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ABSTRACT 
Wearable remote health monitoring systems have gained significant prominence in the re-
cent years due to their growth in technological advances. One form of the Wearable Physi-
ological Monitoring System (WPMS) is the Wearable Body Area Networks (WBAN) used to 
monitor the health status of the wearer for long durations. The paper discusses a prototype 
WBAN based wearable physiological monitoring system to monitor physiological parame-
ters such as Electrocardiogram (ECG) and Electroencephalogram (EEG) acquired using a 
textile electrode, Photoplethysmogram (PPG), Galvanic Skin Response (GSR), Blood Pres-
sure derived from analysis of Pulse Transmit Time (PTT) and body temperature. The 
WBAN consists of three sensor nodes that are placed strategically to acquire the physiolog-
ical signals and the sensor nodes communicate to a chest/wrist worn sink node also known 
as wearable data acquisition hardware. The sink node receives physiological data from the 
sensor nodes and is transmitted to a remote monitoring station. The remote monitoring 
station receives the raw data and it is processed to remove noises, such as power line inter-
ference, baseline wander and tremor in the signals and the information is extracted and 
displayed. The WBANs are designed using the ZigBee wireless communication modules to 
transmit and receive the data. At the remote monitoring station the physiological parame-
ters such as heart rate, pulse rate, systolic, diastolic blood pressure, GSR and body temper-
ature are continuously monitored from the wearer. The data acquired from the wearable 
monitoring system is statically validated using a qualified medical device on 34 subjects. 

 

1. INTRODUCTION 
This Ischemic heart disease and stroke are considered as the major cause of death in the global popu-

Open Access

http://www.scirp.org/journal/jbise
https://doi.org/10.4236/jbise.2019.122011
http://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0002-4217-1209


 

 

https://doi.org/10.4236/jbise.2019.122011 152 J. Biomedical Science and Engineering 
 

lation. The reasons for occurrence of these diseases are stress, change in life style, bad food habits, smok-
ing, alcohol consumption, lack of exercise, etc. Proper management of health is vital for maintaining a 
healthy lifestyle, which requires visit to hospital and a regular health checkup, which was lacking. There is 
a need to monitor the health status of the individuals non-invasively and at early stage of the disease. 
Non-invasive devices are commonly available in the market for measurement of various physiological pa-
rameters for use in hospitals, clinics and at home. But there is a need for monitoring the health status of 
the individuals while they perform their routine activities, which is possible by use of wearable devices 
known as Wearable Physiological Monitoring System (WPMS). 

WPMS integrates smart sensors into wearable shirt or a smart wearable device such as a watch to 
continuously acquire and monitor the health status of the wearer. There has been a tremendous growth in 
the WPMS in the recent past due to the advancements in smart sensors, microelectronics, digital signal 
processing techniques and miniaturized wireless communication technologies. The wearable technologies 
are beneficial in healthcare for early diagnosis and detection of problems, less invasive treatment options, 
reduction in hospital stay and reduction in rehabilitation time. 

The conventional medical devices that are used for health monitoring are not suitable for wearable 
monitoring due to the following reasons: [1, 2] 
• The existing systems make use of gel electrodes to acquire bio potential signals from the body surface. 

But these gel electrodes cannot be used for long duration because the gel present in these electrodes 
gets dried up over a period of time. This increases the skin contact resistance and degrades the quality 
of the bio potential signals acquired. 

• The physiological signals acquired from the gel electrodes are prone to noises such as baseline wander 
and motion artifacts. These noises arise due to the respiration and physical movement of the subject. 
Hence the ionic exchange from the skin surface to the electrode gets disturbed. 

• Conventional systems are bulky not portable and cannot be used for long duration monitoring. 
• The existing systems use wired data acquisition hardware for acquiring bio potential signals. As such 

the sensors from the body surface are routed with bunch of wires and these wires cause discomfort to 
the wearer. 

• Conventional systems are meant for short duration monitoring and measurements. 
• The conventional systems require trained personnel to operate the equipment. 
• The conventional systems are too costly and cannot be exploited for wearable health monitoring sys-

tems. 
Due to the above drawbacks there is a need to develop customized wearable physiological monitoring 

systems based on the intended use or applications. 
There has been tremendous growth in the materials, sensors, microelectronics, wireless communica-

tions, high-speed processor & signal processing technologies. The technological advancements have seen 
an impact in the health care industry. One such development is the wearable physiological monitoring 
system. In these systems the sensors and data acquisition systems are integrated into the fabric of the 
wearer that enables monitoring of the physiological signals in continuous time without need for the inter-
vention of the wearer. The wearable monitoring systems are available in various form factors and can be 
integrated in shirt, wrist watch, anklets, shoes, socks, chest worn belt, hats, etc. The wearable systems for 
physiological monitoring are being exploited in a number of health care applications, as follows. 
• Monitoring the health conditions of elderly persons at home, individuals with chronic health condi-

tions for timely intervention by doctors. 
• Fitness monitoring of individuals using wearable devices to check their day-to-day health status. 
• Detection of fall, onset of epileptic seizers, heart attacks, strokes in persons. In these emergency con-

ditions, an alarm is sent to the family members and healthcare providers. 
• To know the efficiency and progress of treatments given and monitor physiological changes from 

chronic conditions. 
• Health monitoring of subjects during their routine activity for early detection of symptoms some-

times the health status checkup can be extended for long durations to study their trends, like BP 
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monitoring, Heart rate monitoring etc. 
• The wearable systems, can be used to monitor the health conditions of some important personnel like 

soldiers in the battlefield fighting the enemy, fire fighters, miners, deep sea divers and astronauts in 
space. These persons always risk their lives to protect and complete the assigned task. Hence moni-
toring their health conditions becomes vital. 
The wearable systems for monitoring the physiological signals developed so far targets a number of 

applications such as home healthcare monitoring [3], physiological status monitoring of soldier’s health 
conditions in a battle field [4, 5], monitoring the health status of astronauts in space [6], coal mine workers 
[7-9], fire fighters fighting fire [10-12], Sudden Infant Death Syndrome (SIDS) [13]. A wearable belt to 
monitor body temperature, heart and breathing rates and body position of babies has connectivity using 
ZigBee to monitor SIDS in infants [14]. A wearable system named Health Gear to monitor the users blood 
oxygen level and pulse while sleeping and algorithms for automatically detecting sleep apnea events and 
having connectivity to a mobile phone using Bluetooth and the system performance evaluated on 20 vo-
lunteers [15]. Sannino et al. have proposed a wearable system that monitors ECG using a mobile phone 
connectivity and by studying the Heart Rate Variability (HRV) automatically detect sleep apnea [16]. 

