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Abstract 
Extracting approximate symmetry planes is a challenge due to the difficulty of accurately measur- 
ing numerical values. Introducing the approximate symmetry planes of a 3D point set, this paper 
presents a new method by gathering normal vectors of potential of the planes, clustering the high 
probability ones, and then testing and verifying the planes. An experiment showed that the me- 
thod is effective, robust and universal for extracting the complete approximate planes of symme- 
try of a random 3D point set. 
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1. Introduction 
Detection of symmetry plays an important role in how we recognize and understand the world around us for 
many objects are characterized by the presence of such patterns. Humans recognize a shape not only by its local 
and global geometrical variations, but also by a high-level understanding of the structure of the shape. Most pre- 
vious works concentrated on characterizing the local geometry or topology but ignored an important global 
structural shape descriptor: symmetry. Humans have been shown to be very sensitive to symmetry in visual pat- 
terns, and symmetry is detected and recognized rapidly [1]. 

Symmetry also abounds in man-made objects, often as a result of economic, manufacturing, functional, or 
aesthetic considerations. One of the most prominent examples is organisms: biological symmetries are found in 
almost all species. 

Discovering regular features in a 3-D model is a challenging task, since we typically have no prior knowledge 
of the size, shape, or location of the individual elements that define the pattern. Structures can be incomplete or 
corrupted by noise, and hidden among large components of the 3-D models that are not part of the pattern and 
therefore function as clutter or outliers. 

The problem of symmetry detection has been extensively studied in numerous fields, including visual percep- 
tion, computer vision, robotics, and computational geometry. Many applications of object recognition or identi- 
fication involve symmetry features associated with point sets, a widely-encountered problem in the detection of 
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bilateral symmetry [2], reverse engineering [3], and 3D MR brain image processing [4]. Early methods concen- 
trated on finding perfect symmetries in 2D or 3D planar point sets [5,6]. 

This paper presents a method for extracting approximate planes, which predicts the norm vectors by the 
least-squares point-set matching algorithm in order to evaluate the degree of symmetry by measuring the simi-
larity between two point sets, the original one and the projected one. An effective, robust, universal algorithm 
for identifying the most approximate symmetry planes from a point set is proposed. 

2. Definitions and Problem Statement 
2.1. Approximate Symmetry Planes 

In general, symmetry is defined as follows: An n-dimensional object has mirror-symmetry if it is invariant under 
reflection about a hyper-plane of dimension (n-1) passing through the center of mass of the object. Thus, a 2D 
object is mirror-symmetric if it is invariant under reflection about a line (called the axis of mirror-symmetry) and 
a 3D object is mirror-symmetric if it is invariant upon reflection about a plane. 

A 2D object has rotational-symmetry of order n if it is invariant under rotation of 2 / nπ  radians about the 
centroid of the object. A 3D object has rotational-symmetry of order n if it is invariant under rotation of 2 / nπ  
radians about an axis passing through the centroid of the object. This axis is the rotational symmetry axis. Rota- 
tional symmetry of order n is denoted as Cn-Symmetry [7,8]. 

The general mathematical definition of symmetry is inadequate to describe and quantify the symmetries found 
in the natural world or those found in the visual world. Furthermore, even perfectly symmetric objects lose their 
exact symmetry when projected onto the image plane or the retina due to occlusion, perspective, transformation 
digitization, and so forth. Thus, although symmetry is usually considered to be a binary feature, i.e. an object is 
either symmetric or it is not symmetric, we view symmetry as a continuous feature where intermediate values of 
symmetry denote some intermediate amount of symmetry. Zabrodsky introduced a “Symmetry Distance” that 
can measure and quantify all types of symmetries of objects [9-11]. Focusing on a comparison of the “amount” of 
symmetry of different shapes and the amount of different symmetries of a single shape, the definition benefits 
less extracting the axis or planes of mirror-symmetry. Instead, a definition of approximate mirror-symmetry 
emphasis in describing the relationship between approximate mirror-symmetry and the axis or planes of mirror- 
symmetry is given in what follows in the passage. 

