
http://www.scirp.org/journal/jbise J. Biomedical Science and Engineering, 
2018, Vol. 11, (No. 8), pp: 225-234 

 

 

https://doi.org/10.4236/jbise.2018.118018 225 J. Biomedical Science and Engineering 
 

 

An Observation Data Driven Simulation and Analysis 
Framework for Early Stage C. elegans Embryogenesis 

Dali Wang1,2, Zi Wang1, Xiaopeng Zhao3, Yichi Xu4, Zhirong Bao4 

1Department of Electric Engineering and Computer Science, University of Tennessee, Knoxville, USA; 
2Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, USA; 3Department of Mechanical, 
Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, USA; 4Developmental Biology Program, 
Memorial Sloan Kettering Cancer Center, NYC, USA 

Correspondence to: Dali Wang,  
Keywords: C. elegans Embryogenesis, Agent-Based Modeling, Deep Reinforcement Learning, Observation-Driven 
Modeling Framework, 3D Live Images 
Received: April 6, 2018      Accepted: August 25, 2018      Published: August 28, 2018 

Copyright © 2018 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/ 

  
 
 

ABSTRACT 
Recent developments in cutting-edge live microscopy and image analysis provide a unique 
opportunity to systematically investigate individual cell’s dynamics as well as simula-
tion-based hypothesis testing. After a summary of data generation and analysis in the ob-
servation and modeling efforts related to C. elegans embryogenesis, we develop a systematic 
approach to model the basic behaviors of individual cells. Next, we present our ideas to 
model cell fate, division, and movement using 3D time-lapse images within an agent-based 
modeling framework. Then, we summarize preliminary result and discuss efforts in cell fate, 
division, and movement modeling. Finally, we discuss the ongoing efforts and future direc-
tions for C. elegans embryo modeling, including an inferred developmental landscape for 
cell fate, a quasi-equilibrium model for cell division, and multi-agent, deep reinforcement 
learning for cell movement. 

 

1. INTRODUCTION 
Caenorhabditis elegans is a model organism widely studied in developmental biology. It is the first 

multicellular organism with known and invariant lineage [1]. In a room temperature, its embryos take on-
ly 13 hours to develop from 1 to 558 cells. C. elegans embryos are transparent and cylinder-shaped with 
roughly 50 μm long and a diameter of 30 μm, which is easily accessible by microscopy. Genetic perturba-
tion experiments can be as simple as feeding them with commercially available bacteria to target any gene. 
With all these ad-vantages, C. elegans allows us to ask various bio-logical questions by generating 
large-scale microscopic data. We acquire two-channel 4D confocal images of live embryos on a Zeiss Axio 
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Observer microscope frame with Zeiss 40X objective. The embryos are genetically modified with one fluo-
rescence protein marking histone for tracking nuclei, and with an-other fluorescence protein providing 
additional biological information, such as protein localization and promoter activity. In our live-imaging 
system, we can perform three batches of experiments per day with 20 - 30 embryos per batch. During im-
age acquisition, embryos are shot every 1 minute and in 30 slices to achieve high temporal and spatial res-
olution. In total, about 9000 two-channel images can be accumulated daily, each of which contains 30 slic-
es of double 512 * 512-pixel data. We have developed efficient algorithms to automatically trace every sin-
gle cell over the course of early embryogenesis [2]. More importantly, powerful computational algorithms 
are needed to concentrate and extract information from the huge volumes of data, which is particularly 
challenged because many biological patterns are not intuitive to be formatted into a computer problem. A 
picture from a previous publication [3] is used here (Figure 1) to illustrate the data variety and  
 

 
Figure 1. An illustration of data generation and usage in experiments. (a) Data collection strategy. 
(b) Heat map showing how many genes were expressed differently. (c) Expression patterns orga-
nized by hierarchical clustering. The original graph was published in [3]. 
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complex in the laboratory experiments. 
To facilitate the examination of cellular decisions in the developing nervous system of the nematode 