A wearable health monitoring system named WEALTHY integrates sensors, electrodes and the con-
nectivity in fabric form and use advanced signal processing techniques to process. The data is transmitted 
wireless to a remote monitoring station [17]. A wearable physiological monitoring system named ‘Smart 
Vest’ is developed to monitor the ECG acquired from dry electrodes made of Silver filled conducting Sili-
con rubber electrodes, blood pressure derived from Pulse Transit Time (PTT), body temperature and Gal-
vanic Skin Response (GSR) remotely monitored using wireless communication along with the GPS loca-
tion of the wearer [18]. An eyeglass based wearable device to monitor Photoplethysmogram (PPG) and 
ECG is developed to monitor the heart rate and blood pressure derived from PTT [19]. A wrist worn 
wearable device named “AMON” to monitor and alert high risk cardiac/respiratory patients using cellular 
communication is developed and validated on 33 subjects [20]. A low cost ZigBee based smart wearable 
physiological monitoring system to monitor temperature, heart rate and fall detection is developed that 
can be adapted to monitor athletes, infants and patients recovering from illness at home [21]. A wearable 
multi-parameter physiological monitoring system termed as LifeGaurd for space and terrestrial applica-
tions monitors ECG, respiration rate, heart rate, oxygen saturation in blood, body temperature, blood 
pressure and three axes acceleration with wireless transmission capability [22]. Vivometrics developed a 
wearable physiological monitoring known as ‘Life Shirt’ to monitor various cardio respiratory parameters 
using conventional sensors [23]. A wearable health monitoring system code named BIOTEX was devel-
oped using textile sensors to measure physiological parameters and the chemical composition of the body 
fluids such as sodium, conductivity, pH and additionally sweat rate, ECG, respiration and blood oxygena-
tion were also developed [24]. 

A prototype WBAN using ZigBee communication was developed to monitor physiological, kinetic 
and environmental sensors. The system provides real-time feedback to the user and generates warnings 
based on the user’s state, level of activity and environmental conditions and the data is transferred to 
medical servers through the internet for storage and archival [25]. A WBAN to monitor body temperature, 
heart beat rate and oxygen saturation in blood is developed through ZigBee communication and stored in 
a centralized server [26]. A network of medical sensors to collect physiological data from patients and 
transmit it to a PDA using ZigBee to medical server using 3G communications is developed [27]. A 
WBAN to monitor heart rate and body temperature of multiple patients at home is developed to provide 
cheaper, easier and quick response if patient has any abnormality [28]. 

The paper discusses a prototype wearable physiological monitoring system based on the concept of 
Wearable Body Area Network (WBAN), consisting of sensor node and a sink node to monitor physiologi-
cal parameters such as ECG, body temperature, EEG, PPG, GSR, and heart/pulse rate. Signal processing 
algorithms are developed to process the raw signals to remove unwanted noises from the physiological 
signals such as power line interference, baseline wander, motion artifact and then parameters were ex-
tracted for interpretation. The validation of the data is also presented. 
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2. MATERIALS AND METHODS 
2.1. Wearable Body Area Network (WBAN) Architecture 

The proposed wireless wearable physiological monitoring system consists of three sensors nodes 
placed strategically at specific locations on the human body to acquire the physiological parameters. Fig-
ure 1 illustrates the schematic of the WBAN consisting of three sensor nodes. 

The sensor node 1 is to acquire ECG in Lead-I configuration from the upper thorax region and the 
body temperature of the subject. The sensor node 2 is to acquire one channel of bipolar EEG signal from 
the frontal pole region. The sensor node 3 is to acquire PPG and GSR signals, the PPG signals are picked 
from the index finger and the GSR is picked from the medial positions of the index finger and middle fin-
ger. The sensor nodes acquire the physiological signals and are transmitted to the sink node or the weara-
ble data acquisition hardware using ZigBee wireless communication. At the sink node the data is received 
and transmitted wireless to the remote monitoring station for further analysis and interpretation. 

2.2. Physiological Parameters & Sensors 

The important physiological signals monitored are Electrocardiogram (ECG), Electroencephalogram 
(EEG), body temperature, PPG, GSR, Blood Pressure and Heart Rate. Table 1 illustrates the specifications 
of the above parameters monitored and the sensors used. 

The ECG and EEG signals are acquired using commercially available conductive textile material. Two 
types of electrodes were fabricated using MedTexTM 130 and MedTexTM 180. The textile material Med-
Tex130TM is plated with high ionic Silver on Nylon elastic knit material on the both the surfaces, whereas  
 

 
Figure 1. Schematic of Wireless Body Area Network (WBAN) with sensor nodes. 
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MedTexTM 180 is coated with Silver on one surface only. The specifications of the textile material used for 
fabricating the ECG electrode are given in Table 2. 

The ECG and EEG electrodes were fabricated with the conductive textiles of length 30 mm and width 
25 mm and the connector was made at one edge of the electrode using a stainless steel connector. The 
electrodes were fabricated for the acquisition of ECG Lead-I and EEG signal from the frontal pole region. 
The GSR electrodes were also fabricated with conductive textile material of length 15 mm and width 10 
mm and the connectors were made using stainless steel. Figure 2(a) illustrates the schematic of the sensor 
node integrated into a chest belt with ECG electrodes, temperature sensor and the wearable data acquisi-
tion hardware and Figure 2(b) illustrates the schematic of the sensor node, integrated with EEG electrodes 
to acquire from the frontal pole region. 
 
Table 1. Physiological parameters monitored and their specifications. 

SL. No Parameter 
Specifications 

Type 1 MedTexTM 130 Type 2 MedTexTM 180 

1 Surface Resistance <5 Ω <5 Ω 

2. Plating 99.9% pure Silver 99.0% pure Silver 

3 Abrasion Resistance 100,000 Cycles 100,000 Cycles 

4. Total Thickness 0.45 mm 0.554 mm 

5. Weight 140 g/m2 224 g/m2 

6 Material 78% Nylon + 18% Elastomer 78% Nylon + 22% Elastomer 
 
Table 2. Electrode Specifications. 

SL. No Physiological Parameter 
Physiological Signal Specifications & 

Sensor 
Sensor 

1 
Electrocardiogram 

(ECG) 
Frequency: 0.5 - 100 Hz 
Amplitude 0.25 - 1 mV 

Textile Electrode 
(30 mm × 25 mm) 

2. Heart Rate 
40 - 220 Beats per minute Measured 

from ECG Signal 
Measured from ECG Signal 

3. 
Electroencephalogram 

(EEG) 
Frequency 0.5 - 35 Hz 

Amplitude: 10 μV to 100 μV 
Textile Electrode 

(15 mm × 10 mm) 

4. Body Temperature 0˚C - 40˚C Resolution ± 0.01˚C Thermistor YSI 409B 

5. 
Blood Pressure (Systolic 

and Diastolic) 

Derived from analysis of Pulse 
Transmit Time (PTT) Systolic: 50 - 300 

mmHg; diastolic: 40 - 140 mmHg 

PTT measured from PPG 
and ECG signals 

6. 
Galvanic Skin Response 

(GSR) 
Skin Resistance 0 to 100 KΩ 

Textile Electrode 
(10 mm × 15 mm) 

7. 
Photoplethysmogram 

(PPG) 
Frequency: 0.5 - 20 Hz 

Red Light LED source at 670 
nm and 3 mW power 
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Figure 2. Textile Electrode integrated to belt with sensor node to acquire (a) ECG (b) EEG signals. 
 

