1016/j.csi.2006.11.005
- [4] Lee, C.C., Lai, Y.M. and Li, C.T. (2012) An Improved Secure Dynamic ID Based Remote User Authentication

- Scheme for Multi-Server Environment. International Journal of Security and Its Applications, 6, 203-209.
- [5] Sood, S.K., Sarje, A.K. and Singh, K. (2011) A Secure Dynamic Identity Based Authentication Protocol for Multi-Server Architecture. *Journal of Network and Computer Applications*, 34, 609-618. http://dx.doi.org/10.1016/j.jnca.2010.11.011
- [6] Guo, D.L. and Wen, F.T. (2013) A More Secure Dynamic ID Based Remote User Authentication Scheme for Multi-Server Environment. *Journal of Computational Information Systems*, **9**, 407-414.
- [7] Madhusudhan, R. and Mittal, R.C. (2012) Dynamic ID-Based Remote User Password Authentication Schemes Using Smart Cards: A Review. *Journal of Network and Computer Applications*, 35, 1235-1248. http://dx.doi.org/10.1016/j.jnca.2012.01.007
- [8] Chena, T.-H., Hsiang, H.-C. and Shih, W.-K. (2011) Security Enhancement on an Improvement on Two Remote User Authentication Schemes Using Smart Cards. *Future Generation Computer Systems*, 27, 377-380. http://dx.doi.org/10.1016/j.future.2010.08.007
- [9] Fan, C.I., Chan, Y.C. and Zhang, Z.K. (2005) Robust Remote Authentication Scheme with Smart Cards. Computers & Security, 24, 619-628. http://dx.doi.org/10.1016/j.cose.2005.03.006
- [10] Lin, I.C., Hwang, M.S. and Li, L.H. (2003) A New Remote User Authentication Scheme for Multi-Server Architecture. Future Generation Computer Systems, 19, 13-22. http://dx.doi.org/10.1016/S0167-739X(02)00093-6
- [11] Liao, I.E., Lee, C.C. and Hwang, M.S. (2006) A Password Authentication Scheme over Insecure Networks. *Journal of Computer and System Sciences*, 72, 727-740. http://dx.doi.org/10.1016/j.jcss.2005.10.001
- [12] Li, X., Xiong, Y.P., Ma, J. and Wang, W.D. (2012) An Efficient and Security Dynamic Identity Based Authentication Protocol for Multi-Server Architecture Using Smart Cards. *Journal of Network and Computer Applications*, 35, 763-769. http://dx.doi.org/10.1016/j.jnca.2011.11.009
- [13] Chang, C.C. and Lee, J.S. (2004) An Efficient and Secure Multi-Server Password Authentication Protocol Using Smart Cards. *Proceedings of the Third International Conference on Cyberworlds*, November, 417-422.
- [14] Tsaur, W.J., Wu, C.C. and Lee, W.B. (2004) A Smart Card-Based Remote Scheme for Password Authentication in Multi-Server Internet Services. *Computer Standards & Interfaces*, 27, 39-51. http://dx.doi.org/10.1016/j.csi.2004.03.004
- [15] Tsai, J.L. (2008) Efficient Multi-Server Authentication Scheme Based on One-Way Hash Function Without Verification Table. Computers & Security, 27, 115-121. http://dx.doi.org/10.1016/j.cose.2008.04.001
- [16] Liao, Y.P. and Wang, S.S. (2009) A Secure Dynamic ID Based Remote User Authentication Scheme for Multi-Server Environment. Computer Standards & Interfaces, 31, 24-29. http://dx.doi.org/10.1016/j.csi.2007.10.007
- [17] Hsiang, H.C. and Shih, W.K. (2009) Improvement of the Secure Dynamic ID Based Remote User Authentication Scheme for Multi-Server Environment. *Computer Standards & Interfaces*, 31, 1118-1123. http://dx.doi.org/10.1016/j.csi.2008.11.002
- [18] Lee, C.C., Lin, T.H. and Chang, R.X. (2011) A Secure Dynamic ID Based Remote User Authentication Scheme for Multi-Server Environment Using Smart Cards. Expert Systems with Applications, 38, 13863-13870.
- [19] Li, X., Ma, J., Wang, W.D., Xiong, Y.P. and Zhang, J.S. (2013) A Novel Smart Card and Dynamic ID Based Remote User Authentication Scheme for Multi-Server Environments. *Mathematical and Computer Modelling*, 58, 85-95. http://dx.doi.org/10.1016/j.mcm.2012.06.033
- [20] Kocher, P., Jaffe, J. and Jun, B. (1666) Differential Power Analysis, Advances in Cryptology. Proceedings of CRYPTO'99, LNCS, 1999, 388-397
- [21] Messaerges, T.S., Dabbish, E.A. and Sloan, R.H. (2002) Examining Smart Card Security under the Threat of Power Analysis Attacks. *IEEE Transactions on Computers*, 51, 541-552. http://dx.doi.org/10.1109/TC.2002.1004593