C. elegans, a consortium of biologists, computer scientists, and microscopists have worked together to 
create a novel systems-level resource for global understanding of C. elegans embryogenesis. A dynamic 
system, named Worm-GUIDES, was developed [4] to analyze the C. elegans lineage tree information on 
wild-type embryos or the embryos after gene mutation & manipulation. Worm-GUIDES also allow access 
to and visualize the connectome, the complete neural connectivity record which is uniquely available for 
C. elegans. More technical details on algorithm and applications related to WormGUIDES can be found in 
reference [5, 6]. Figure 2 shows major functions and data streams used in WormGUIDES. 

2. AN OBSERVATION-DRIVEN ANALYSIS AND SIMULATION SYSTEM 
2.1. Agent-Based Modeling Framework with Direct Data Assimilation 

The massive 3D time-lapse live microscopy images allow biologists to systematically track individual 
cells in complex tissues and quantify cellular behavior over extended time windows. Therefore, it is not 
surprise that agent-based modeling (ABM) approach was adopted to study the embryogenesis. In an ABM 
framework, an individual cell can be modeled as an agent that contains a variety of information on its fate, 
size, division time, and group information. For an early stage C. elegans simulation, the cell fate, division, 
and movement can be directly derived from predefined observation datasets or represented by mathemat-
ical models (see the following sections). An example of this kind of agent-based model can be found in [7]. 

2.2. Cell Developmental Landscape for Cell Fate Modeling 

C. elegans has a small number of somatic cells whose position and morphology are almost invariant 
from animal to animal. Because C. elegans is virtually transparent, cells can be identified in live animals 
using a simple bright-field microscopy technique, Nomarski differential interference contrast (DIC), or by  
 

 

Figure 2. The major functions and data streams of Worm GUIDES. The original picture was pub-
lished in [4]. 
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expression of transgenic fluorescent reporter genes [8]. Since the 3D time-lapse imaging now used for im-
aging of metazoan embryo-genesis in different model organisms and tracking of individual cells, we can 
now directly track the whole cell lineage of C. elegans. The information can be directly used for the cell 
fate modeling of wild-type C. elegans. Furthermore, by combining automated lineage with tissue-maker 
expression-based assessment of cell types, we have recently shown that progenitor cell fates can be syste-
matically assayed [9]. With the help of sequencing techniques, we can measure the mRNA content of indi-
vidual cells that provide a more robust assay of cell types than using limited markers, with the apparent 
scalability to many cells. This research lead to a publication on how genes and gene networks shape the 
regulatory landscape and drive cells through the different trajectories of differentiation. It also provides a 
developmental landscape to model cell fate in complicated cases that involve gene mutation and manipu-
lation. 

2.3. Physical Model for Cell Division 

There are many efforts that look into the mechanics of metazoan cell division using the C. elegans 
embryo as a powerful model system [10]. For example, some study used RNA to control the protein turn-
over that in turn influence the cell division. These mechanics happened as very fine scale and in a finite 
time period and our 3D time-lapse images are normally taken at much large time intervals (i.e. minutes). 
Therefore, we assume that mechanics plays an important role in regulating embryonic development. Many 
mathematical models have been developed to understand how the shape and growth of the embryo are 
influenced by various mechanical forces [11-14]. 

2.4. Machine Learning Model for Cell Movement 

Cell movement in the early phase of C. elegans development is guided by gradients of various chemi-
cal signals, physical interactions at the cell-substrate interface and other mechanisms. If we treat the cellu-
lar movements as results of inherited and genetically controlled behavior regulated by inter- or intracellu-
lar signals, and these cell movements are also constricted by the neighbor cells and the eggshell, then we 
can use machine learning method to characterize the movement of individual cells within an embryonic 
system from 3D time-lapse images directly. This approach can be used to modeling the cell movement 
path in the early stage of C. elegans development where the regulation mechanisms are not well studied. 
We further assume that movement path of an individual cell is an optimal path that a cell can use to mi-
grate under a collection of regulation networks and/or constraints within a physical environment. Then we 
transform the cell movement problem into a path optimization problem constrained by observation and 
predefined rules. An application of this approach to single cell direction movement is described in the fol-
lowing Section 3.3. 