 

Figure 3. Schematic of gloves with integrated GSR Electrodes, PPG Sensors & Sensor Node 3 (a) 
Palm side (b) Back side. 
 

Figure 3 illustrates the schematic of the sensor node, which is worn in the form of a gloves with inte-
grated with textile electrodes for GSR measurement and PPG acquisition with source and photo detector 
integrated into the gloves. 

2.3. Textile Electrode Characterization 

Electrodes are the key components for recording the bio-potential signals in wearable monitoring 
systems, their characteristics will decide the quality of bio-potential signals recorded. The electrodes con-
tact impedance of electrode-skin interface for wet Ag-AgCl, dry Ag-AgCl, textile electrodes type 1 and 
type 2 are calculated. The contact impedance measurement setup is shown in Figure 4(a) & Figure 4(b) 
that uses four electrodes E1 - E4 of the same types, which are placed on forearm with 50 mm spacing for 
the electrodes. An arbitrary waveform generator (Model No BK Precision 4055B) was used to feed a sinu-
soidal wave with frequency from DC to 10 KHz and voltage 1 mV. The potential across the electrodes are 
measured using a digital multimeter (Key Sight Technologies Model No. 34470A). 

From Figure 4(a), The [RA||C1], [RB||C2], [RC||C3], [RD||C4] represents the resistance & capacitance 
combination of the Electrodes. Rskin & Rbody representing the skin and the body resistance. 

From Figure 4(a), the total impedance is given by, 

Total Contact SkinBodyZ Z Z = +                                (1) 

where, 
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Figure 4. Experimental setup to measure (a) equivalent impedance of skin and body between the 
electrodes (b) for measuring the contact impedance. 
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From Figure 4(b) the impedance of skin and body between the two electrodes EB and EC is given by, 

[ ]|| || ||SkinBody Body B Skin SkinZ R C R C =                             (4) 
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The contact impedance is given by, 

 Contact Total SkinBodyZ Z Z= −                                (6) 
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R X

×
=

+
                                 (7) 

where, XC2 represents the reactance 

BC BC
Contact

V VZ
I I

′
= −

′
                                 (8) 

The contact impedances for the four types of electrodes considered for wearable monitoring were 
measured and analyzed. 

2.4. Sensor Nodes and Wearable Data Acquisition Hardware 

The WBAN consists of three sensor nodes, wearable data acquisition hardware and remote monitor-
ing station. The sensor nodes are independent units that have dedicated functioning to acquire the physi-
ological parameters and communicate them wireless to a sink node and from the sink node the data is 
transmitted to the remote monitoring station. 
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2.4.1. Sensor Node 1 
The Sensor Node 1 is used to acquire ECG signal in the Lead-I configuration and body temperature 

from the arm pit of the subject. Figure 5 illustrates the block diagram of sensor node 1. It consists of in-
strumentation amplifier for signal conditioning the weak ECG signal and the temperature inputs. Further 
it consists of microcontroller used for digitizing the raw inputs, wireless communication module for 
transmitting the sensor node 1 data to the remote station along with the power supply circuitry. The in-
strumentation amplifier is built using the INA128 OP-AMP which has high Slew rate and high CMRR of 
the order of 130 dB. The first stage of the ECG amplifier has a gain of 10 followed by 2nd order Butterworth 
Bandpass filter circuit with the frequency range of 0.5 - 100 Hz. The 2nd stage amplifier has a gain of 100 
followed by a notch Filter stage used to remove the 50 Hz power line frequency. The notch filter makes 
uses of active Twin-Tee network in the filtering stage. The other circuit consists of temperature signal 
conditioning circuitry with a gain of 10. The input to this amplifier is from the temperature sensor 
YSI409B.The conditioned signals are fed to the digital section with suitable buffers. The digital section is 
based 8-bit ATmega Microcontroller from Arduino. The Analog signals are digitized using a built-in 
10-bit ADC. The ZigBee wireless communication module is interfaced to the UART of microcontroller. 
The sampling rate for the signal acquisition is at 250 samples per second. The acquired data are framed 
into packets and transmitted wireless to the remote monitoring station. The power supply section consists 
of a 7.4 V Lithium-Polymer battery at 1.8 AH rating. Regulator LM7805 is used to get 5 V and power the 
wearable data acquisition hardware and LD1117 3.3 V regulator is used to power the microcontroller and 
the wireless communication module. 
 

 

Figure 5. Block Schematic of the Sensor Node 1 to acquire ECG & body temperature. 
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2.4.2. Sensor Node 2 
The sensor node 2 is used to acquire the EEG Signal. Figure 6 illustrates the block diagram of the 

sensor node 2. 
It consists of signal conditioning circuit for the EEG, digital section and power supply. The overall 

gain of EEG amplifier is 5000 and the band pass filters used are 2nd order Butterworth filter which has the 
frequency range 0.5 - 35 Hz. The digital sections, power and wireless communications sections are similar 
to that of the sensor node 1. 

2.4.3. Sensor Node 3 
Sensor node 3 is used to acquire PPG and GSR signals. Figure 7 illustrates the block diagram of the 

sensor node 3. 
It consists of Instrumentation and Conditioning circuit for the PPG and GSR signals. The PPG sensor 

uses a red light source operating at a wavelength of 670 nm with 3 mw power. The output of the photode-
tector is fed to an I-V converter and signals are band limited to 0.5 - 20 Hz using a 2nd order Butterworth 
filter. The signals are further amplified using a amplifier (INA128) with a gain of 20. 

2.4.4. Sink Node 
The Sink node to acquire the data’s from the sensor nodes is as shown in Figure 8. 
The physiological data acquired from the sensor nodes are received at the sink node. The sink nodes 

coordinate the data acquisition from the sensor nodes. The data acquired is transmitted to the remote 
monitoring station using Bluetooth wireless communication module. At the remote monitoring station the 
data is received, processed and displayed. The sink node architecture is star network and the data is read 
from the sensor nodes in a round robin fashion at a programmed predetermined intervals. 

2.5. Blood Pressure Measurement from PTT 

The noninvasive blood pressure measurement techniques are indirect methods and are based on  
 

 

Figure 6. Block Schematic of the Sensor Node 2 to acquire EEG signals. 
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Figure 7. Block Schematic of the Sensor Node 3 to acquire PPG and GSR signals. 
 

 

Figure 8. Block Schematic of the Sink Node. 
 
measurement of counter pressure. The conventional cuff-based methods for blood pressure measurements 
are not viable in wearable physiological monitoring applications. Altenate indirect methods are being used 
to derive blood pressure, Pulse Transmit Time (PTT) is one of the commonly used physiological parame-
ter to estimate the Systolic (SBP) and Diastolic (DBP) Blood Pressures. The PTT is measured as the inter-
val between the peak of R-wave of ECG and fingertip PPG signal, as illustrated in Figure 9. 

