
Journal of Computer and Communications, 2014, 2, 1-5
Published Online January 2014 (http://www.scirp.org/journal/jcc)
http://dx.doi.org/10.4236/jcc.2014.21001

OPEN ACCESS JCC

A New Approach to Disk Scheduling Using Fuzzy Logic

Priya Hooda*, Supriya Raheja

Department of Computer Science and Engineering, ITM University, Gurgaon, India.
Email: *priya.26hooda@gmail.com

Received October 31st, 2013; revised November 25th, 2013; accepted December 3rd, 2013

Copyright © 2014 Priya Hooda, Supriya Raheja. This is an open access article distributed under the Creative Commons Attribu-
tion License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is pro-
perly cited. In accordance of the Creative Commons Attribution License all Copyrights © 2014 are reserved for SCIRP and the
owner of the intellectual property Priya Hooda, Supriya Raheja. All Copyright © 2014 are guarded by law and by SCIRP as a
guardian.

ABSTRACT
Disk scheduling is one of the main responsibilities of Operating System. OS manages hard disk to provide best
access time. All major Disk scheduling algorithms incorporate seek time as the only factor for disk scheduling.
The second factor rotational delay is ignored by the existing algorithms. This research paper considers both fac-
tors, Seek Time and Rotational Delay to schedule the disk. Our algorithm Fuzzy Disk Scheduling (FDS) looks at
the uncertainty associated with scheduling incorporating the two factors. Keeping in view a Fuzzy inference sys-
tem using If-Then rules is designed to optimize the overall performance of disk drives. Finally we compared the
FDS with the other scheduling algorithms.

KEYWORDS
Operating System; Hard Disk; Disk Scheduling; Fuzzy Logic; Fuzzy Inference System (FIS)

1. Introduction
Operating System provides an interface between user and
hardware. One of the major responsibilities of OS is to
use the disk drive efficiently and to provide the fast ac-
cess time. Multiprogramming environment for control-
ling and providing memory to process the concept of
Disk Scheduling is used.

When the disk starts operating, the disk operates at a
constant speed. To read or write, the head must be posi-
tioned at the desired track and at the beginning of the
desired sector on that track [1].

The seek time is the time for the disk arm to move the
heads to the cylinder containing the desired sector [2].
Seek time is a very important factor for any operating
system. Different disk scheduling algorithms are used to
reduce the seek time, namely, First Come First Serve
(FCFS), Shortest Seek Time First (SSTF), Scan, C-Scan,
Look, and C-Look.

Another main component of Access Time is Rotational
Delay. After the read/write head seeks to the desired
track, it has to rotate to the desired sector from which

data read or write operations are performed. This time
consumed in rotation after seeking is called as Rotational
Delay.

Various work is available related to reduce the seek
time using different disk scheduling algorithms. But they
are not providing any solution to handle the uncertainty
and starvation problem associated with disk scheduling.

For example, supposing that there are two requests with
the same distance, one request is near the spindle and one
towards the outer track and there is a need to decide
which request to process first. The reason to use fuzzy
logic is to handle such kind of uncertainty, so that we can
choose the right request to serve. In this paper, we are
implementing a new algorithm, Fuzzy Disk Scheduling
(FDS) for disk scheduling algorithm using fuzzy logic. In
our work we gave emphasis on both the factors discussed
above to improve access time. Moreover, our algorithm
will further reduce the seek time.

This paper is divided into 8 sections. Section 2 de-
scribes the related work done so far. Section 3 includes a
brief discussion on disk scheduling. Fuzzy set theory is
discussed in Section 4. Section 5 comprises problem de-
finition. Section 6 contains the designed FIS. Section 7 *Corresponding author.

http://www.scirp.org/journal/ajcc�
http://dx.doi.org/10.4236/jcc.2014.21001�
mailto:priya.26hooda@gmail.com�

A New Approach to Disk Scheduling Using Fuzzy Logic

OPEN ACCESS JCC

2

comprises proposed algorithm. Finally Section 8 is Con-
clusion.