Unless noted otherwise, the following notations are used in this paper: 
• Matrices are denoted by boldface capital letters, such as , ,P W X . 
• Vectors are denoted by boldface lowercase letters, such as , ,p w x . 
• Scalars are denoted by lowercase letters or Greek letters, such as , , , , ,p w x α β δ . 
• The norm of a vector x  is denoted by x . 

• The transpose of a matrix X  is denoted by ′X  or tX . 
• The transpose of a vector x  is denoted by ′x  or tx . 

2.2. Mirror-Symmetry Point Set of Random Plane 

In 3
 , given a point set P  

{ }1 1 2 3, , (p , ) , 1, ,, , t
n i i i ipp i n= ==P p p p   

and random plane π  

0 1 2 3: 0, ( , , ) 1t tw w w w andπ + = = =w x w w   

for i ∈p P , the mirror-symmetry point i′p  can be obtained by the following equation, as shown in Figure 1: 

02( )t
i i i′ = − +p p w p w w                                                                     (1) 

Then we obtain the mirror-symmetry point set ′P  of P  about the plane π : 
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Figure 1. The mirror-symmetry point pair. 

 
{ }1 1 2 3, , (p , p p ) , 1, , ,, t

n i i i i i n′ ′ ′ ′ ′ ′=′ ==P p p p   

2.3. Least-Squares Distance between P and P′ 
Referring to [12,13], the distance between P and ′P , ,( )D ′P P , is defined as: 
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Suppose that 1ijx = , then the point ip  and point j′p  are called a Least-Squares Point Pair (LSPP), and 
ip  and jp  are called Original Least-Squares Point Pair (OLSPP), where j ∈p P . 
As shown in Figure 2, 1p  and 1′p  are a LSPP, and 2p  and 3′p  are a LSPP too. 1p  and itself are an 

OLSPP, and 2p  and 3p  are an OLSPP. 

2.4. Definition of ε-Approximate Mirror-Symmetry 
Referring to the definition of exact mirror-symmetry, the definition of approximate mirror-symmetry is as fol- 
lows: 

In 3
 , given a point set P , 1

n

i
i

c n
==
∑p

p , if there exists plane π : 

1 2 3: 0, ( , , ) 1t t t
c w w w andπ − = = =w x w p w w   

Satisfied 
min ( , )D ε′ =P P                                                                            (3) 

′P  is the mirror-symmetry point set ′P  of P  about the plane π , and 0ε ≥  is sufficiently small, for in- 
stance, 

1
, 0

n

i c
i

α αε
=

−≤ →∑ p p                                                                     (4) 
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Figure 2. Distance between point set P and P′. 

 
Then if 0ε = , the point set P  is mirror-symmetrical about the plane π . If ε  is positive and sufficiently 

small, then the point set P  is approximately mirror-symmetrical about π . 

3. Probability Distribution Method 
Any OLSSP defines a unique reflection with respect to the bisector plane through / 2( )i j+p p  with normal di- 
rection i j−p p . Hence, such a pair provides evidence for the existence of this specific reflective symmetry. 

By looking at all such pairs we can accumulate this evidence and extract the relevant symmetry relation(s). 
Only if many point pairs agree on (roughly) the same reflection plane do we have reason to believe that the cor- 
responding symmetry is truly present in the set. Thus, we can detect potential symmetries by looking at clusters 
of points in the space of transformations as shown in Figure 3 [14]. 

3.1. Pairing 

Suppose that ip  and jp  are OLSPP. We assume that 1d  is small enough and 1 2 3d min{ , }d d     is sa- 
tisfied, where 1 i jd − ′= p p  , 2 i cd = −p p   and 3 j cd = −p p  .  

As shown in Figure 4, let 

, ,c i j∈′w p p p , ( ) 0t
c m′ − =w p p , 1=′w   

then 

cos β′ =w w , maxβ β≤ , max 1sin( ) d 2 c mβ = −p p  

where, 

( ) / 2, ( ) / 2m i j m j j+ ′ = ′= +p p p p p p , 

and 
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Figure 3. Clustering unit normal vectors of potential planes of symmetry. 

 

 
Figure 4. The relation between W and W′. 

 
m }n ,i {c m i c j c−− ≥ −p p p p p p    . 