The estimation of blood pressure based on the PTT as one factor is not accurate as there are a number 
of factors contributing for it to be estimated accurately. The earlier methods proposed require a prior  
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Figure 9. PTT measurement from ECG and PPG signal. 

 
calibration to be carried for every individual before the measurements are being carried, which is time 
consuming and not feasible for wearable monitoring applications [29, 30]. The factors other than PTT that 
influence the correct estimation of blood pressure are heart rate, arterial stiffness, blood viscosity, age, 
height, weight, external temperature, location where the PPG signal is measured. A PTT based method of 
BP estimation considering various factors such as heart rate, age, height, weight is analyzed and by the li-
near regression model with dynamic pulse transmit time analysis the following SBP and DBP equations 
are derived. Also the need for calibration before the measurement is not required. The systolic blood 
pressure (SBP) and diastolic blood pressure (DBP) for a particular pulse related to instantaneous heart rate 
are given by the following equations. 

( ) ( ) ( )
( ) ( )

SBP 0.1989 Age 0.318 HR 0.1946 WT

0.2395 HT 330.5 PTT 146.917

= × + × + ×

− × − × +  
( ) ( ) ( )
( ) ( )

DBP 0.0772 Age 0.1122 HR 0.0893 Wt

0.1135 HT 19.778 PTT 91.595

= × + × + ×

− × − × +  

2.6. Signal Processing 

The ECG signal is corrupted with different types of noises and the common noises are the baseline 
wander and motion artifacts, which are added due to the breathing and movement of the subjects.. The 
baseline noise is a low frequency noise added to the ECG signal which can be removed by use of a High 
Pass Filter (HPF). The motion artifacts are caused due to the relative motion of electrodes with the move-
ment of the subject. These motion artifacts are high frequency noise that can be removed by use of a Low 
Pass Filters (LPF). These noises are filtered using digital filtering techniques using the Finite Impulse Re-
sponse (FIR) as they have several advantages [31, 32]. The Kaiser window is chosen for the implementa-
tion of the FIR filter to remove the presence of large oscillations in both pass band and stop band, Kaiser 
Window function is chosen. The Kaiser window is defined by 

[ ]
[ ]

2

0

0

2  1
1

0 1

0 otherwise

nI
N

w n n N
I

β

β

     −   −   =  ≤ ≤ −


  

where, [ ]0I x  is the zero-order modified Bessel function of the first kind and is given as 
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and the ripple control parameter β is defined by 
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The filter coefficients of a digital filter is given by 

[ ] [ ] [ ]dh n h n w n= ∗  
where hd[n] is time-domain impulse response of the filter and w[n] is the window function. In the pro-
posed work both LPF and HPF functions are used with Kaiser Window. 

Hence, hd[n] for LPF used to remove the tremor in the bio-potential signals is given by 

[ ]

1sin
2
1π

2

c c

d

c

Nw n w
h n

Nn w

 − −     =
 − −       

2π c
c

s

fw
f

=
 

The hd[n] for HPF used to remove the tremor in the bio-potential signals is given by 

[ ] ( ) ( )1   sin π sin
πd ch n n w n

n
 = − 

 
where fc is the cut off frequency and fs is the sampling frequency. 

2.7. Data Validation 

The wearable physiological monitoring system was tested on 35 healthy subjects male subjects to 
study the consistency and reliability of the data recordings as compared to that of the standard devices. 
The study was carried out on 35 healthy male subjects in the age group of 25 - 87 years and their prior 
consent was obtained. Out of the 35 subject, one subject could not complete the task, the validation of the 
data was carried out with 34 subjects. The validation was carried out for 30 min on each subject during 
resting, walking and mild exercise conditions and the physiological parameters were acquired simulta-
neously from both the devices. The systolic, diastolic blood pressure and heart rate data were analyzed sta-
tistically by Bland-Altman method [33, 34] and were plotted as the difference in measurements against 
mean of the two measurements. The bias was calculated from the average of the differences between the 
two methods and precision was calculated from the standard deviation of the differences between the me-
thods. The bias and precision determined were analyzed to estimate the performance of the device. 

2.8. Heart Rate Variability (HRV) 

The heart rate variability is the physical phenomenon that reveals the beat-to-beat variations in the 
R-R interval. There are many methods used to analyze HRV signals. Most commonly used methods are 
time domain, frequency domain and nonlinear methods. In frequency domain HRV signals are trans-
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formed to Power spectral density (PSD) by using Discrete Fourier Transform (DFT). Most commonly 
used HRV spectrum for analysis in frequency domain are very low frequency (VLF: <0.04 Hz), low fre-
quency (LF: 0.04 - 0.12 Hz) and high frequency (HF: 0.12 - 0.4 Hz). HRV is relevant to many cardiovascu-
lar and non-cardiovascular diseases such as high BP, diabetic neuropathy, sudden cardiac death, myocar-
dial infarction, etc. In the proposed work the time domain and frequency domain analysis of R-R and hear 
rate variations over the extended period of time are done and mean HR variations were computed for the 
subject. 

2.8.1. Time Domain Analysis 
HRV time domain analysis method is being considered for the study due its simplicity compared to 

other assessment techniques as it is directly calculated from RR interval time series [35]. In the HRV time 
domain analysis, RR intervals are commonly mentioned as NN (normal-to-normal) intervals. This is due 
to the fact that only intervals between successive QRS complexes generated by normal sinus depolarization 
are examined for this study [36]. The time-domain features are commonly computed using mean and the 
standard deviation of the RR interval series. Following are the time domain parameters computed in this 
study for stress classification. 
• Average Heart Rate 

It is the number of heart beats per minute and it is defined as 

( ) Number of RR IntervalsHeart Rate HR
Duration in Minute

=
 

• SDNN 
The standard deviation of NN intervals (SDNN) for the given segment of data, is described as the 

square root of the variance of the NN intervals. Since the variance in the time domain is equal to the total 
power in the frequency domain, SDNN describes the cyclic components accountable for variability [37]. 
Mathematically, SDNN is defined as: 

( )2
1SDNN

1

n
i meani RR RR

N
= −

=
−

∑
 

where 

1
n

ii
mean

RR
RR

N
== ∑

 
• SDSD 

The standard deviation of the successive differences of the NN intervals describes the short-term var-
iation in RR interval series. It can be described as: 

( )2
11SDSD

1

n
i i diffi RR RR RR

N
+= − −

=
−

∑
 

where 

11

1

n
i ii

diff
RR RR

RR
N

+= −
=

−
∑

 
• RMSSD 

Root-mean-square of successive differences of adjacent NN intervals. Similar to SDSD, RMSSD also 
shows the short-term variability of the RR interval series. It can equivalent to the high frequency variation 
in the spectral analysis [38]. 
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Mathematically RMSSD can defined as 
( )2