2. Related Work
In the recent years many researchers have came forward
with their work and ideas of improving the disk per-
formance. Margo Seltzer, 1990, wrote a research paper
“Disk Scheduling Revisited”. In this paper they dis-
cussed the disk scheduling technique based on sectors
traversed and rotational delay experienced by movable
head system disk drives.

David M. Jacobson, 1995, discussed disk scheduling
algorithm based on rotational position [3]. Disk schedul-
ing based on rotational position as well as disk arm posi-
tion is shown to provide improved performance [4]. They
discovered Aged Shortest Access Time First algorithm
which is a continuum between FCFS and SSTF.

Another approach was proposed by Hu Ming, 2005, in
his research paper based on the idea of disk arm and ro-
tational position. Modern disk drives emphasise on seek
time reduction, but increase in disk rotation leads to
higher data transfer time [5].

Quality of Service Aware disk scheduling algorithm
was proposed by Walid G. Aref, 2002. It is applicable in
environments where data requests arrive with different
QoS requirements such as real-time deadline, and user
priority [6].

Mohammad Sofian Abu Talip, 2009, in his revolu-
tionary research paper discussed the implementation of
fuzzy disk scheduling algorithm using Fuzzy Inference
System and IF-THEN Rules. This paper uses seek time
and arrival time as two factors as input to the fuzzy in-
ference engine [1].

3. Disk Scheduling
Since in operating system all device requests are linked
in queues, if seek time increases the system becomes
slow. A disk scheduling algorithm is used to reduce total
access time of disk requests. In this section we are briefly
discussing different types of disk scheduling algorithms.

First Come First Serve Disk Scheduling Algorithm
(FCFS) is easy and simple disk scheduling algorithm to
implement. This algorithm is implemented using FIFO
queue [7]. The requests are executed in the same se-
quence as they enter in the queue. However, FCFS disk
scheduling is simplest one but doesn’t provide good re-
sults. It’s easy to calculate the number of head move-
ments in FCFS but with increased seek time.

Shortest Seek Time First (SSTF), the requests are ex-
ecuted in a rearranged order based on the shortest next
cylinder request distance. SSTF services the request that
is closest to the current read/write head location. This
algorithm minimizes the seek time, but may cause star-
vation. Sometimes the high priority request with more

head movements may get starved with the lower priority
request that is close to the head. SSTF dominates disk
activity and increases the latency for other processes
tracks. It is unfair type of disk scheduling algorithm be-
cause of higher variance of service time which is not
acceptable.

SCAN approach was introduced to overcome the pro-
blem of high latency caused by SSTF. This approach is
also called as ELIVATOR disk scheduling. This algo-
rithm services a request that results in shortest next dis-
tance request but in a preferred direction. The read/write
head scans down in that direction till end and when it
reaches the bottom of that direction and then the head is
reversed and it scans up servicing in the opposite direc-
tion till the second end of the disk. SCAN is more optim-
al but not the best one.

Cyclic or Circular SCAN, to some extent works same
as SCAN works. The only difference, it is one directional
scan. It services all disk requests from innermost to out-
ermost cylinders or vice-versa. It starts its scan toward
the nearest end and services the requests all the way to
the end. Once it reaches the end the read/write head
jumps to the other end. The jump made by the head is not
counted as head movement. C-SCAN has same utiliza-
tion as of SSTF [8].

In LOOK disk scheduling, head moves back and forth
servicing requests just like SCAN algorithm. But unlike
SCAN, the head doesn’t reaches to last cylinder at the
end of the disk; the head will change its direction after
servicing the last request in the current direction. Recog-
nition of the dynamic request of the queue leads to the
look algorithm [9]. As compared on the basis of seek
time LOOK has better seek time average than SCAN.