So, maxsin( ) 0,cos 1β β→ → , and finally ≈′w w . 
The above features of OLSPP can be used to choose the potential OLSPP and the planes of mirror-symmetry. 

3.2. Mean-Shift Clustering 
After pairing, no more than n(n 1) / 2−    unit normal vectors ′w  are obtained. If there are enough (nearly

/ 2n ) normal vectors in a small district or cluster, then a plane of symmetry is assumed and the district is called 
a high-density cluster. Note here that the point set is assumed to be non-collinear. Of course, it is not hard to 
check the collinearity of the point set. 

We use mean-shift clustering [15] to locate the maximum of the density function. The window radius r  is  
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suggested to be 2
)( i c

ε
−∑ p p . Finding that the window contains more than 3

n  nodes, the averages of each node  

set are potential norm vectors of approximate symmetry planes. 
Note that if 1 2 1t′ ′ → −w w , the two vectors in fact correspond to the same plane. 

3.3. Extraction 
A significant vector detected by the mean-shift clustering algorithm does not necessarily correspond to a mea-
ningful symmetry. Since the spatial relation of sample points is lost during the mapping to transformation space, 
sample pairs from uncorrelated parts of the object can accumulate to form discernible clusters. We use Equation 
(1), Equation (2) and Equation (3) to check these candidate norm vectors. 

Suppose that ′w  is a potential norm vector, then the potential plane of symmetry is  

1 2 3

: 0,

( , , )

t t
c

tw w w

π ′ ′ − ′ =

′ = ′ ′ ′

w x w p

w
 

Using Equation (1), the symmetry point set ′P  of P  corresponding to π ′  can be determined. By the Iter- 
ative Closest Point (ICP) [16] algorithm employed to minimize the difference between two clouds of points, we 
can count out ( , )D ′P P . Using Equation (3), it is decided whether the plane is one of the approximate planes or 
not. 

4. Experimental Results 
The results of applying the proposed method to specially designed data are described. Evaluation data were de- 
signed to test the algorithm. 

4.1. Illustration of Data 
As shown in Figure 5, to make the results of the algorithm more appreciable, a point set P  (480 points, 480 × 
3 matrix) was evenly picked from the surface of a 3D “heart-like” surface, which was mesh-gridded from the 
implicit function 

2 2 2 3 2 3 2 3( (9 / 4) 1) (9 / 80)f x y z x z y z= + + − − −  

which evidently embodies only two symmetry planes: 

0=x  and 0=y . 

Then, as shown in Figure 6, normally distributed random noise was added to each point. 

= +P P N                                                                              (5) 

N  is a 0, 0.02µ σ= = , normally distributed random 480 × 3 matrix. 

4.2. Experimental Results and Analysis 
By our method, as shown in Figure 6, four corresponding mirror symmetry point sets (marked by red +), are 
shown, and in Table 1, the numeral values valve can be checked in Table 1. For the wildly errors of NO.(a) and 
NO.(d), which are also shown present in the figure, the corresponding vectors are rejected. 

For cp  = (1.2943e−003, −9.5077e−004, 2.6443e−001)t 

So, the outcome planes are 

(−1.2389e−003, −9.9809e−001, 2.2970e−003) x  + (1.5547e−003) = 0 

and 

(−9.8665e−001, 7.6978e−003, −2.9780e−002) x  − (9.1590e−003) = 0. 
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Figure 5. Picking point set P from a 3D “heartlike” surface. 

 

 
Figure 6. P and P′ corresponding four candidate vectors. 
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Table 1. Four final candidate vectors. 

Figure No. 
Norm vector, errors and results 

Norm vector Error Results 

8(a) −4.4745e−003, 1.7389e−002, 9.8743e−001 7.5958e−002 No 

8(b) −1.2389e−003, −9.9809e−001, 2.2970e−003, , 2.2518e−002 Yes 

8(c) −9.8665e−001, 7.6978e−003, −2.9780e−002, 2.4563e−002 Yes 

8(d) 3.3643e−003, −8.6846e−001, −4.8384e−001, 8.8539e−002 No 
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