3. CURRENT RESULTS AND DISCUSSION 
3.1. Cell Fate Representation for Wild-Type C. elegans 

In our recently modeling efforts [7, 15], the lineage of wild-type C. elegans (shown in Figure 3) are 
used to represent the fate of individual cells during the developmental process. Under these circumstances, 
the fate and also the division time are all predefined from the observation datasets from the 3D time-lapse 
live images. 

3.2. A Simplified Physical Model for Cell Division 

A simple physical model was first developed to model the cell division direction. In an early attempt, 
we only consider three major components: 1) The direction of dominant cell polarity in the dividing cell; 
2) The composition of cell-cell squeezes direction of force between the dividing cell and its neighbors [16]; 
and 3) The cell-eggshell squeeze direction force between the dividing cell and the eggshell (if there exists) 
[17]. As shown in Figure 4, we build a model for each part and get a number of samples. Each sample  
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Figure 3. The illustration of lineage tree of wild type C. elegans. The color on branches represent 
when and where five tissue markers for pharynx (red), neuron (yellow), hypodermis (blue), muscle 
(cyan) and gut (magenta) are expressed in wild-type animals in a stereotypical manner. The division 
time is removed in the picture for a simple presentation. The graph was originally published in [9]. 
 

 
Figure 4. An illustration of the three components of the cell division direction and the actual obser-
vational direction. 
 
contains three 3D vectors that represent the three directions. We assign each vector a coefficient K as the 
parameter in the combined model. We transfer it into an optimization problem by minimizing the sum of 
the angle differences between the composition of the three simulation direction vectors and the actual ob-
servational division directions of cells. 

3.3. Directional Single Cell Movement Simulation 

In one recently work, we developed a method to model cellular movement using time-lapse images 
and deep neural networks to simulate the directional single cell movement within an agent-based model-
ing framework [15]. Directional cell locomotion is critical in many physiological processes during C. ele-
gans development, including morphogenesis, structure restoration, and nervous system formation. We 
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adopted deep neural networks to characterize the movement of individual cells within an embryonic sys-
tem from 3D time-lapse images directly. We tested our model through two scenarios within real develop-
mental processes, including a case of the anterior movement of the Cpaaa cell via intercalation, shown in 
Figure 5. The left graph shows the observation data (live image) and the simulation results of Cpaaa cell 
movement. The right graph shows the migration paths of Cpaaa. The simulation path is an average over 50 
runs, and the shaded region indicates a range of one standard deviation greater/less than the average value. 
We found that the movement path of Cpaaa is consistent with that in the 3D time-lapse images.  

4. ONGOING EFFORTS AND FUTURE DIRECTIONS 
4.1. Inferred Developmental Landscape for Cell Fate Representation 

In another previous work [9], a strategy to automatically infer mechanistic models of cell fate diffe-
rentiation based on live-imaging data was developed using genetic perturbation experiment. We use cell 
lineage tracing and combinations of tissue-specific marker expression to assay progenitor cell fate and 
detect fate changes upon genetic perturbation. The analysis of the 3D time-lapse live images using cell li-
neage tracing and tissue-specific marker led to the construction a model for how fate differentiation 
progresses in progenitor cells and predict cell-specific gene modules and cell-to-cell signaling events that 
regulate the series of fate choices. By perturbing 20 genes in over 300 embryos, the experiments provided 
insights into gene function and regulated fate choice, including an unexpected self-renewal. As a result, an 
inferred mechanistic model of development was presented to elucidate how genes and gene networks 
shape the regulatory landscape and drive cells through the different trajectories of differentiation. Figure 6 
shown a picture of an inferred developmental landscape for cell fate through gene mutation and manipu-
lation of C. elegans embryos. This kind of developmental landscape then can be incorporated into our 
modeling framework to predict the cell fate under specific gene manipulation cases. 