CIRCULAR-LOOK disk scheduling algorithm is best
disk scheduling algorithm so far. C-LOOK treats the disk
in manner as the last track is adjacent to first track. In
C-LOOK the read/write head services requests in one
direction till last request in that direction and changes its
direction and jumps to the last request without servicing
any requests, and then starts servicing requests again.

4. Background on Fuzzy Sets and FIS
Fuzzy logic is a way to map input space to output space.
It maps the human thinking in programming. A fuzzy set
is a class of objects with a continuum of grades of mem-
bership [10]. It extends conventional Boolean Logic to
deal with ambiguity and uncertainty. A fuzzy set pro-
vides a notion to represent crisp values to fuzzy values
by assigning them between 0 and 1.

The basic elements of fuzzy logic related to fuzzy sets
are linguistic variables, membership functions, and fuzzy
rules. The linguistic variables’ values are words-specifi-
cally, adjectives such as small, little, medium and so on
[11]. The membership function of a fuzzy set works as an

A New Approach to Disk Scheduling Using Fuzzy Logic

OPEN ACCESS JCC

3

indicator function of crisp set. Membership function as-
signs values from 0 to infinity, to decimal values between
0 and 1.

Fuzzy rules are the basis of fuzzy reasoning consisting
of IF-THEN rules, expressed in the form: “IF input IS
from set THEN output” and are evaluated without ELSE.
Using the fuzzy rules the human or expert knowledge is
represented in natural language. A Fuzzy Inference Sys-
tem is composed of four elements namely, a Rule Base,
Inference Engine Module, a Fuzzification Interface, and
a Defuzzification Interface [12].

The crisp input is mapped to fuzzy values using mem-
bership functions in fuzzification module and passed to
Inference Module. Where based on the fuzzy IF-THEN
rules fuzzy input is converted into fuzzy output. Fuzzy
output values are again transformed into crisp values.
The Defuzzification process involves some methods for
the purpose namely, Centroid method, Mean of Maxi-
mum, Smallest of Maximum, Largest of maximum etc.
The different types of FIS available are MAMDANI,
TAKAGI-SUGENO-KANG and TSUKAMOTO FIS. In
our work we have used MAMDANI type FIS, because of
its simple structure of “min-max” operations. It is intui-
tive in nature, has widespread acceptance, and is perfect
to human input [13].

5. Problem Definition
In order to provide an efficient disk scheduling algorithm
we are using Fuzzy Logic to map two inputs to a single
output. The FIS used is Mamdani based system. Given a
set of disk requests, this FIS takes Sectors Traversed and
Rotational Delay as inputs and based on If-Then Rules
defined the output is Optimized Priority. We use this
Priority to reorder the given read/write requests in order
to provide optimum results for overall Access Time.

6. Designed FIS
In our work we have designed the Mamdani type fuzzy
inference system named “Disk Scheduling” using the Mat
Lab Fuzzy Tool Box as shown in Figure 1. The designed
system consisting of two inputs namely, Sectors Trav-
ersed and Rotational Delay, and one output named Prior-
ity.

Figure 1. FIS for disk scheduling.

Sectors Traversed defines the difference from current
read/write head position to next request position and Ro-
tational Delay defines the time for the disk to rotate to
the desired sector to start reading the first byte.

Based on the set of rule the values in the input vector
are mapped to output vector. In our designed FIS, the
output is optimized priority that depends on the above
defined inputs. Here, the triangular type membership func-
tions for all three linguistic variables are used. The De-
fuzzification method used is Centroid of Area.

For the input “Sectors Traversed”, three membership
functions are defined: low, medium, and high, ranging
from 0 to 199. The input membership functions are shown
in Figure 2.

In similar way, three membership functions are de-
fined for “Rotational Delay”: small, average, and large
ranging from 0 to 8.33. The membership functions for
“Rotational Delay” are shown in Figure 3.

Rule Base of FIS Disk Scheduling
Rule Base is the set of rules that maps input vector to
output vector. In designed FIS “Disk Scheduling” we
have defined the 9 fuzzy if then rules as shown in the
Figure 4. Based on these rules our system generates the
optimized priority based on the two inputs Sectors Trav-
ersed and Rotational Delay. Based on the calculated pri-
ority allotted, the disk request will be served.