11RMSSD .
1

n
i ii RR RR

N
+= −

=
−

∑  

• NN50 and pNN50 
NN50 is the number of consecutive RR intervals that differ more than 50 msec and pNN50 is the 

fraction obtained by dividing NN50 by the total number of RR intervals in the given segment [39] pNN50 
is utilized for the estimation of the high-frequency variation in RR interval series. Unlike RMSSD, pNN50 
is much less susceptible to the presence of noise and artifact in the recording [40]. Mathematically, it is 
defined as: 

{ }1
1

NN50 50 ms
n

i i
i

RR RR+
=

= − >∑
 

NN50pNN50 100%
N

= ×
 

2.8.2. Frequency Domain Analysis 
The frequency domain parameters give the accurate and effective feature evaluation of HRV com-

pared to time domain [41]. In this analysis the power spectral density (PSD) of HRV is calculated. The 
output gives the information about power distribution of spectral components obtained from RR intervals. 
The high frequency (HF) is characterised by the parasympathetic activity of the autonomous nervous sys-
tem whereas the low frequency (LF) is a good indicator of both parasympathetic and sympathetic activity. 
The LF, HF components and also the LF/HF ratio are used to indicate the stress or fatigue level of the sub-
ject under test. There is approximate correlation between time and frequency domain evaluation parame-
ters [42]. The spectral features of HRV were calculated from RR interval data by power spectral density 
(PSD) using periodogram. The RR interval is sampled [43] at a frequency of 8 Hz. The RR interval samples 
were divided into overlapping segments with 50% overlap. Figure 10 shows the PSD of the RR interval 
data over the frequency range of 0 - 0.4 Hz. 

The steps for calculating the power spectral density [44] is a) Applying FFT to RR interval data b) 
Applying Hanning window function with 50% overlap c) Plotting the PSD. 

2.8.3. Non Linear Methods 
The nonlinear method of estimating HRV is by using Poincare plot as shown in Figure 11. 

 

 

Figure 10. PSD of the RR Interval in the frequency Range (0 - 0.4 Hz). 
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Figure 11. Poincare Plot showing the correlation between Successive RR intervals. 
 

It represents the correlation [45] between successive RR intervals. It also gives information about 
heart behavior based on beat to beat RR interval repetitions. The Poincare plot is typically described by 
two descriptors SD1 and SD2 where SD1 represents the standard deviation of the points across the line of 
identity and SD2 represents the standard deviation of the points along the line of identity.SD1 describes 
the short term variability and the parasympathetic activity of the autonomous nervous system and SD2 
describes the long term variability [46] and the sympathetic activity of the autonomous nervous system. 
The SD1 and SD2 are calculated using the following equations. 

( )1 1SD Variance S=
 

( )2 2SD Variance S=
 

where ( )1 1 2i iS RR RR += −  ( )1 2 1, , ,i NRR RR RR RR −=   

( )2 1 2i iS RR RR += +  
( )1 2 3, , ,i NRR RR RR RR+ =   

3. RESULTS 
Figure 12 illustrates the contact impedances measured for all the four types of electrodes, from the 

plot of the frequency versus impedance it is observed that the variations of contact impedance of all the 
four types of electrodes follow the same tendency as a function of frequency. 

The results were found to be in agreement with the published literature [47, 48]. The electrodes were 
electrically modeled as a resistance and capacitance connected in parallel, where at low frequencies the 
value of the impedance is by the resistance and with the increasing frequency, the contribution from capa-
citance is more dominant. The electrode impedance exponentially decreases with increase in frequency. 
The experiment was repeated on multiple subjects and with different electrode spacing of 25mm and 
30mm. The results were found to be repeatable. The type-I textile electrode was chosen for recording the 
bio-potential signals of ECG and EEG as its performance nearly matches with that of the wet and dry 
Ag-AgCl electrodes. 

Figure 13 shows the photograph of the wearable system worn by an healthy individual showing the 
sensor nodes to acquire ECG, EEG, PPG, GSR and body temperature and sink node to transmit the ac-
quired data to a remote monitoring station. 

The wearable physiological monitoring system was worn by 35 subjects and the data was acquired for  
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Figure 12. The skin-electrode contact impedance of different types of electrodes Ag-AgCl Wet Elec-
trodes, Ag-AgCl dry electrodes, Type-I textile electrode and Type-II textile electrode. 
 

 
1—ECG Sensor Node, 2—EEG Sensor Node, 3—Sink Node and 4—PPG & GSR Sensor Node. 

Figure 13. Photograph of (a) Sensor Node 1 to acquire ECG (b) Sensor Node 2 to acquire EEG and 
(c) Sensor Node 3 to acquire PPG and GSR (d) Sink node to acquire signals from sensor nodes and 
transmit to remote monitoring station. 
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interpretation and analysis, the subjects did not have any discomfort and difficulty wearing it for longer 
durations while performing their routine activity. Figure 14 shows the photograph of the textile electrode 
integrated in the belt to acquire bio-potential signal. 

Figure 15(a) illustrates the raw ECG signal acquired corrupted with 50 Hz power line interference 
and Figure 15(b) illustrates the power line interference filtered ECG signal. The amplitude spectrum of 
the processed ECG signals shows that there is no power line interference present in the ECG signal. 

The 50 Hz power line interference in ECG signal is removed [49, 50] by passing the signal through 
IIR-Notch, LMS filter & DWT Filter. Different performance parameters like Magnitude coherence (MSC), 
signal to Noise Ratio (SNR), Power Spectral Density (PSD), Percentage root mean square difference 
(%PRD), Mean Square Error (MSE) and Error standard Deviation (ESD) are calculated using the three  
 

 

Figure 14. Textile electrode fabricated. 
 

 
Figure 15. ECG Signal acquired from Node-1 (a) raw ECG signal (b) power line noise removed ECG 
signal using DWT filtering (c) Amplitude spectrum of the DWT filtered ECG signal. 
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filtering techniques. From the evaluation of the above performance parameters we conclude that DWT 
filter is best for removing the 50 Hz power line interference noise compared to the other two types of fil-
tering techniques. 

The results evaluated for five subjects are as shown in Table 3. 
Figure 16(a) illustrates the raw PPG signal and Figure 16(b) the power line interference removed 

PPG signal. 
 
Table 3. Performance parameters Estimation from the original ECG signal. 