4.2. A Quasi-Equilibrium Model for Cell Division 

Currently, we are developing a novel, simplified modeling approach to account for mechanical interactions  
 

 

Figure 5. The observation and simulation result of Cpaaa cell movement (left) and the migration 
path of Cpaaa cell movement (right). The original pictures were submitted in [15].  
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Figure 6. Inferred mechanistic model of development. This graph was originally published in [9]. 
 
among the cells during C. elegans embryonic development. Specifically, we represent each cell as a point 
mass and represent the interactions between neighboring cells by spring forces. This simplified model is a 
versatile setup that can be conveniently integrated into the overall agent-based modeling framework. 
Moreover, the simplified modeling assumption allows us to explicitly track individual cells and easily ac-
count for the birth and migration of new daughter cells. Under this assumption, the embryo can be 
represented by a network of mass points connected to one another through springs. To first order ap-
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proximation, we further assume that inertial forces and damping forces are negligible compared to the 
spring forces. Recall that, during the experiment, microscopic images are collected every minute to moni-
tor the shapes and positions of the cells. Since the evolution of the network structure is a much slower 
process compared to the observation period, we assume the spring-mass network is in quasi equilibrium 
on the time scale of observation. To determine the positions of the cells, we calculate the potential energy 
of the mass-spring network. Since the network is in equilibrium, the cell positions will allow the network 
to possess minimum potential energy. Thus, at any given time instant, the positions of the cells can be de-
termined by minimizing the potential energy of the system. Once a new daughter cell is produced, the 
original equilibrium balance is broken, and a new equilibrium can be calculated by minimizing the poten-
tial energy in the updated mass-spring network. Therefore, this process allows us to predict the migration 
of the cells through the embryonic development procedure. 

4.3. Multi-Agent Cell Movement Simulation 

Our previous effort has shown the capability of deep reinforcement learning for modeling cell move-
ment within an agent-based model [15]. Since the developmental phase in the early stage of C. elegans 
embryogenesis is regulated by a complex set of regulatory mechanism at various scales, the previous model 
that utilize the observational destination as a predefined dominant rule for the cell movement is a very 
strong regulation observed in the 3D live images. As an example, the Cpaaa cell migration path contains 
several phases, each is achieved via the establishment of a special biological pattern, called Rosette, with its 
neighbor cells along the path. With the above observations, we are working on a hierarchical deep rein-
forcement learning cell movement model in which the cell is controlled hierarchically by a set of sub-goals 
(Figure 7). Future plans for the cell movement modeling also include the design of multi-agent reinforce-
ment learning [18] for the function group or even whole embryo, continuous control for output actions 
[19] of individual cells, division timing synchronization between the individual cells, as well as high per-
formance simulation on parallel computing platform using asynchronous distributed model [20]. 

5. CONCLUSION 
We presented a systematic approach to model the basic behaviors of individual cells, including cell 

fate, division, and movement, using 3D time-lapse images within an agent-based modeling framework. We 
summarized preliminary result and discussed the ongoing efforts and future directions for C. elegans  
 

 

Figure 7. A hierarchical deep reinforcement learning model for the Cpaaa cell movement with four 
sub-goals, that is, to establish four special structure (Rosette) sequentially with its special neighbor 
cells (sub-goal cells) along the path. The white circle in each graph represents the observed destina-
tion of Cpaaa cell when the sub-goals are achieved sequentially. Red, yellow, and green cells 
represent the Cpaaa cell (in the training process), sub-goal cells at each migration phase, and other 
cells in images. 
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embryo modeling, including an inferred developmental landscape for cell fate, a quasi-equilibrium model 
for cell division, and multi-agent, deep reinforcement learning for cell movement. The approach is a good 
fit for systematically investigation on individual cell's dynamics and simulation-based hypothesis testing.  
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