
Journal of Computer and Communications, 2014, 2, 17-31
Published Online August 2014 in SciRes. http://www.scirp.org/journal/jcc
http://dx.doi.org/10.4236/jcc.2014.210003

How to cite this paper: Zhygmanovskyi, A. and Yoshida, N. (2014) Cloud Service Provisioning Based on Peer-to-Peer Net-
work for Flexible Service Sharing and Discovery. Journal of Computer and Communications, 2, 17-31.
http://dx.doi.org/10.4236/jcc.2014.210003

Cloud Service Provisioning Based on
Peer-to-Peer Network for Flexible Service
Sharing and Discovery
Andrii Zhygmanovskyi, Norihiko Yoshida
Department of Computer Science, Saitama University, Saitama, Japan
Email: andrew@ss.ics.saitama-u.ac.jp, yoshida@ss.ics.saitama-u.ac.jp

Received 8 June 2014; revised 8 July 2014; accepted 6 August 2014

Copyright © 2014 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
In this paper, we present an approach to establish efficient and scalable service provisioning in
the cloud environment using P2P-based infrastructure for storing, sharing and discovering ser-
vices. Unlike most other P2P-based approaches, it allows flexible search queries, since all of them
are executed against internal database presenting at each overlay node. Various issues concerning
using this approach in the cloud environment, such as load-balancing, queuing, dealing with skewed
data and dynamic attributes, are addressed in the paper. The infrastructure proposed in the paper
can serve as a base for creating robust, scalable and reliable cloud systems, able to fulfill client’s
QoS requirements, and at the same time introduce more efficient utilization of resources to the
cloud provider.

Keywords
Peer-to-Peer, Cloud Computing, Service Provisioning, Service Discovery, Service Sharing

1. Introduction
Service-oriented computing nowadays is a major approach for constructing and managing systems of different
complexity, starting from one-service applications, such as URL shortening services or online documents con-
verters, and up to real-time systems with millions of users. Originally present mostly in the form of Web
Services with centralized discovery and management methods, at the moment many applications can be seen as
services employing interoperability standards and frameworks, as well as featuring flexible billing models and
public APIs. Since service-oriented computing improves the productivity of programming and administering
applications in increasingly complex scenarios, there is a necessity for sophisticated communication and coor-

http://www.scirp.org/journal/jcc
http://dx.doi.org/10.4236/jcc.2014.210003
http://dx.doi.org/10.4236/jcc.2014.210003
http://www.scirp.org/
mailto:andrew@ss.ics.saitama-u.ac.jp
mailto:yoshida@ss.ics.saitama-u.ac.jp
http://creativecommons.org/licenses/by/4.0/

A. Zhygmanovskyi, N. Yoshida

18

dination protocols as well as scalable and flexible means for implementing all stages of lifetime of services,
including their deployment, discovering and managing.

Being extensively used by enterprise, service-oriented computing is usually implemented by utilizing another
driving force for the modern IT—cloud computing. Defined by NIST as “a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of configurable computing resources that can be
rapidly provisioned and released with minimal management effort or service provider interaction” [1], cloud
computing has gained extremely wide use in last several years. Initially embraced by major IT companies such
as Amazon, Apple, Microsoft, Oracle and Google, which established themselves as top players in the cloud
services market, it has become common for most companies to move their infrastructure to the cloud, both
public and private. If properly applied, cloud computing not only can help lower IT costs for the enterprise, but
also introduce many other benefits, such as effective management of peak-load scenarios by scaling the number
of instances according to the real (or predicted) demand, dealing with natural disasters and system outages by
seamlessly migrating to other available cloud resources, or serving as a inexpensive platform for the startups
with innovative ideas for new services. Having already established itself as invaluable technology, cloud
computing, however, is constantly evolving and in the next few years the focus of cloud computing is expected
to shift from building the infrastructure—today’s main front of competition among the vendors—to the appli-
cation domain, therefore increasing importance of delivering new ideas for efficient management of services
deployed in the cloud.

One of the concerns for the cloud-based solutions is the fact that the components responsible for service
discovery, monitoring and load-balancing still employ centralized approaches. This, in turn, comes from
traditional architectural model designed for Web Services which defines three types of participants [2]: 1)
service providers, which create and own services, and advertise them to potential users; 2) service brokers,
which maintain a registry of advertised services and might introduce service providers to service requestors; 3)
service requestors, which search the registries of service brokers for suitable service providers and then contact
a service provider to use its services. Due to its nature, the presence of central authority entities like service
brokers is often inappropriate, since such solutions lack satisfactory scalability, present a single point of failure
and lead to performance bottlenecks and network congestion. On the other hand, considering distributed nature
of cloud-based architecture, it is reasonable to use distributed approach to cloud service management and
discovery as well, which in turn leads to the idea of using inherently decentralized, fault tolerant and scalable
peer-to-peer paradigm.