Performance Parameter ECG Signal 
IIR  

Notch Filter 
Adaptive  

LMS Filter 
Discrete wavelet  

transform 

%PRD 

Real Time Data 

Sub-1 0.0414 0.0593 0.5945 

Sub-2 0.0384 0.2637 0.513 

Sub-3 0.0198 0.0203 0.2557 

Sub-4 0.0201 0.0423 0.3465 

Sub-5 0.0188 0.2382 0.3679 

Average value 0.0277 0.12476 0.41552 

MSE 

Real Time Data 

Sub-1 0.0004 0.0006 0.0059 

Sub-2 0.0004 0.0026 0.0051 

Sub-3 0.0002 0.0002 0.0026 

Sub-4 0.0002 0.0004 0.0035 

Sub-5 0.0002 0.0024 0.0037 

Average value 0.00028 0.0012 0.00416 

ESD 

Real Time Data 

Sub-1 0.0076 0.006 0.5945 

Sub-2 0.0086 0.0098 0.513 

Sub-3 0.0032 0.0034 0.2257 

Sub-4 0.001 0.0041 0.3465 

Sub-5 0.0015 0.0092 0.3679 

Average value 0.004962 0.006712 0.41552 

MSC Sub-1 0.5073 0.5204 0.9118 

SNR Improvement in dB Sub-1 3.61 14.67 26.15 

PSD in dB/Hz Sub-1 −26.94 −38.53 −52.87 
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The amplitude spectrum of the PPG signal has confirmed the absence of power line interference in 
the PPG signals. Figure 17 illustrates the ECG signal acquired from ECG sensor node while the subject 
was performing routine activity, the raw signal Figure 17(a) is corrupted with noises such as baseline 
wander and tremor noises, the baseline wander is removed by Kaiser high pass filter as shown in Figure 
17(b) and the tremors removed by Kaiser low pass filter as shown in Figure 17(c). The processed ECG 
signal is noise free and is of diagnostic quality. 

Figure 18 illustrates the EEG signal acquired from sensor node-2 to acquire EEG signal from the frontal 
pole regions fp1-fp2, while the subject performed routine activity. The EEG acquired from conventional  
 

 
Figure 16. PPG Signal acquired from Node-3 (a) raw PPG signal (b) processed PPG signal after re-
moval of power line interference. 
 

 

Figure 17. ECG Signal acquired from Node-1, (a) raw ECG signal (b) baseline wander removed (c) 
tremor removed ECG signal. 
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Figure 18. EEG Signal acquired from fp1-fp2 during the normal activity of the subject acquired from 
sensor Node-2 (a) from conventional Ag-AgCl electrode (b) dry textile electrode (c) Power Spectral 
Density (PSD) of Ag-AgCl electrode (d) Power Spectral density (PSD) of textile electrode. 
 
Ag-AgCl electrodes Figure 18(a) and the textile electrodes Figure 18(b) are comparable as it is evident 
from the power spectral density of the EEG signal acquired from Ag-AgCl electrode Figure 18(c) and tex-
tile electrode Figure 18(d). 

The GSR recordings from five subjects while performing predetermined tasks such as relaxing, deep 
breathing, reading and performing mathematical operations are shown in Figure 19. 

From the GSR recordings it is evident the GSR is low when the subjects are relaxed and the conduc-
tance increases while they performed mathematical operations. The skin temperature recordings from five 
subjects while performing predetermined tasks such as resting, walking, exercise and recovery are shown 
in Figure 20. 

From the body temperature, recordings it is evident that it is low when the subjects are resting and 
the skin temperature increases when they performed mild exercise and decreases during recovery stages. 
Table 4 shows the data of heart rate and blood pressure acquired from 34 subjects using conventional BP 
machine and wearable monitoring system while performing routine activity during resting, walking and 
mild exercise conditions. 
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Figure 19. GSR signal acquired from Node-3 for five subjects during relaxed, reading, deep breathing 
and while performing Mathematical operations. 
 

 

Figure 20. Skin temperature recording from Node-1 for 5 subjects during resting, walking, Exercise 
& Recovery stages. 
 

The statistical analysis of the vital parameters of heart rate and blood pressure recorded from the de-
veloped prototype were compared with that acquired using a standard measurement device. In the pro-
posed work we have tested our system with 34 subjects with 10 average readings i.e. 340 readings have 
been taken from the subjects for each condition. All the above subjects were subjected to different condi-
tions. First the HR, SBP, DBP were merured with the standard instruments with the help of doctor, then 
we tested the above readings with our system using the equations developed for SBP, DBP. Table 4 shows 
the readings of comparison. 

The bias and precision for heart rate recorded from the developed wearable systems and standard 
measurement method while the subjects were performing the routine activity of resting, walking and mild 
exercise are measured. The bias for heart rate measured during resting, walking and mild exercise was 
0.0028, 0.00035 & −0.000056 respectively. The precision for heart rate measured during resting, walking 
and mild exercise was 0.8231, 0.9325 & 0.9272 bpm respectively. The Bland-Altman plots for heart rate 
while resting, walking and mild exercise are illustrated in Figure 21(a), Figure 21(b) and Figure 21(c) 
respectively. 

The bias and precision for systolic blood pressure recorded from the developed wearable systems and  
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Table 4. Heart Rate (HR), SBP, DBP of 34 subjects measured during resting, walking and exercise 
conditions. 

Subject 
Age 

(Yrs) 

HR 
Std 

(bpm) 

RR 
Interval 

from ECG 
(msec) 

HR from 
ECG 

(bpm) 

Wt 
(Kgs) 

Ht 
(Cms) 

SBP 
Measured 
(mmHg) 

DBP 
Measured 
(mmHg) 

PTT 
(msec) 

SBP 
Derived 
(mmHg) 

DBP 
Derived 
(mmHg) 

1 43 84 ± 3 0.71 ± 0.03 84 ± 3.8 64 167 130 ± 3.08 89 ± 3.14 57.6 ± 0.36 132.4 ± 1.17 97.4 ± 2.72 

2 53 75 ± 4 0.81 ± 0.04 75 ± 5.1 59 175 118 ± 3.68 80 ± 3.94 60 ± 0.32 127.4 ± 1.35 95.6 ± 2.07 

3 54 81 ± 3 0.74 ± 0.03 81 ± 5.5 49 160 137 ± 4.42 84 ± 3.23 58 ± 0.19 132.3 ± 1.06 96.9 ± 2.6 

4 81 90 ± 2 0.66 ± 0.02 91 ± 4.2 75 154 157 ± 2.83 94 ± 3.13 49.8 ± 0.25 150.1 ± 0.74 99.5 ± 2.46 

5 25 70 ± 3 0.86 ± 0.04 70 ± 4.9 52 178 97 ± 2.42 64 ± 2.31 76.6 ± 0.31 112.9 ± 1.29 92.4 ± 2.22 

6 58 77 ± 4 0.78 ± 0.04 77 ± 4.9 60 162 132 ± 2.04 85 ± 3.26 66.7 ± 0.23 130.7 ± 1.16 95.2 ± 2.53 

7 75 90 ± 4 0.66 ± 0.03 91 ± 5.1 85 155 144 ± 3.6 91 ± 3.01 59.4 ± 0.22 147.4 ± 1.35 98.2 ± 1.99 

8 46 90 ± 4 0.66 ± 0.03 91 ± 4.1 78 172 138 ± 2.47 76 ± 2.9 60 ± 0.27 135.6 ± 1.35 97.8 ± 2.53 

9 80 99 ± 3 0.6 ± 0.02 100 ± 5.9 82 151 160 ± 2.9 101 ± 2.67 45.5 ± 0.26 156.3 ± 1.06 101.5 ± 2.92 

10 45 78 ± 4 0.77 ± 0.04 78 ± 5.4 52 150 130 ± 2.42 82 ± 2.28 68.4 ± 0.33 129.3 ± 1.16 95.1 ± 2.23 

11 60 90 ± 2 0.66 ± 0.02 91 ± 3.5 65 158 136 ± 1.85 84 ± 1.91 59.4 ± 0.33 139.8 ± 0.79 98.1 ± 2.6 

12 62 90 ± 2 0.66 ± 0.01 90 ± 5.7 62 156 138 ± 2.67 86 ± 2.73 52.3 ± 0.32 142.2 ± 0.79 99.1 ± 2.6 

13 64 67 ± 4 0.91 ± 0.05 66 ± 4.9 70 161 129 ± 2.49 84 ± 3.27 48.2 ± 0.29 136.8 ± 1.23 95.9 ± 2.13 

14 62 86 ± 2 0.69 ± 0.02 86 ± 4.8 78 158 135 ± 2.69 96 ± 3.27 53.8 ± 0.21 143.1 ± 0.88 98.1 ± 2.56 

15 70 74 ± 2 0.81 ± 0.03 74 ± 4.3 55 159 135 ± 3 80 ± 2.7 52.7 ± 0.27 136.7 ± 0.67 96.6 ± 2.12 

16 62 90 ± 3 0.66 ± 0.02 91 ± 4.3 60 170 138 ± 2.9 82 ± 3.7 49.5 ± 0.3 139.5 ± 1.18 99.5 ± 2.76 

17 51 67 ± 2 0.9 ± 0.03 67 ± 5.7 49 155 115 ± 3.13 83 ± 2.33 68 ± 0.29 125.1 ± 0.88 93.1 ± 2.08 

18 65 86 ± 4 0.7 ± 0.03 86 ± 3.5 60 152 140 ± 2.38 90 ± 3.18 52.9 ± 0.35 141.9 ± 1.37 98.6 ± 2.99 

19 68 88 ± 4 0.68 ± 0.03 89 ± 4.4 55 148 156 ± 2.18 81 ± 3.58 52.3 ± 0.24 143.6 ± 1.26 99.1 ± 2.51 

20 68 86 ± 3 0.69 ± 0.02 86 ± 4.3 60 151 136 ± 4.06 86 ± 3.46 53.8 ± 0.3 142.6 ± 1.26 98.4 ± 2.17 

21 42 77 ± 2 0.78 ± 0.02 77 ± 3.8 58 156 116 ± 1.91 83 ± 2.97 64.8 ± 0.26 129.2 ± 0.63 95.4 ± 2.32 

22 60 96 ± 4 0.62 ± 0.03 97 ± 5.4 65 149 150 ± 2.15 90 ± 3.25 52.9 ± 0.25 146.2 ± 1.48 100.3 ± 3.06 

23 34 78 ± 3 0.77 ± 0.04 78 ± 4.5 53 164 122 ± 2.1 81 ± 1.99 59.6 ± 0.25 126.8 ± 1.03 96.1 ± 2.69 

24 60 84 ± 2 0.71 ± 0.02 84 ± 6 49 151 136 ± 4.14 84 ± 3.75 62.3 ± 0.3 135.5 ± 0.71 96.8 ± 2.97 

25 83 99 ± 2 0.6 ± 0.01 100 ± 3.7 80 148 169 ± 3.45 95 ± 3.3 38.3 ± 0.32 159.8 ± 0.63 102.6 ± 2.88 

26 87 96 ± 3 0.62 ± 0.02 97 ± 4.8 90 149 178 ± 3.21 95 ± 4.01 32.7 ± 0.4 163 ± 1.05 102.6 ± 2.5 

27 76 98 ± 3 0.6 ± 0.02 99 ± 4.8 52 159 152 ± 2.6 88 ± 2.85 57.6 ± 0.25 143.4 ± 1.17 99.9 ± 3.41 

28 71 90 ± 3 0.66 ± 0.03 91 ± 4.9 60 143 150 ± 2.18 90 ± 3.95 57.5 ± 0.39 145.4 ± 1.26 98.7 ± 2.98 

29 26 68 ± 2 0.89 ± 0.02 68 ± 4 51 175 91 ± 2.1 61 ± 3.57 78.2 ± 0.26 112.2 ± 0.63 91.9 ± 2.18 

30 45 78 ± 2 0.77 ± 0.02 78 ± 4.6 60 164 138 ± 2.11 90 ± 2 56.7 ± 0.27 131.1 ± 0.88 96.4 ± 2.12 

31 55 78 ± 3 0.77 ± 0.03 78 ± 5.5 68 160 140 ± 2.53 90 ± 1.91 56.6 ± 0.4 135.7 ± 1.06 96.4 ± 1.78 

32 53 85 ± 2 0.7 ± 0.02 85 ± 3.8 70 165 144 ± 2.1 86 ± 3.19 59.2 ± 0.33 135.7 ± 0.67 97.2 ± 2.2 

33 54 80 ± 4 0.75 ± 0.04 80 ± 5.8 75 166 148 ± 3 92 ± 2.44 57.9 ± 0.37 135.5 ± 1.18 96.6 ± 1.84 

34 60 88 ± 3 0.68 ± 0.02 89 ± 5.2 70 160 148 ± 1.91 96 ± 2.78 53.8 ± 0.28 141.4 ± 1.07 98.7 ± 2.58 

https://doi.org/10.4236/jbise.2019.122011


 

 

https://doi.org/10.4236/jbise.2019.122011 173 J. Biomedical Science and Engineering 
 

 

Figure 21. Bland-Altman plots for Heart Rate comparison from 34 subjects during (a) resting (b) 
walking (c) exercise conditions. The limits of agreement defined by 2SD above and below the bias 
are shown by dotted lines. 
 
standard measurement method while the subjects were performing the routine activity of resting, walking 
and mild exercise are measured. The bias for systolic blood pressure measured during resting, walking and 
mild exercise was −0.00045, 0.00024 & 0.00024 respectively. The precision for systolic blood pressure 
measured during resting, walking and mild exercise was 5.8123, 5.1233 & 6.8934 respectively. 

The Bland-Altman plots for systolic blood pressure while resting, walking and mild exercise are illu-
strated in Figure 22(a), Figure 22(b) and Figure 22(c) respectively. 

The bias and precision for diastolic blood pressure recorded from the developed wearable systems  

https://doi.org/10.4236/jbise.2019.122011


 

 

https://doi.org/10.4236/jbise.2019.122011 174 J. Biomedical Science and Engineering 
 

 

Figure 22. Bland-Altman plot for Systolic Blood Pressure comparison from 34 subjects during (a) 
resting (b) walking (c) exercise conditions. The limits of agreement defined by 2S.D above and below 
the bias are shown by dotted lines. 
 
and standard measurement method while the subjects were performing the routine activity of resting, 
walking and mild exercise are measured. The bias for diastolic blood pressure measured during resting, 
walking and mild exercise was 0.00012, 0.00341 & 0.00014 respectively. The precision for diastolic blood 
pressure measured during resting, walking and mild exercise was 4.9756, 4.8745 & 4.9945 respectively. The 
accuracy of the system is within the limits of IEEE Standard of (5 ± 8 mmHg). 

The Bland-Altman plots for diastolic blood pressure while resting, walking and mild exercise are illu-
strated in Figure 23(a), Figure 23(b) and Figure 23(c) respectively. 

Figure 24(a) illustrates the time domain plot of the R-R intervals for 1-hour duration of heart rate  
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Figure 23. Bland-Altman plot for Diastolic Blood Pressure comparison from 34 subjects during (a) 
resting (b) walking (c) exercise conditions. The limits of agreement defined by 2SD above and below 
the bias are shown by dotted lines. 
 
measured from a healthy individual while the subject was performing normal routine activities and Figure 
24(b) the RR interval distribution for the same subject recorded. 

The time domain parameters calculated for a normal subject during resting, walking and mild exer-
cise and the results are shown in Table 5. The mean RR was measured to be 796.59 msec, minimum and 
maximum heart rate was 64.69 and 86.44 bpm. The SDNN is 54.02 msec, RMSSD is 61.15 msec and SDSD 
is 52.01 msec. 

Table 6 illustrates the frequency domain parameters of HRV and the output gives the information 
about power distribution of spectral components obtained from RR intervals, the ULF, VLF, LF and HF 
measured are 0.003, 0.003 - 0.04, 0.04 - 0.15, 0.15 - 0.4 Hz respectively. 
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(a) 

 
(b) 

Figure 24. (a) Time domain plot of RR-Intervals for 1 hour Duration; (b) RR Interval distribution. 
 
Table 5. HRV Time Domain parameters. 

SL. No Parameters Units Results 

1 Mean RR msec 796.59 
2 Mean HR bpm 75.32 

3 Min HR bpm 64.69 
4 Max HR bpm 86.44 
5 SDNN msec 54.02 

6 RMSSD msec 61.15 
7 NN50 beats 484 

8 pNN50 % 10.68 
9 SDSD msec 52.01 
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The LF, HF components and also the LF/HF ratio are used to indicate the stress or fatigue level of the 
subject under test and the approximate correlation between time and frequency domain evaluation pa-
rameters are illustrated in Table 7. 

The power of all the four spectral power components is as shown in Table 8. 
The nonlinear HRV values of SD1 and SD2 are represented in Table 9. 

 
Table 6. Frequency Domain parameters of HRV. 

SL. No Parameters Description Frequency range 

1 ULF Power in ultra-low frequency (ms2) 0.003 Hz 

2 VLF Power in very-low frequency (ms2) 0.003 - 0.04 Hz 

3 LF Power in low frequency (ms2) 0.04 - 0.15 Hz 

4 HF Power in high frequency (ms2) 0.15 - 0.4 Hz 
 
Table 7. Correlation between Time Domain and Frequency Domain parameters of HRV. 

SL. No Time domain Parameters Frequency domain Parameters 

1 SDNN Total Power 

2 RMSSD HF 

3 SDSD HF 

4 NN50 Count HF 

5 pNN50 HF 
 
Table 8. Power of frequency Domain Components. 

SL. No Parameters Units VLF LF HF 

1 Frequency band Hz 0 - 0.04 0.04 - 0.15 0.15 - 0.40 

2 Peak Frequency Hz 0.040 0.140 0.167 

3 Power (ms2) 57 490 1535 

4 Power (log) 4.042 6.194 7.336 

5 Total Power (ms2) 2086   

6 Total Power (log) 7.643   

7 LF/HF ratio - 0.319   
 
Table 9. Nonlinear results of HRV using SD1 and SD2. 

SL. No Parameters Unit Value 

1 SD1 (msec) 43.1 

2 SD2 (msec) 50.9 

3 SD2/SD1 - 1.181 
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4. CONCLUSIONS 
A prototype wireless sensor network based physiological monitoring system developed is aimed to 

give a proof of concept of a wearable system. In this development four types of electrodes were characte-
rized and studied for its suitability to be used for wearable monitoring. From the bio-potential signal, re-
cording it was found that the type-2 textile electrode is having good conductivity and can be easily inte-
grated into the fabric and is comfortable for long duration monitoring. For the development of the above 
prototype system including the design and development of the data acquisition hardware the authors have 
spent around 2000 USD. 

The subjects have reported that the chest belt fabricated using MedTex 180 is very soft and it is very 
comfort to wear for longer durations also. The conductivity of the material will be still good even when the 
subjects start sweating during the exercise conditions. 

The physiological signals like ECG, EEG, GSR, body temperature, heart rate and blood pressure rec-
orded from the wearable system are compared with those acquired from the Standard devices. The re-
cording of heart rate, body temperature, GSR and blood pressure was found to be reliable and repeatable 
and the errors were in the acceptable limits. 

The beat-to-beat non-invasive blood pressure measurement by the PTT based method does agree well 
with the simultaneously measured systolic and diastolic blood pressure while the subject is performing 
routine activities, during static and dynamic conditions. The better accuracy obtained even during dy-
namic conditions due to acquisition of good quality ECG & PPG signals and pre-processing to remove the 
baseline wander and motion artifacts in the signals, calibrations carried out considering various factors 
such as age, arm length, height, weight of the subject. The American Association for Medical Instrumenta-
tion (AAMI) recommends that the bias and precision have to be within 5 mmHg and 8 mmHg respective-
ly. From the data recorded it found that for both systolic and diastolic blood pressures, the bias and preci-
sion as required by the AAMI standards are achieved under static and dynamic conditions of the subject. 
The few recordings were outside the upper and lower limits of agreement, which are due to errors while 
recording as other data points are not seen clustered nearby. 

The wearable physiological monitoring systems are intended to be used during the mobile conditions 
of the subjects, the physiological signals recorded are corrupted with unwanted noises such as powerline 
interference, baseline wander and motion artifacts. They are removed by signal processing techniques. 

The HRV derived from ECG, which is directly controlled by the autonomic nervous system is a 
promising indicator for real-time fatigue estimation that can be used in various applications for soldiers in 
a battlefield, drivers, pilots, etc. The classification system uses time domain, frequency domain and nonli-
near HRV features in this study. 

Innovations in science and technology have contributed to a tremendous growth in medical care. 
New technological advancements in MEMS and Nanotechnology will play a major role in the future 
healthcare device development. In future, wearable devices will become affordable and available to use 
with minimal training. 

There is a need to design wearable and smart sensors that are reliable and can give repeatable results 
without adding noise or errors. In addition, the wearable systems should provide privacy and security of 
the data being acquired and monitored. Further studies and more clinical evaluations are required to be 
carried out to evaluate the accuracy of the system for use in day-to-day use of subjects. 
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