With the help of these rules we can apply different in-
put values by moving the horizontal bar in the rule viewer
window to get the output. The system itself will calculate
the priority after selecting the input values.

Figure 5 represents the Surface View of the FIS. It
displays the range of two inputs and allows us to exam-
ine the output surface of the FIS. Because it does not

Figure 2. Input sectors traversed membership functions.

Figure 3. Input rotational delay membership functions.

A New Approach to Disk Scheduling Using Fuzzy Logic

OPEN ACCESS JCC

4

Figure 4. Set of If-Then rules.

Figure 5. Surface view of the designed FIS.

alter the fuzzy system or its associated FIS structure in
any way, Surface Viewer is a read-only editor [14].

7. Proposed Algorithm
In this section we are discussing the proposed fuzzy
based Disk Scheduling algorithm.

Inputs: FDS [Sectors Traversed (0,199), Rotational
Delay (0,8.33)].

Output: Priority [(1,10) (1 is highest)].
1) Calculate the estimated Seek Distance (SD) from

the current head position for request in the queue using
the given relation:

SD = |Current head position-next request position|
2) Calculate the Rotational Delay (RD) from the cur-

rent head position for each request forming in queue us-
ing the given relation:

RD = 8.33*No. of Sectors causing Rotation/63
3) Apply the calculated seek distance and the rota-

tional delay to the designed FIS “Diskscheduling”.
4) Find the optimized priority as “Priority” for each

request.
5) Sort the queue in the descending order on the basis

of priority.
6) Serve the request with highest priority in the queue.
7) After each request updates the head position and

repeat steps 1 to 7 until the queue is empty.

Results
The implemented algorithm FDS is compared with other
conventional algorithms and the fuzzy algorithm given
by Mohamad Sofian Abu Talip [1]. A simple example is
taken from William Stallings Book [15]. The order of
requested sectors received by the scheduler, are 55, 58,
39, 18, 90, 160, 150, 38, and 184. The read/write head is
currently located at sector 100.

Based on this set of requests sectors traversed and ro-
tational delay is calculated. These two inputs are applied
to the FIS developed, and come out with optimized prior-
ity. The requests are then rescheduled from highest prior-
ity to lowest priority. Then these requests are serviced by
the operating system.

As we complete all the computations, bar graph is
plotted for both the factors, i.e. Sectors Traversed and
Rotational Delay as shown in Figures 6 and 7.

Figure 6. Comparison of sectors traversed.

Figure 7. Comparison of rotational delay.

From the graphs we can show that in case of sectors

traversed the FDS is better than FCFS, C-LOOK, C-
SCAN and the 1st fuzzy algorithm. However FDS lacks
behind SSTF & LOOK Scheduling. Moreover, in terms
of Rotational Delay, this algorithm provides better results
than SSTF & LOOK Scheduling.

One main advantage of this FDS algorithm is that it
services all the requests fairly by taking in consideration
both the factors and services all the requests without

A New Approach to Disk Scheduling Using Fuzzy Logic

OPEN ACCESS JCC

5

causing starvation. Hence, it solves the starvation prob-
lem associated with SSTF Scheduling.

8. Conclusions
Fuzzy logic uses the human way to handle inexact in-
formation in machines and computers. In this paper, a
new disk scheduling algorithm is proposed. To handle
the inexact information we designed a fuzzy inference
system “Disk scheduling” using MATLAB-Fuzzy Tool
Box. The designed FIS has generated the optimum prior-
ity based on two factors, sectors traversed and rotational
delay. This generated priority is used by our proposed
fuzzy disk scheduling (FDS) algorithm to improve the
disk access time.