Despite the fact that P2P approach is successfully used for content storage and management for about 15
years, service management systems based on it are still quite sparse and, as a general rule, they either remain
within academia or even do not evolve further than proof-of-concept stage. The earliest successful P2P-based
service discovery networks include Hypercube [3] and Speed-R. Traditionally, many proposed solutions are
based on Semantic Web approach for describing services. For instance, in the approach shown in [5], services
are described using DAML-S, while service publishing and discovery mechanism is based on JXTA technology.
Similar approach is used in [5], but Gnutella P2P overlay is used instead of JXTA. Generally speaking, all
P2P-based solutions for service management and discovery can be divided in two groups, depending on
approach for building an overlay (structured or unstructured). While unstructured overlays are easy to imple-
ment and exhibit many interesting characteristics like small-world phenomenon, they suffer from significant
drawbacks such as inefficient routing, unnecessary network congestion or inability to locate rare objects.
Moreover, if we take into account the fact that cloud usually consists of a homogeneous set of hardware and
software resources in a single administrative domain, we can argue that using DHT overlay presents an efficient
approach due to its ability to adapt to dynamic system expansion or contraction, high scalability and autonomy
features. However, since DHTs originally lack the ability to execute queries other than key-based lookup, their
application in scenarios that require range and multidimensional queries was always a challenging task, leading
to various approaches to storing and locating objects in DHT, such as locality preserving mapping based on
Space Filling Curves in [6], sliding window partition method in [7] or tree-based solutions such as MX-CIF
quad tree in [8] to name a few.

In this paper, we propose a Web Service discovery architecture based on structured P2P overlay network,
which utilizes platform-independent attribute-value based method for describing services and an algorithm for
service discovery that allows execution of range and multidimensional queries. Among ideas that inspired us to
propose this system, we can name PWSD (Peer-to-Peer based Web service discovery) architecture, presented in

A. Zhygmanovskyi, N. Yoshida

19

[9] and Intentional Name System, described in detail in [10]. We propose a lightweight approach that could be
based on any DHT overlay, uses attribute-value based service description without resorting to complex data
description frameworks (e.g. Semantic Web) and is designed with modular approach in mind. While being
inherently a framework for building reliable and scalable network for providing, discovering and using services,
the approach presented in this paper is designed to be applied to the problem of efficient service provisioning in
cloud-based solutions, that is, for building an overlay network that makes cloud-based services resilient, scalable
and managed in a distributed manner.

The rest of the paper is organized as follows: Section 2 presents the architecture of proposed service sharing
and discovery network including service description, service storing and service discovery mechanisms. Section
3 presents the proposed way of applying this mechanism to the service provisioning in the cloud environment,
along with outline of related main challenges. We describe experimental framework and present experimental
results in Section 4. Conclusions and further research directions are given in the Section 5.

2. Service Sharing and Discovery Network
2.1. Overview
The idea of building service sharing and discovery network based on P2P overlay itself is not innovative, since it
allows avoiding many problems that arise in centralized scenarios, such as single point of failure, poor
scalability or lack of robustness. Nevertheless, even nowadays most of P2P-based systems deal with simple
content sharing, which is fundamentally different from functionality of sharing services. Still, there is a range of
problems in common that are present in both cases, most important of them being appropriate descriptions of
items shared (content or services), and creating flexible and efficient search functionality that provide results as
relevant to the users’ criteria as possible.

The pivotal point of the system is an original platform-independent format of service descriptions. This
approach was first introduced in our earlier paper [11] with extended analysis of the related research, however,
at that time we did not yet consider its possible application to the cloud environment. As was noted earlier, it is
based on Intentional Name System naming approach described in [10] and utilizes abstract graph-based
attribute-value description mechanism of services which is called (),a v -graph. The underlying serialization
format of the graph is actually not important, since it is not the part of the framework itself. We also propose
several ways for building description graph, including utilization of existing descriptions, automatic description
building and manual description input. While (),a v -graph uses the attribute-value structure, it serves as basic
format for the service description itself, which, among other ways, could be obtained by transforming
corresponding service descriptions, including XML-based ones. Besides, (),a v -graph structure contains only
information meaningful for the service discovery, and also can be easily extended to contain the value type
specification, so that search queries could be executed in a type-aware way. Also it is important to note that
service owner and binding information are included in the (),a v -graph as a special vertex1 which is essential to
the execution of discovered services. The main point which makes (),a v -graph approach useful in distributed
services storing and discovering is that the hash is computed only for attribute vertex and corresponding
subgraph of the (),a v -graph is copied to the responsible overlay node according to obtained hash value. This
way the structure stored at the responsible node is still an (),a v -graph, which allows for the queries to be more
flexible, making possible using range and multidimensional queries in the application. Flexibility of the queries
is also ensured by the fact that actual mechanism of (),a v -graph storage is not defined, so different implemen-
tations can choose the best one for specific needs. While we have chosen to implement our idea using Chord
DHT [12], the approach for storing and discovering service descriptions proposed in this paper is actually
overlay-independent. That is, the algorithms of storing, removing, updating and locating the services are defined
in the layer more abstract than DHT one, and thus deal only with abstract notions such as “responsible node”.
This way it is possible to have multiple layers of overlays for service storage (for instance, to increase reliability
or distribute the load), and those overlays, in fact, do not have to be based on the same DHT. Finally, we present
abstract format of querying the distributed database of service descriptions which makes executing range and
multidimensional queries possible.

The approach described above bears some similarities with distributed scalable content discovery system,

1We use the term “vertex” meaning “node of a graph” throughout this paper, in order to avoid confusing it with terms “overlay node” or
“cloud node”.

A. Zhygmanovskyi, N. Yoshida

20

proposed in [13] in that both use attribute-value based content registration and discovery mechanism (influenced
by [10]), and propose similar mechanism of storing multidimensional data in the P2P overlay. However, the
approach for resolving range queries in the paper mentioned above is based on Range Search Tree and due to the
complexity of this structure includes various optimization and adaptation protocols, making the actual imple-
mentation of the approach difficult and error-prone.

2.2. Service Description
Each service in the network is described using attribute-value format, forming so called (),a v -pairs, where
attribute stands for the arbitrary property of a service. While attributes can be only strings, value types can be of
any type which is queryable, serializable and can be efficiently stored by the underlying DHT storage
mechanism. All (),a v -pairs form a connected graph, called (),a v -graph, which always includes one extra
vertex, that represents routing and binding information for the service itself. In real life situations it is not
uncommon when one node provides access to several services, and each service is described using (),a v -graph.
Example of (),a v -graph is shown in Figure 1. Here we can see an example of a service from the domain,
explained in detail in Section 4.4. The service is described using the following attributes: service type, location,
CPU utilization, game region and OS. The rest of graph vertices consist of values of attributes mentioned above
and one more special vertex which contains low-level service info, such as IP address, port and network
protocol.

From the viewpoint of the multidimensional objects representation theory, indexing methods can be divided
into two broad categories [14]: relatively low-dimensional data, which usually arises in domains such as
geographic information systems, spatial databases, solid modeling, computer vision, computational geometry,
and robotics; and high-dimensional data, which is seen as a direct result of trying to describe objects via a
collection of features (also known as feature vector). In our case, the feature vector is represented by a set of
(),a v -pairs. The queries, which are to be supported in the application that uses such kind of data, usually fall
into the following categories [14]:

1) Finding objects having particular feature values (point queries).
2) Finding objects whose feature values fall within a given range or where the distance from some query

object falls into a certain range (range queries).
3) Finding objects whose features have values similar to those of a given query object or set of query objects

(nearest neighbor queries). In order to reduce the complexity of the search process, the precision of the required
similarity can be an approximation (approximate nearest neighbor queries).

4) Finding pairs of objects from the same set or different sets sufficiently similar to each other (all-closest-
pairs queries). This is also a variant of a more general query commonly known as a spatial join query.

The algorithm for service discovery ensures that all query types mentioned above are possible to execute and
that the efficiency of answering to such queries, in fact, depends only on the efficiency of the node’s internal
database, therefore being independent from the service discovery approach itself.

One of the most challenging issues for any new approach or framework is to provide compatibility with

Figure 1. (a, v)-graph for service description.

A. Zhygmanovskyi, N. Yoshida

21

existing technologies, which are already widely used. It is important to note once more that (),a v -graph
approach is just an abstract model of service description, therefore it should be seen as an output of some model
transformation function. Possible ways of obtaining the resulting (),a v -graph model are at least as follows:

Manual Input: the simplest case where user enters all service description information manually, usually with
some kind of GUI, though batch information input (for instance, by uploading the file with multiple attribute-
value pairs) is also possible. Regardless of how the data is put into the system, it always can be processed and
transformed to the underlying (),a v -graph serialization format.

Transformation of Existing Service Descriptions: to address the issue of compatibility, the system must
have a way to obtain (),a v -based descriptions from existing ones. In our case this is achieved by applying
necessary model transformations, exact nature of which depends on the representation of existing models. But
since in most cases existing services are described using XML-based industry standards like WSDL or OWL-S,
Extensible Stylesheet Language Transformations (XSLT) language seems to be the most appropriate choice for
model transformation in this case, due to its high expressive power and ability to output virtually any kind of
data format using XML data as input. It is important to note that in most cases existing service description need
to be transformed to (),a v -based one only partly, since low-level details of a service (like protocol name, input
parameters enumeration, IP address etc) are generally not searched upon. However, those low-level details can
still be present in (),a v -graph in the service description vertex to facilitate the process of binding and routing
when the service is actually used.

Automatic Augmentation: among service description properties there are often ones that are highly impor-
tant as a search criteria but normally are neither supposed to be input by humans nor present in traditional static
service descriptions. Examples of such properties are current geographical location of the service, status of the
job queue, various QoS data (like performance or latency) and sharing network data (like current node’s
reputation). All those data can be obtained automatically using various means, including automatic location
detection, internal monitoring functionality or network monitoring and QoS protocols. However, storing and
querying such kind of values correctly requires additional efforts because of their dynamic nature. We will
elaborate more on that in Section 3.4.

2.3. Service Description Storing
In the approach, proposed in this paper, Chord DHT peer-to-peer overlay is used to store service descriptions in
a distributed manner. As usual, in order to store content in DHT we need to define what will act as a key and
what will be stored at the node. In our system, we apply hash function to each attribute name and decide the
node which is responsible for this attribute—in case of Chord DHT it is successor of a key. In terms of our
approach, this node is called responsible node for the attribute and therefore will store subgraphs of a form
[attribute, value, service description], that is, subgraphs based on given attribute, of all (),a v -graphs in the
network. In the result, we obtain a structure called merged (),a v -graph in each node that is responsible at least
for one attribute. Example of merged (),a v -graph is shown in Figure 2. Here, the node responsible for
attributes 1A , 2A and 3A holds merged (),a v -graph which consists of those attributes, all their values found
in the network and respective service descriptions, which include routing information about service owner node.

Next, we present formalized version of service description storing algorithm. Each node P in the overlay owns
two graphs, namely, .P OS —graph for the services it owns, and .P SS —graph for the services from other
nodes it stores. The formal definition of both graphs is as follows: { }(), ,. ,V A A V V SDP OS V V sd E E=    and

(), ,. ,V A A V V SDP SS V V SD E E=    , where VV —set of vertices that correspond to the attributes of the service,
AV —set of vertices that correspond to the values of the attributes, sd —vertex which contains the low-level

service description (including information about owner node), SD —set of sd vertices, ,A VE —set of edges
(), | ,A V A A V Vv v v V v V∈ ∈ and ,V SDE —set of edges ()* * *, | ,V V Vv sd v V sd SD sd sd∈ ∈ ∨ = . The only difference
between formal definitions of .P OS and .P SS given above is the number of service definitions, included as
vertices in the graph: in .P SS there potentially will be multiple service definitions corresponding to owner
nodes of each stored service, while .P OS contains one and only one service definition vertex, which contains
information of a node that owns .P OS itself. Then, we assume that for each node in the overlay the following
two functions are defined: h—hash function used to build an overlay, and find—function that returns the node
from the overlay by hash value. The pseudocode for service description storing algorithm is shown in Figure 3.
First, we evaluate hash function against each attribute name in the service description. Having found the node,

A. Zhygmanovskyi, N. Yoshida

22

Figure 2. Merged (a, v)-graph.

Figure 3. Service description storing algorithm.

which is responsible for storing that value, we send the graph which is comprised of the attribute, its values and
service description vertex to responsible node. When the graph is received, we join it to merged (),a v -graph (if
it is already present at the node).

It is not essential to the architecture of the system how exactly merged (),a v -graphs are stored at the node,
but storage mechanism should be chosen in a way that makes possible answering range and multidimensional
queries. Therefore, the most appropriate choices for storage mechanism are relational databases or document-
oriented databases, although both of them have their own advantages and drawbacks.

2.4. Service Discovery
Among one of the most significant drawbacks of DHT-based P2P overlays is that the principles of content
storage and its association with a key usually allows processing only exact match queries when searching. There
are some elaborate approaches addressing this issue, but they usually offer only wildcard matching level queries.

A. Zhygmanovskyi, N. Yoshida

23

The approach we propose in this paper is based on the way service descriptions are stored in the overlay network,
that is, using merged (),a v -graph.

Firstly, we assume that each search query in the system is submitted in the form, shown in Figure 4 or can be
represented as such. Here we let ()i iop A be operators , , contains,>,<= ≠ etc., defined on the sequence of
attributes iA as parameters, iA —sequence of attributes []1 2, , , na a a

 (where n is arity of the operator iop)
and iLOP denote logic operators OR or AND . This format itself is very generic, so we argue that it re-
presents most of meaningful search queries submitted in P2P networks. You can see a concrete example of the
query in Figure 5. Here, we search for a game server, running on the machine with at least two processor cores,
having two possible operating systems installed and located somewhere in South America.

The algorithm of search query routing and execution is formalized below. Note that the algorithm actually
does not require any extensions for the underlying DHT algorithm. The query issued by the node in the form
shown in Figure 3 can be represented as a graph (),QU Q LOP E= 

, where (){ }, | 1, ,i i iQ q a op i n= = = 

—the set of query terms, { }| 1, ,iLOP lop i n= = 
—the set of logical operators, and

(){ } (){ }{ }1
1

, ,
n

i i i i
i

E q lop lop q +
=

= 



. In addition to node functions h and find introduced in the Section 3.3, we

assume that each node have function evaluate, which returns the result of evaluating a query term again inter-
nal database of the node. Similarly, we define graph (),RES R LOP E= 

, where { }| 1, ,iR r i m= = 
—ini-

tially empty set of results obtained from nodes after evaluating a query term, { }| 1, ,iLOP lop i n= = 
—the set of

logical operators, and (){ } (){ }{ }1
1

, ,
n

i i i i
i

E r lop lop r +
=

= 



. Also we define the set of pairs

() (){ }, , ,C OR AND=   which contains the one-to-one correspondence between logical operators and set-
theoretical operations. Pseudocode for the algorithm is shown in Figure 6. To put it simply, the process of
search query routing and executing basically consists of the following steps:

1) Query is split by logical operators, forming a set of attribute expressions.
2) Attribute expressions are grouped according to the hash function value of each attribute present in the

group, thus forming attribute groups.
3) Each attribute group is sent to the node, responsible for it in the P2P overlay.
4) Each attribute expression in the attribute group is evaluated against the data in merged (),a v -graph stored

Figure 4. Generic search query format.

Figure 5. Example of search query.

Figure 6. Search query routing and execution algorithm.

A. Zhygmanovskyi, N. Yoshida

24

at responsible node and the result (i.e. list of service descriptions) is propagated back to the originating node.
5) Originating node merges all query results from responsible nodes according to the logical operators and

forms final result.

3. Application to Cloud Computing
3.1. Overview
The process of deploying application services on clouds is known as cloud provisioning and consists of three
primary steps [15]:

1) Virtual machine provisioning: instantiation of one or more VMs that match the specific hardware cha-
racteristics and software requirements of the services to be hosted.

2) Resource provisioning: mapping and scheduling of VMs onto distributed physical cloud servers within a
cloud.

3) Service provisioning: deployment of specialized application services within VMs and mapping of end-
user’s requests to these services.

In this section we outline a service provisioning approach which utilizes service sharing and discovery
mechanism described in Section 2. Although all main players in the cloud computing market provide solutions
that control scalability and reliability of cloud instances, they all rely on traditional centralized model of
operation, thus becoming subject to usual problems of this approach, such as network congestion, performance
bottlenecks and existence of the single point of failure. At the same time, in order to deliver expected Quality of
Service to customers, minimize maintenance costs and ensure that given cloud solution is robust and reliable,
large-scale cloud systems need scalable and reliable service provisioning architecture, which can be attained
only if it is built in a decentralized manner, eliminating all disadvantages of centralized approach.

Since (),a v -graph mechanism was originally designed as a generic approach for storing arbitrary services in
a non-specialized peer-to-peer overlay, adapting it to cloud-based solution presents several challenges, most
important of them are:

• Proper technique for balanced storing attribute-value pairs that are naturally skewed in the cloud scenario,
since most nodes expose a set of standard attributes, such as operating system, available memory, processor
architecture etc.

• Algorithm for load balancing, i.e. an act of uniformly distributing workload across one or more service
instances in order to achieve performance targets such as maximize resource utilization, maximize throughput,
minimize response time, minimize cost and maximize revenue [15].

• Scalable and robust queuing approach (such as publish/subscribe) for requests that cannot be satisfied in the
current moment, either due to overload of existing service providers or due to altogether shortage of service
provider nodes at the moment.

• Dealing with dynamic attributes of the cloud service owners such as current load and network congestion
level.

3.2. Load Balancing of Service Registrations and Service Queries
To address the problem of storing skewed attribute-value pairs, we consider using an approach called Load
Balancing Matrix (LBM) originally proposed in [13] with slight alterations taking into account specifics of
storing service descriptions in (),a v -graph. Here we give only an overview of the approach; for the complete
description, analysis and evaluation of the LBM please refer to original paper [13].

In essence, authors propose using a set of nodes, rather than one, for storing popular attributes. Those nodes
are organized into a logical matrix called Load Balancing Matrix. Each node in the matrix has a column and row
index (),p r , and responsible node ID is determined by applying the overlay hash function to the triple
(), ,ia p r (while the approach in the original paper uses a 4-tuple that consists of the attribute with cor-
responding value, column index and row index). Each column in the matrix stores one subset, or partition, of the
(),a v -pairs that correspond to the attribute ia . Nodes in the same column are replicas of each other, since they
host the same subset of (),a v -pairs.

The matrix dynamically expands and shrinks along its two dimensions depending on the load it receives. Due
to this, matrices may end up in different shapes. For instance, a matrix may have only one row, when only the

A. Zhygmanovskyi, N. Yoshida

25

registration load is high, or one column, when only the query load is high. Each matrix uses a node, called head
node, to store its current size and to coordinate the expansion and shrinking of the matrix. A head node is only
responsible for its own matrix, and different matrices will likely have different head nodes, which are distributed
across the network. Therefore, head nodes will not become the bottleneck of the system. However, when a head
node leaves or crashes, vital information about its matrix, such as the size will be lost. To prevent this from
happening, live nodes in the matrix send infrequent messages with their indices to the head node. According to
routing properties of DHT overlay, a new node whose ID is close to the old head node’s ID will receive these
messages and become the new head node.

Though the approach described above will positively need some enhancements to be efficiently used in the
cloud environment, the experiments in the original paper have shown its soundness and effectiveness for dealing
with storing multidimensional data with skewed attributes distribution.

Approach to the load balancing of the services search in the system is as an extension of the load balancing
matrix method. Indeed, for the popular services there will be a LBM with large number of rows, containing
replicas of the same service, and for the frequent (),a v -pairs there will be a LBM with large number of
columns (partitions). In addition, there are some optimizations that can be done to improve the efficiency of the
search further. First, we can leave out services that are busy or unavailable at the moment. This step may be
absent (or performed with certain delay) in case query processing node waits for the matching services to
become available (this approach is described in the Section 3.3). Next, the node must decide which of the
remaining services is returned to the requestor based on the principle that it should not lead to over-provisioning
of the concerned service. Also, there might be additional requirements, some of them are posed by the requestor,
that need to be taken into the account, such as minimizing network congestion, minimizing client financial
overhead, restricting geographical location of the instances etc.

3.3. Queuing
If we depict the flow from a client submitting a request to the completion (either successful or not) of this
request in the form of a simplified flowchart (see Figure 7), it follows that there are several activities that can be
performed by the node which originated the search (by the client’s request) after the query is executed:

1) In case when the service(s) exist and are available, return success message to the client along with the
necessary data for the actual service usage.

2) In case where there are no available services for the given job at the moment (but they are available in
principle), there is an option to wait for some service to become able to accept requests again and then proceed

Figure 7. Service discovery in the cloud: client request flow.

A. Zhygmanovskyi, N. Yoshida

26

to the action described in 1). This scenario allows avoiding unnecessary instance creation and its subsequent
shutting down, but it clearly must be used only when delaying the incoming job request will not lead to the
system instability, in other words the wait must not create the bottleneck.

3) If there is no such service that corresponds to the submitted query, the node might ask cloud infrastructure
to create new instance and proceed to action 1). This approach is usually used in case when all existing instances
are busy and is the most common scenario in the cloud-based environments.

4) As an alternative solution in case when no services match submitted query, the node can try searching with
less strict criteria (for instance, replacing point queries with range queries or searching for the service that satisfy
only part of the query terms). Note that the attribute value domain in the query must adhere to certain
requirements in order that obtained range queries be still meaningful and not change the meaning of the query
too much. On the other hand, omitting some components of the query requires certain kind of weight distri-
bution assigned to the each attribute of the query to avoid neglecting really important query terms.

3.4. Other Issues
Among other issues that arise when applying service sharing and discovery approach to the cloud environments,
there is yet another challenging one: dealing with dynamic attributes, such as current load, available disk space
or network congestion level, which are naturally present in every dynamic environment. Although finding an
efficient solution to this problem makes up a part of our future research, the most promising approaches are the
following:

• Use execution history to create a probability distribution that would characterize predicted value of the
parameter of interest

• Send messages to the neighbor nodes in a periodic manner in order to establish current values of desired
parameters and propagate updates values in the overlay

Furthermore, considerable part of restrictions based on such dynamic attributes can be applied later, on the
load balancing stage, as briefly described in Section 3.3.

4. Evaluation and Experimental Results
In this section we present experiment environment and methodology used to evaluate an approach, presented

in Section 2. At the moment, the implemented solution is still not fully adapted to run on the cloud instances, but
designed to show soundness of the (),a v -graph based approach to adequately address the problem of parti-
tioning of multidimensional service description space over the set of nodes and to make their services
discoverable.

4.1. Simulator Implementation
The proof-of-concept implementation of the service description and sharing framework described in the Section
2 is done in C# programming language using Microsoft.NET framework (http://www.microsoft.com/net) and
consists of the following main parts:

1) DHT overlay: a prerequisite for the efficient service sharing and discovery approach implementation. In
our case we chose Chord DHT [12] since it meets necessary criteria, such as scalability of key location algo-
rithm, efficient node joins and departure processing, formally proven statements concerning location of a key
and overlay stabilization, and besides, is a well-known DHT overlay widely used both in academia and in-
dustry. The consistent hash function used in the overlay must generate values uniformly distributed in the name
space and be not input-sensitive. In current implementation we decided to use SHA-1 as the system-wide hash
function.

2) Service storage: an efficient data storage which supports all common types of queries, allows storing
typed data and can be easily deployed on each node in the overlay. In current implementation we decided to use
document-oriented database MongoDB (http://www.mongodb.org/), which satisfies all the requirements stated
above and is more flexible than many traditional relational databases, since it is a lightweight solution which has
little deployment overhead, do not require predefined schema and do not include unnecessary at this point
functionality, such as transactional processing.

3) Overlay and statistics visualizing: both are implemented as a web application, using HTML5 and Java-

http://www.microsoft.com/net
http://www.mongodb.org/

A. Zhygmanovskyi, N. Yoshida

27

Script/jQuery (http://jquery.com/). Some visualizations are done using Flot (http://www.flotcharts.org/) Java-
Script library.

Network for the experiment is implemented using .NET based WCF (Windows Communication Foundation)
framework (http://msdn.microsoft.com/en-us/library/dd456779(v=vs.110).aspx), which allows considerable flexi-
bility as to specifying various connection types, network delays, message serialization formats etc.

During the implementation of the storage layer it became clear that at least three database tables per node are
needed for the full coverage of basic data manipulation functions, that is 1) putting service to the storage, 2)
updating service stored at the overlay, 3) removing service from the storage and 4) getting service from the
storage based on the query. Tables and their structure are described in detail in Table 1 and Table 2.

4.2. Experiment Setup
In all following experiments we consider a network that consists of 1000CN = nodes. There exist 100AN =
possible attributes in the system and 100VN = possible values, which result in 10000AVN = possible (),a v
-pairs. Dataset for service registrations is described as a 7-tuple

[] () [] ()(), , , , , ,R S A VDSet N N N E a Var a E v Var v= , where SN —overall number of services in the dataset,
[]E a —mathematical expectation of number of attributes per service description, ()Var a —its variance, []E v

—mathematical expectation of number of values that attribute can have, and ()Var v —its variance. Parameters
[]E v and ()Var v allow us to introduce multiple-valued attributes into service descriptions. We generate two

kinds of datasets: uniform and skewed. The former represents an ideal situation where attributes for the given
service are chosen randomly using uniform probability distribution. This dataset is primarily used for com-
parison with more realistic skewed scenario. The latter is generated with a frequency of attributes of a service
defined by discrete Zipf probability distribution with a fixed scale 5s = .

For service discovery evaluation we generated two query datasets, which are described as 5-tuple
[] ()(), , , ,Q Q A VDSet N N N E a Var a= , where QN —overall number of queries in the dataset, []E a —mathe-

matical expectation of number of attributes used in a query and ()Var a —its variance. Again, we generate two
kinds of query datasets: uniform and skewed, which are constructed similar to the service registration ones.

Both service registration and query arrival times are modeled using Poisson distribution with expected value
(frequency) λ . Each node has three threshold parameters, namely rR —maximum registration rate, qR —
maximum query rate and rT —maximum (),a v -pair registrations that node can hold in its internal database.
Table 3 shows all parameters and notations used in the simulation.

4.3. Simulation Results
First, we examine success rate of registrations as the number of registrations increase and perform experiments
both for uniform and skewed service datasets. Service registration arrival time is modeled with Poisson dis-
tribution with frequency 50 reg sλ = . Maximum (),a v -pair registrations per node is chosen to be 100rT =
and threshold 30 reg srR = .

Table 1. Database tables used for storing services at storage node (description).

Local service data Remote service data Service attributes data

Stores comprehensive data
about given node
services locally

Stores attribute data for services in the
overlay network; all attributes the node
 is responsible of are stored

Stores information about responsible nodes for attributes of
given service; service, responsible for storing this
information, is determined by hashing service name itself

Table 2. Database tables used for storing services at storage node (structure).

Local service data Remote service data Service attributes data

• Service name
• All service attribute-value pairs with
responsible node for each attribute
• Attribute value type (optional)

• Attribute name
• Attribute value
• Service owner node
• Service name

• Service name
• All service attribute names with responsible
nodes info

http://jquery.com/
http://www.flotcharts.org/
http://msdn.microsoft.com/en-us/library/dd456779(v=vs.110).aspx

A. Zhygmanovskyi, N. Yoshida

28

Table 3. Parameters and notations used in the simulation.

Symbol Meaning

Network
NC
NA
NV

NAV

Number of nodes in the overlay network
Number of possible attributes in the system

Number of possible values for each attribute in the system
Number of possible (a, v)-pairs

Service registrations dataset
DSetR

NS
E[a]

V ar(a)
E[v]

V ar(v)

Dataset
Overall number of services in the dataset

Mathematical expectation of number of attributes per service description
Variance of E[a]

Mathematical expectation of number of values that attribute can have
Variance of E[v]

Service queries dataset
DSetQ

NQ
E[a]

V ar(a)

Dataset
Overall number of queries in the dataset

Mathematical expectation of number of attributes used in a query variance of E[a]

Thresholds
Rr
Rq
Tr

Maximum registration rate
Maximum query rate

Maximum (a, v)-pair registrations that node can hold in its internal database

Other parameters
λ

Expected value of Poisson distribution that is used to model service
registration and query arrival times

Figure 8 shows how registration success rate changes depending on how many services were fed to the

system. According to Section 4.2, there can be two possible factors that cause failure in service registration—
exceeding the maximum registration rate rR , which is influenced by parameter λ of the Poisson distribution
used to model service registration arrival times (and the overall amount of service registrations, since they are
executed in parallel). Exceeding the value of rT is the other possible cause of failure.

We observe that for the uniform dataset registration success rate curve gradually drops as the services amount
SN increases. Moreover, for the large values of SN the drop in the curve become more prominent, since more

and more nodes reach the threshold rT and are not able to process new (),a v -pair registrations, resulting in
service being not registered in the system at all. However, in the case of uniform dataset, the main factor that
causes service registration failures is node saturation with regard to threshold rR , therefore it is possible to
lessen its impact by regulating the arrival rate or increasing overlay node processing capabilities and network
bandwidth.

When we compare the ideal scenario above with more realistic skewed dataset, the drop in the registration
success rate becomes more significant, since relatively small amount of nodes, which hold most popular
attributes, become saturated very quickly, meaning that rT becomes major bottleneck in the system. On the
other hand, role of rR becomes much less significant, as it mostly affects nodes with most popular attributes
when they are already close to saturation with regard to rT .

Next, we study how the system behaves as the query load increases. For this, we measure the rate of queries
failed because of reaching maximum possible query rate at the overlay node 100 reg sqR = . Again, we perform
the measurements for the uniform query dataset, where all attributes can appear with the same probability, and
for skewed one, where attributes are assigned weights according to the Zipf distribution. The amount of services
registered in the system 5000SN = is fixed and queries arrival time is modeled with Poisson distribution with
frequency 10 reg sλ = .

As can be seen from Figure 9, even for the unrealistic uniform query dataset case, query success rate is 100%
only for the small amount of queries and it steadily drops down to the 50% as the query load increases. When

A. Zhygmanovskyi, N. Yoshida

29

Figure 8. Service registration success rate comparison.

Figure 9. Query success rate comparison.

we compare it with the skewed scenario, the drop becomes more evident, especially for relatively small query
amount, drawing closer to the uniform scenario afterwards. This can be explained by the fact, that almost every
query in the real-world scenario will contain one or more popular attribute, and the query execution will fail all
the same, even when other parts of it (that contain non-frequent attributes) succeed. This can be somewhat
mitigated with the technique proposed in Section 3.3 (item 4), but actual cases when the popular query can be
omitted are relatively few.

These experiments show that the system needs proper load balancing mechanism to be scaled in an efficient
way. According to experiments shown in [13], LBM (Load Balancing Matrix) approach introduced in Section
3.2 has desired features in this regard, therefore we consider its usage as a load-balancing mechanism for our
approach to be appropriate as a part of our future research.

4.4. Example Domain
To further demonstrate the system operation, we chose a domain of dedicated gaming solution based on Google
Cloud Platform (https://cloud.google.com/developers/articles/dedicated-server-gaming-solution), since in our
opinion it represents one of the typical scenarios found in distributed systems, requiring elaborate strategies for
load-balancing and efficient service provisioning.

First, according to the overview, key components of the proposed solution are the following:
1) Game server selection;
2) Player’s game client connecting to dedicated game server;
3) In-game requests and Google Compute Engine instance health checks;
4) Autoscaling game servers;
5) Storing logs for analysis and MapReduce;

https://cloud.google.com/developers/articles/dedicated-server-gaming-solution

A. Zhygmanovskyi, N. Yoshida

30

6) Analysis of massive user and game datasets using Google BigQuery.
In our example, we decided to outline four main activities that occur in the gaming scenario and are worth

considering from the cloud computing point of view:
1) Search for the best matching game server
2) In-game requests which utilize separate game components, specifically micropayments for game items or

services
3) Dedicated player versus player or team versus team requests
4) Requests for game or user data storage, extraction and analysis
Consequently, the most straightforward scenario we can elaborate in the given setting would require four

types of services, each corresponding to the one of the activities described above. Each of the four services is
characterized by the set of the attributes, including ones specific to that service type. Also, on the current stage
of the experimentation, we included some representative dynamic attributes (such as current hard disk space or
network latency) as a part of static service description. During later stages of research, they will be properly
simulated as truly dynamic ones according to the approaches given in Section 3.4. The possible example of
service descriptions in given domain is shown in Figure 10.

Figure 10. Node services data example.

A. Zhygmanovskyi, N. Yoshida

31

5. Conclusions and Future Work
In this paper, we presented a preliminary study on the problem of building scalable and robust service pro-
visioning platform in the cloud environment. To this end, we proposed an application of P2P technology to solve
the problem of efficient services sharing and discovering in a decentralized way. The main advantages of pro-
posed approach are 1) utilizing of well-known DHT, which guarantees the correctness and soundness of
underlying P2P overlay, 2) partitioning of multidimensional service description space over the set of nodes that
naturally allows execution of range queries, and 3) modular framework architecture which allows using wide
range of overlays and service description storage mechanisms. Also, we proposed organizing services that run
on cloud node instances into DHT-based overlay, and utilize this approach to achieve fully decentralized sca-
lable and self-managing service discovery and load-balancing. We argue that introducing this approach to the
traditional cloud systems architecture will lead to lowering management costs and maintaining higher levels of
availability to support system SLA even in cases of severe failure.

As a part of future work, we intend to enhance existing implementation of the system, so that it could be
deployed on cloud instances and managed through well defined API or/and graphic interface. The issues that
have yet to be addressed in future research are stated in detail in Section 3. Another important challenge in
building reliable peer-to-peer overlay over the cloud infrastructure is to explore more efficient ways to ensure
optimal load-balancing and scheduling. To address these issues we will investigate existing strategies proposed
by leading cloud providers and adapt them to our approach.

References
[1] Mell, P. and Grance, T. (2011) The NIST Definition of Cloud Computing. NIST Special Publication.
[2] Singh, M.P. and Hunhs, M.N. (2005) Service-Oriented Computing: Semantics, Processes, Agents. Wiley, Chichester.
[3] Schlosser, M., Sintek, M., Decker, S. and Nejdl, W. (2002) HyperCuP—Hypercubes, Ontologies and Efficient Search

on P2P Networks. Agents and Peer-to-Peer Computing, 2530, 112-124. http://dx.doi.org/10.1007/3-540-45074-2_11
[4] Ramljak, D. and Matijašević, M. (2005) SWSD: A P2P-Based System for Service Discovery from a Mobile Terminal.

Knowledge-Based Intelligent Information and Engineering Systems, 3683, 655-661.
[5] Paolucci, M., Sycara, K., Nishimura, T. and Srinivasan, N. (2003) Using DAML-S for P2P Discovery. Proceedings of

International Conference on Web Services (ICWS03), Las Vegas, 23-26 June 2003.
[6] Schmidt, C. and Parashar, M. (2003) A Peer-to-Peer Approach to Web Service Discovery. World Wide Web, 7, 211-

229. http://dx.doi.org/10.1023/B:WWWJ.0000017210.55153.3d
[7] Lee, G., Peng, S.L., Chen, Y.Ch. and Huang, J.S. (2012) An Efficient Search Mechanism for Supporting Partial File-

name Queries in Structured Peer-to-Peer Overlay. Peer-to-Peer Networking and Applications, 5, 340-349.
[8] Tanin, E., Harwood, A. and Samet, H. (2007) Using a Distributed Quadtree Index in Peer-to-Peer Networks. The

VLDB Journal, 16, 165-178.
[9] Li, Y., Zou, F., Wu, Zh. and Ma, F. (2004) PWSD: A Scalable Web Service Discovery Architecture Based on Peer-

to-Peer Overlay Network. Advanced Web Technologies and Applications, 3007, 291-300.
[10] Adjie-Winoto, W., Schwartz, E., Balakrishnan, H. and Lilley, J. (1999) The Design and Implementation of an Inten-

tional Naming System. Proceedings of the 17th ACM Symposium on Operating Systems Principles, Kiawah Island
Resort, 12-15 December 1999, 186-201.

[11] Zhygmanovskyi, A. and Yoshida, N. (2013) Peer-to-Peer Network for Flexible Service Sharing and Discovery. Mul-
tiagent System Technologies, 8076, 152-165.

[12] Stoica, I., Morris, R., Karger, D., Kaashoek, M.F. and Balakrishnan, H. (2001) Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications. Proceedings of ACM SIGCOMM’01, San Diego, 27-31 August 2001, 149-160.

[13] Gao, J. and Steenkiste, P. (2006) Design and Evaluation of a Distributed Scalable Content Discovery System. IEEE
Journal on Selected Areas in Communications, 22, 54-66.

[14] Samet, H. (2006) Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann Publishers, USA.
[15] Ranjan, R. and Zhao, L. (2013) Peer-to-Peer Service Provisioning in Cloud Computing Environments. The Journal of

Supercomputing, 65, 154-184.

http://dx.doi.org/10.1007/3-540-45074-2_11
http://dx.doi.org/10.1023/B:WWWJ.0000017210.55153.3d

http://www.scirp.org/
http://www.scirp.org/
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/CE/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ENG/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/FNS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/Health/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCT/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JEP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JMP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ME/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/NS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/PSYCH/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
mailto:submit@scirp.org

	Cloud Service Provisioning Based on Peer-to-Peer Network for Flexible Service Sharing and Discovery
	Abstract
	Keywords
	1. Introduction
	2. Service Sharing and Discovery Network
	2.1. Overview
	2.2. Service Description
	2.3. Service Description Storing
	2.4. Service Discovery

	3. Application to Cloud Computing
	3.1. Overview
	3.2. Load Balancing of Service Registrations and Service Queries
	3.3. Queuing
	3.4. Other Issues

	4. Evaluation and Experimental Results
	4.1. Simulator Implementation
	4.2. Experiment Setup
	4.3. Simulation Results
	4.4. Example Domain

	5. Conclusions and Future Work
	References