It is shown using the bar graphs that there are slight
deviations of FDS algorithm in terms of sectors traversed
when compared with SSTF and LOOK scheduling. But
in terms of rotational delay, the FDS algorithm provides
much better results. The pattern of the requests after ap-
plying the algorithm shows that the read/write head
doesn’t stick to one area of disk. All the disk requests are
serviced with the same perspective.

REFERENCES
[1] M. S. A. Talip, A. H. Abdalla, A. Asif and A. A. Aburas,

“Fuzzy Logic Based Algorithm for Disk Scheduling Pol-
icy,” International Conference of Soft Computing and
Pattern Recognition, 2009, pp. 746-749.
doi.ieeecomputersociety.org/10.1109/SoCPaR.2009.151

[2] S. Saha, N. Akhter and M. A. Kashem, “A New Heuristic
Disk Scheduling Algorithm,” International Journal of
Scientific & Technology and Research, Vol. 2, 2013, pp.
49-53.

[3] D. M. Jacobson and J. Wilkes, “Disk Scheduling Algo-
rithms Based on Rotational Position,” Technical Report,
1991.

[4] P. K. Suri and S. Mittal, “Sim_Dsc: Simulator for Opti-
mizing the Performance of Disk Scheduling Algorithms,”
Global Journal of Computer Science and Technology,
Vol. 11, No. 18, 2011, pp. 1-6.

[5] M. Hu, “Improved Disk Scheduling Algorithms Based on
Rotational Position,” Journal of Shanghai University, Vol.
9, No. 5, 2005, pp. 411-414.
http://dx.doi.org/10.1007/s11741-005-0024-z

[6] W. G. Aref, K. El-Bassyouni, I. Kamel and M. F. Mokbel,
“Scalable QoS-Aware Disk-Scheduling,” Proceedings of
the International Database Engineering and Applications
Symposium, Alberta, 17-19 July 2002, pp. 256-265.

[7] M. Y. Javed and I. U. Khan, “Simulation and Perform-
ance Comparison of Four Disk Scheduling Algorithms,”
Proceedings of TENCON 2000, Kuala Lumpur, 24-27
September 2000, pp. 10-15.

[8] M. Seltzer, P. Chen and J. Ousterhout, “Disk Scheduling
Revisited,” Proceedings of the 1990 Winter Usenix, Wa-
shington DC, 1990.

[9] A. Thomasian and C. Liu, “Disk Scheduling Policies with
Lookahead,” ACM Sigmetrics Performance Evaluation
Review, Vol. 30, No. 2, 2002, p. 33.
http://dx.doi.org/10.1145/588160.588165

[10] L. A. Zadeh, “Fuzzy Sets,” Information and Control, Vol.
8, No. 3, 1965, pp. 338-353.
http://dx.doi.org/10.1016/S0019-9958(65)90241-X

[11] S. C. Nadig, “Intelligent Scheduling Using Fuzzy Logic
in Applications,” Open VMS Technical Journal, Vol. 12,
No. 12, 2009, pp. 3-7.

[12] K. M. Passino and S. Yurkovich, “Fuzzy Control: A Tu-
torial Introduction,” Fuzzy Control, pp. 24-40.

[13] “Fuzzy Logic Toolbox User’s Guide,” 2013, p. 108.
http://www.mathworks.com/help/pdf_doc/fuzzy/fuzzy.pdf

[14] “Fuzzy Logic Toolbox, Fuzzy Inference System.”
http://www.mathworks.in/help/fuzzy/surfview.html

[15] W. Stallings, “Operating Systems: Internal and Design
Principles,” 6 Edition, Prentice Hall, 2009.

http://doi.ieeecomputersociety.org/10.1109/SoCPaR.2009.151�
http://dx.doi.org/10.1007/s11741-005-0024-z�
http://dx.doi.org/10.1145/588160.588165�
http://dx.doi.org/10.1016/S0019-9958(65)90241-X�
http://www.mathworks.com/help/pdf_doc/fuzzy/fuzzy.pdf�
http://www.mathworks.in/help/fuzzy/surfview.html�

