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Abstract 
This article reviews the recent developments in microfluidic technologies for in vitro cancer diag-
nosis. We summarize the working principles and experimental results of microfluidic platforms 
for cancer cell detection, and separation based on magnetic activated micro-sorting, and differ-
ences in cellular biophysics (e.g., cell size and dielectrophoresis (DEP)). 
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1. Introduction 
Cancer is a class of diseases characterized by the uncontrolled growth of cells that ultimately invade surrounding 
tissues and metastasize to distant sites within the body [1] [2]. Early cancer detection is crucial for improved 
prognosis and cancer management due to the small tumor size and localization of the tumor at the primary site 
[3] [4]. Conventional cancer cell sorting techniques, which have been reviewed elsewhere [5] [6] including cen-
trifugation, chromatography, and fluorescence and magnetic-activated cell sorting, are limited in yield and puri-
ty and further rely on the expertise and subjective judgments of highly skilled personnel. The small sample vo-
lumes, fast processing times, multiplexing capabilities, and large surface to volume ratios inherent in micro- 
fluidic systems [7] [8] offer new opportunities for cytology and cyto-pathology [9]-[18] particularly for in vitro 
cell sorting and detection [17] [19]-[25]. Leveraging these advantages, various microfluidic platforms have been 
developed for capturing rare cells including circulating tumor cells (CTCs), circulating fetal cells, and stem cells. 
Microfluidic sorting of rare cells has been reviewed elsewhere [26]-[29]. 

In this review, we focus on the application of microfluidic systems for cancer cell detection and sorting. We 
first present the development and working principle of several key microfluidic platforms including those based 
on magnetic activated cell sorting [30]-[39] and differences in cellular biophysics (e.g., cell size [40]-[53] and 
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dielectrophoresis (DEP) [54]-[89]. We discuss the performance and capabilities of each system in terms of 
throughput, yield, purity, cell viability, and the capability for on-chip post-processing after cancer cell capture. 

2. Magnetic Activated Micro-Cell Sorters 
Magnetics based flow detection can enable several improvements in cytometry-based analyses. Magnetic detec-
tors are extremely small (tens of micrometers) and rugged, representing an intriguing opportunity to reduce the 
size and complexity of cytometers for field-deployment. The small footprint also points to the potential to create 
highly multiplexed systems with hundreds of parallel channels and dramatically increase sample throughput. 
Magnetic activated cell sorting relies on the interaction between cell surface antigens and antibodies conjugated 
to suspended magnetic particles Compared to cell-affinity micro-chromatography, where the retrieval of cap-
tured cancer cells can be difficult, magnetic bead-based techniques readily permit the manipulation of captured 
cancer cells using local magnetic fields Table 1. Liu and Pang et al. demonstrated the first microfluidic device 
for isolating low abundance cancer cells from a red blood cell (RBC) suspension using magnetic cell separation 
Figure 1(A). In this system, a hexagonal array of nickel micro-pillars was integrated onto the bottom of a mi-
cro-fluidic channel and used to generate magnetic field gradients to efficiently trap super paramagnetic beads. 
The trapped magnetic beads functioned as a capture zone, followed by in situ chemical and biological modifica-
tions to functionalize the surface of beads with specific antibodies. Based on the interaction between the specific 
antibodies and N-acetylglucosamine on the cell membrane, A549 cancer cells spiked in RBCs were effectively 
captured and sorted on the microfluidic device with a capture rate between 62% and 74%. Antibody-coated 
magnetic beads were also used in a micro-fluidic device for the serial selection of cell subpopulations. As illu-
strated in Figure 1(B), this separation system consists of two separate compartments, each containing magnetic 
beads functionalized with different surface membrane protein receptors specific to prostate cancer cells (PSMA 
and CD10). As a cell suspension is introduced to the first array, the cells expressing CD10 are immobilized onto 
the magnetic beads while CD10 cells pass through this chamber and into the second compartment. PSMA+ cells 
bind to the magnetic beads located in the second compartment after which the remaining cells are flushed from 
the system. Thus, PSMA+/CD10 and CD10+ prostate cancer cell subpopulations can be isolated. 

In order to further increase the surface-to-volume ratio of magnetic beads for cell sorting, Saliba and Viovy et 
al. developed a method using columns of bio-functionalized super-para-magnetic beads self-assembled in a mi-
crofluidic channel. In this system, a hexagonal array of magnetic ink was first patterned at the bottom of micro-
fluidic channels. Beads coated with anti-bodies were then injected into the channel and allowed to settle down. 
Upon application of an external vertical magnetic field, the magentic beads assembled on top of the ink dots to 
form a regular array of columns.  

Tests using cell line mixtures demonstrated a capture recovery rate greater than 94% and the capability to cul-
tivate the captured cells on chip. Furthermore, clinical samples (blood, pleural effusion, and fine needle aspirates) 
from healthy donors and patients with B-cell hematological malignant tumors were analyzed in the microfluidic 
chamber. Lien and Lee reported Multi-functional, integrated microfluidic devices capable of cancer cell separa-
tion, cell lysis and genetic identification. This platform consisted of an incubation module where target cancer 
cells are selectively captured onto functionalized magnetic beads, a control module for sample transportation, 
and a nucleic acid amplification module for cell lysis and genetic identification Figure 1(C). Cancer cells (e.g., 
lung and ovarian carcinoma) were spiked into whole blood samples and loaded into the incubation chamber with 
pre-loaded magnetic beads coated with monoclonal antibodies. The cancer cells were specifically immobilized 
onto the surface of the magnetic beads with a recovery rate higher than 90%. 

3. Size-Based Cancer Cell Capture and Separation 
Differences in cell size can be exploited for microfluidic cancer cell selection without the knowledge of target 
cells’ biochemical characteristics. Size-based cell separation is attractive, for instance, for capturing CTCs since 
these cells are much larger than other cells found in whole blood Table 2. Mohamed et al. reported the first 
size-based microfluidic cancer cell separation device which featured on-chip micro-filters. The device consisted 
of four regions with decreasing channel widths (20 mm, 15 mm, 10 mm, and 5 mm) and a constant channel 
depth (20 mm). Cultured neuroblastoma cells mixed with whole blood were injected into the device where the 
10 mm wide channels trapped the cancer cells. Zheng and Tai et al. developed a parylene membrane micro-filter 
device with circular holes (10 mm diameter) with a center to center distance between adjacent pores of 20 mm.  
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Table 1. Magnetic activated micro-cell sorters for cancer cell capture.                                              

Cell capture structures Targeted cells Carrier medium and  
control cells 

Target cell  
recovery rate Capture purity 

A nickel micropillar  
array + magnetic 

beads functionalized with 
wheat germ agglutinin 

Human lung cancer 
cells of A549 

Human RBCs +  
culture medium 62% - 74%  93% (initial ratio 

A549:RBCs 1/4 1:10) 

A paramagnetic array of 80% 
Ni and 20% Fe+ magnetic  
beads complementary to  
anti-CD10 antibodies in  

chamber 1 and anti-PSMA  
antibodies in chamber 2 

Human prostate  
cancer cells of  

LNCaP incubated  
with PSMA 
antibodies 

LNCaP incubated with  
CD10 antibodies + PBS 

50% - 70% of 
LNCaP incubated  

with PSMA  
antibodies in  
chamber 2 

10% of LNCaP 
incubated with CD10 

antibodies in chamber 2 
(initial mixture ratio of 

1:1) 

External permanent magnet  
+ magnetic beads coated  

with Anti-EpCAM (Ber-EP4) 

Human ovarian cancer 
cells of BG-1 and 

lung cancer  
cells of AS2 

Blood samples from healthy  
donors (106 cells per ml) 

95.1% for BG-1 
cells and 92.7%  

for AS2 cells 
NA 

An array of magnetic  
dots + self-assembled  
magnetic beads coated  

with anti-CD19 antibodies 

Human lymphoma 
cells of Raji CCL-86 

Human lymphoma cells of  
Jurkat TIB152 + PBS  
(2 × 106 cells per ml) 

97% ± 2% of  
Raji cells 

<2% (capture of  
Jurkat TIB152 cells) 

An array of magnetic  
dots + self-assembled  

magnetic beads coated with 
anti-CD19 antibodies 

B-cell hematological 
malignant tumors 

(leukemia and 
lymphoma) 

Clinical samples (blood, pleural 
effusion, and fine needle aspirates) 

from chronic lymphocytic 
leukemia, mantle cell lymphoma, 

follicular lymphoma and two 
healthy volunteers 

Consistent immunophenotype and  
morphology results with those obtained  

by flow cytometry 

External permanent  
magnet + self-assembled  
magnetic bead patterns 

coated with 5D10 antibodies 

Human breast cancer 
cells of MCF-7 

Human lymphoma cells of  
Jurkat TIB152 + PBS  

(106cells per ml for both  
MCF-7 and Jurkat cells) 

85% ± 10% of 
MCF-7 

<5% (capture of  
Jurkat 

TIB152 cells) 

A nickel micropillar  
array + magnetic 

beads functionalized  
with wheat germ 

agglutinin 

Human lung cancer 
cells of A549 PBS A total mass of 90.6 ng of  

captured A549 cells 

External permanent  
magnet + Fe3O4 

magnetic nanoparticles  
conjugated to 
Anti-EpCAM 

Human colon cancer 
cells of COLO205 and 
human breast cancer 

cells of SK-BR-3 

Blood samples from  
healthy donors 

90% and 86% for 
COLO205 and 

SK-BR-3 
cells, respectively 

NA 

 
The size difference between CTCs and human blood cells was exploited to test 57 blood samples from patients 
with metastatic prostate, breast, colon, or bladder cancer. The results demonstrated CTC capture and identifica-
tion in 51 of 57 patients compared with only 26 patients in 57 patients using the cell membrane during the trap-
ping process, and the device enabled via CTC conventional Cell Search method. However, this process resulted 
in low capture cell viability due to the large stresses that developed in the cell membrane during the cell capture 
process. Zheng and Tai et al. further developed a double-membrane device to decrease stresses experienced by 
capture Figure 2(A). In this device, a second porous membrane was incorporated below the first membrane. The 
por positions between the two membranes were intentionally misaligned. This bottom membrane provided sup-
port for the trapped cells to effectively reduce flow-induced stress on the cell membrane. Tan and Lim et al. de-
veloped a microfluidic device with multiple arrays of crescent-shaped wells Figure 2(B) to isolate cancer cells 
from spiked blood [68] and patient whole-blood samples. Gaps (5 mm) were made within each of the cres-
cent-shaped traps to ensure the complete removal of other blood constituents due to their ability to traverse nar-
row constrictions. After cancer cell capture, a reverse flow was used to retrieve the captured cancer cells from 
the device. Isolation efficiencies higher than 80% were achieved for breast and colon cancer cell lines. In addi-
tion, this device was able to successfully detect and retrieve CTCs from the peripheral blood of patients with  
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Figure 1. Magnetic activated micro-cell sorters. (A) Step by step illustration of the first magnetic activated micro-cell sorter 
for cancer cell capture. (B) Schematic of a microfluidic device for serial selection of cellular subpopulations by the use of 
antibody-coated magnetic beads. (C) An integrated magnetic-based cancer cell capture platform, consisting of an incubator 
for the magnetic beads to capture cancer cells, a control module for sample transportation, and a nucleic acid amplification 
module for cell lysis and genetic identification.                                                                
 
metastatic lung cancer. Di Carlo et al. utilized microscale laminar vortices combined with inertial focusing to 
selectively isolate and trap larger cancer cells spiked into whole blood while smaller blood cells were flushed 
out of the device Figure 2(C). Multiple micro scale laminar vortices were created on chip with processing rates 
as high as 7.5 × 106 cells per second. The reported cell recovery rates for these devices were 23% for MCF-7 
cells and10% for HeLa cells. 

4. Dielectrophoresis  
Dielectrophoresis (DEP) uses the polarization of cells in non-uniform electrical fields to exert forces on cells. 
DEP forces depend on factors such as cell membrane and cytoplasm electrical properties as well as cell size.  
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Figure 2. Microfluidic devices for cancer cell capture and separation based 
on cell size differences. (A) A 3D parylene membrane micro-filter. (B) A 
PDMS micro-filter with crescent-shaped isolation wells captured cancer cells. 
(C) A microdevice for trapping large cells and eluting small cells by combin- 
ing microscale laminar vortices with inertial focusing.                     

 
DEP devices have been developed for separating cancer cells Table 3, based on differences in cells’ response to 
electric fields [90]. Becker and Gascoyne et al. reported the first dielectric affinity column Figure 3(A) for can-
cer cell separation in which human leukaemia cells suspended within normal blood cells were retained on mi-
croelectrode arrays while normal blood cells were eluted [91]. The cancer cells were subsequently released for 
collection by the removal of the DEP field. Becker and Gascoyne et al. further demonstrated the applicability of 
this method for the separation of epithelial cancer cells (MDA-231 cells) from diluted blood and reported a re-
covery rate of 95% [92] [93]. 

Gascoyne et al. proposed DEP flow-field fractionation (DEP-FFF) wherein DEP forces are generated to levi-
tate suspended cells to different equilibrium heights within amicrofluidic chamber, based on variations of cells’ 
electrical properties [94]. The levitated cells are transported at different flow velocities upon the application of 
fluid flow Figure 3(B). Using this approach, human leukemic (HL-60) cells, 99, 106 MDA-435 cells, 101, 102 
MDA-468 cells and MDA-231 cells 113 were successfully separated from background cell populations. To en-
hance sorting sensitivities, a 3D-asymmetric microelectrode setup was developed for cancer cell separation 
Figure 3(C). An alternative method for separating cancer cells has been demonstrated by combining mul-
ti-orifice flow fractionation (MOFF) with DEP. 

Figure 3(D), when cell samples were introduced through the inlet, most of the blood cells were separated via  
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Table 2. Cell size-based cancer cell separation microfluidic devices.                                               

Cell capture structures Targeted cells Carrier medium and  
control cells 

Target cell  
recovery rate 

Capture purity 
 

Four successively  
narrower 

polyurethane channels 

Human neuroblastoma  
cells 

Human whole blood or 
isolated mononuclear cells 

in PBS 
NA NA 

Glass based pool and  
dam structure 

Human lung cancer  
cells of SPC-A- 

Human blood from healthy 
donors (106 RBCs and 2 × 

105 cancer cells) 
99.9% NA 

One-layer parylene-C 
membrane micro-filters 

Human prostate cancer  
cells of LNCaP 

Human blood samples from 
healthy donors (50 - 500 cell 

per ml) 
89.5% ± 9.5% NA 

One-layer parylene-C 
membrane micro-filter 

Human breast cancer cells of 
MCF-7, SK-Br-3, and MDA-231, 
bladder cancer cells of J82, T24 

andRT4 and prostate cancer cells 
of LNCaP 

Human blood samples from 
healthy donors (5 cells per 

ml) 

96.5% (≥1 cells) and 
64% (≥3 cells) NA 

One-layer parylene-C 
membrane micro-filter CTCs 

Blood samples from patients 
with metastatic prostate, breast, 

colon, or bladder cancer 

CTC identification  
in 51 of 57 patient 

samples 
NA 

3D parylene-C  
membrane 

micro-filters 

Human prostate cancer cells of 
LNCaP and breast cancer  

cells of MCF-7 

Blood samples from health 
donors (~3 MCF-7 and 

~100 LNCaP cells per ml) 
86.5% ± 5.3% NA 

PDMS based crescent 
shaped isolation wells 

Human breast and cancer cells of 
MCF-7 and MDA-231, colon 

cancer cells of HT-29 

Blood samples from healthy 
donors (100 cancer cells per 

ml) 
>80% >80% 

PDMS based crescent 
shaped isolation well 

Human breast cancer cells of 
MCF-7 and MDA-231, gastric 
cancer cells of AGS and N87, 
hepatocellular cancer cells of 

HepG2 and HuH7, tongue cancer 
cells of CAL27 and pharynx 

cancer cells of FADU 

PBS and whole blood 
samples from healthy 

donors (100 cancer cells per 
ml) 

~80% Mean value  
of 89% 

PDMS based crescent 
shaped isolation wells CTCs Blood samples from patients 

with metastatic lung cancer 
CTC identification in 5 

of 5 patient samples 
Mean value  

of 83% 

Size-selective  
micro-cavity 

arrays made of nickel 

Human lung cancer cells of 
NCI-H358, breast cancer cells of 

MCF-7, gastric cancer cells of 
AGS and SNU-1, and colon 

cancer cells of SW620 

Blood samples from healthy 
donors (10 - 100 cancer cells 

per ml) 
>80% NA 

PDMS based dam 
structures + lectin 

cocanavalin A 
Human leukemic cells of K562 

Blood from healthy mice 
(106 RBCs and 2 ×  

105 K562 cells) 
84% NA 

Polyurethane-methacrylate 
based lateral micro-filters 

with arrays of pillars 

Human breast cancer cells of 
MCF-7 (fixed and unfixed) 

Blood samples from healthy 
donors 

~90% (fixed cancer 
cells) and~50% 
(unfixed cells 

NA 

Inertial flow in spiral  
micro-channels  
made of PDMS 

Human neuroblastoma cells 
ofSH-SY5Y and rat glioma  

cells of C6 
PCB ~80% NA 

PDMS based expansion-  
contraction reservoirs to 
produce micro-vortices 

Human cervical cancer cells of 
HeLa and breast cancer cells of 

MCF-7 

Blood samples containing 
leukocytes only (1:100 of 
cancer cells to leukocytes) 

~23% (MCF-7) 
and~10% (HeLa) 

7.1-fold  
enrichment for 

MCF-7 and 5.5-fold 

PDMS based high aspect 
ratio rectangular  

micro-channels patterned 
with a contraction- 

expansion array 

Human breast cancer cells of 
MCF-7 

PBS and blood samples (500 
MCF-7 cells per ml) 

>90% (MCF-7 in 
PBS) and ~80% 
(MCF-7 in blood 

samples 

3.3 × 105-fold 
enrichment over 
RBCs and 1.2 × 

104-fold enrichment 
over 

leukocytes 
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Figure 3. Microfluidic DEP devices for cancer cell separation. (A) A dielectric affinity column for cancer cell separation 
where large cancer cells are trapped on electrode tips while small blood cells are eluted. (B) DEP-FFF combines DEP, 
sedimentation and hydrodynamic forces to influence cell positions in the hydrodynamic flow profile. (C) A 3D-asymmetric 
microelectrode system for DEP cell separation, reproduced with permission. (D) A continuous separator integrates multi- 
orifice flow fractionation and DEP.                                                                          
 
MOFF and extracted through outlet I while MCF-7 cells with residual blood cells (not fully separated) pro-
ceeded to the DEP separator. At the DEP separator, cancer cells exited through outlet II while the residual blood 
cells passed through outlet III. Since the DEP technique leverages differences in both cellular size and dielectric 
properties, it could potentially lead to a higher cancer cell separation yield and purity compared to micro-filtra- 
tion methods that are based on cell size differences only. However, in practice, due to the limited dielectric dif-
ferences between target cells and carrier cells, this technique’s yield and purity are not as high as expected in 
Table 3. Among the detection techniques discussed in this review, on-chip DEP is the only technique that has 
not yet undergone verifications with clinical samples. Thus, an approach that utilizes a combination of multiple 
cell-capture methods may prove viable for improving the performance of cancer cell capture devices. For exam-
ple, to improve device selectivity and cell-capture efficiency, one may envision a multi-module microfluidic 
system for cancer cell capture in which the first module performs high-throughput concentration and purification 
of target cells while a second module enables the selective capture of cancer cells. Such a device can be realized 
by integrating DEP with cell affinity micro-chromatography, such as for CTC detection. The DEP module 
would function as a pre-concentrator to increase the concentration of CTCs by flushing samples through chan-
nels patterned with electrodes. The concentrated samples would then enter the cell affinity micro-chromato- 
graphy module for high-purity CTC capture. 

5. Conclusion and Outlook 
This review summarized the working principles and experimental results of key microfluidic technologies for 
cancer cell separation and detection. These microfluidic devices are based on magnetic activated micro-cell 
sorting, size-based microfluidic separation, and dielectrophoresis. Despite the recent technological advances, the 
development of a single device capable of simultaneously achieving high throughput, high target cancer cell re-
covery, high purity, and high cell viability remains challenging. Magnetic activated cell sorting readily permits 
the manipulation of captured cancer cells by controlling local magnetic fields for post-capture processing. Lien 
and Lee et al. proposed a multi functional, integrated magnetic bead-based microfluidic device capable of cancer  
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Table 3. DEP-based cancer cell separation microfluidic devices.                                                  

Cell capture structures Targeted cells Carrier medium and 
control cells 

Target cell  
recovery rate Capture purity 

An electrode affinity  
column with interdigitated  

micro-electrodes 

Human leukemic  
cells of HL-60 

Blood cells +  
sucrose solution NA 

~80% (initial mixture of 2 
× 107 HL-60 and 3 × 107 

blood cells) 

A dielectric affinity column 
with interdigitated  
micro-electrodes 

Human breast cancer 
cells of MDA-231 

Blood samples  
+ sucrose 
solution 

NA 
~95% (initial mixture of  
1 × 107 MDA-231 and  

3 × 107 blood cells) 

A dielectric affinity column 
with an interdigitated 

micro-electrodes 

Human breast cancer  
cells of MDA-231 

Blood samples  
+ sucrose 
solution 

>95% NA 

A dielectric affinity column 
with reconfigurable 

electrodes 

Human cervical cancer  
cells of HeLa 

Human peripheral  
blood cells + 

sucrose solution 
NA NA 

A dielectric affinity column 
with a micro-electrode 

array 

Human monocytic cells of 
U937, lymphoma cells of 

Jurkat, HTLV-1, tax-transformed  
human T cells of Ind-2, glioma  

cells of HTB, and 
neuroblastoma cells of SH-SY5Y 

Peripheral blood  
mononuclear 

cells + sucrose  
solution 

47% - 79% >95% 

DEP field flow fraction with 
interdigitated electrodes 

Human leukemic  
cells of HL-60 

WBCs from blood  
samples + 

sucrose solution 
NA NA 

DEP field flow fraction with 
interdigitated electrodes 

Human breast cancer  
cells of MDA-435 

Hematopoietic  
CD34+ stem 

cells + sucrose solution 
NA >99% (initial MDA-435: 

stem cells = 2:3) 

DEP field flow fraction with 
interdigitated electrodes 

Human breast cancer  
cells of MDA-435 

Blood samples +  
sucrose solution NA 

>98% of MDA-435  
(initialMDA-435: 
blood cells = 2:3) 

DEP field flow fraction with 
interdigitated electrodes 

Human breast cancer cells of 
MDA-435, MDA-468 and 

MDA-231 

Peripheral blood  
mononuclear 

cells + sucrose solution 
>90% NA 

Microscope slides coated 
with electrode arrays with 

changing frequencies 

Human breast cancer cells of 
MDA-435 and leukemic  

cells of HL-60 

Blood samples  
+ sucrose NA NA 

Microscope slides coated 
with electrode arrays with 

changing frequencies 
Cancer cells from biopsy 

Biopsied cells  
+ sucrose 
solution 

NA NA 

3D-asymmetric micro-electrodes 
with a continuously varied 

electric field 

Mouse P19 embryonic 
carcinoma cells Mouse RBCs + PBS NA 

81.5% ± 7.6% of P19 EC 
and 94.1% ± 4.3% RBCs 

(initial ratio 1:1) 

3D-asymmetric micro-electrodes 
with a continuously varied 

electric field 

Human breast cancer cells of 
MCF-7 and MCF-10A PBS 

86.67% of 
MCF-7 and 
98.73% of 
MCF-10A 

NA 

DC-dielectrophoresis Fixed WBCs and human breast 
cancer cells of MCF-7 Trehalose solution NA NA 

Guided DEP with a pair of 
planar electrodes 

Human leukemic cells of Jurkat 
and cervical cancer cells of 

HeLa 
Sucrose solution NA NA 

Planar interdigitated 
Microelectrodes 

Clones of mouse melanoma 
B16F10 cells Sucrose solution NA NA 

A planar electrode pair with 
an angle to the flow 

direction 

Human colorectal cancer cells 
of HCT116 and embryonic 
kidney cells of HEK 293 

PBS NA 95% of HCT116 
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cell separation, cell lysis, and genetic identification. Microfiltration methods also permit easy retrieval of cap-
tured cancer cells, as demonstrated by Tan and Lim et al., using a reverse flow to release captured cancer cells in 
multiple arrays of crescent-shaped wells. However, on-chip post-capture processing capabilities have yet to be 
developed.  

However, existing systems are only capable of processing small numbers of cells within a reasonable time 
frame. For example, the total number of cells tested by the optical stretcher was 36 for MCF-10, 26 for MCF-7, 
and 21 for Mod-MCF-7.81. Reported electrical impedance spectroscopy differences of head and neck cancer 
cell lines with different metastatic potentials (686LNvs.686LN-M4e) were also based on the testing of low sam-
ple numbers (n = 72 for the 686LN-M4e cell and n = 57 for the 686LN cell). Furthermore, most microfluidic 
devices to date have been only capable of characterizing a single biophysical parameter.  

The broad spectrum of cell separation technologies described in this review illustrates the high level of inter-
est and activity in this area. The described size based approaches offer a great potential for separation of cell 
subpopulations for which specific markers are not known or cannot be used (e.g., to prevent cell activation). Af-
finity-based approaches (magnetic and electrophoretic) can be employed for fast (~minutes) and continuous se-
paration with high specificity (~99%). For all of the approaches, the design of the devices is such that they can 
be operated in a massively parallel fashion to increase scale and throughput without compromising purity and 
efficacy; although each technique has some limitations e.g. in sized based, the probability of cells damages is 
high and it is considered as nonspecific technique. The magnetic activated micro-cell sorters are easy to develop 
but the time required for screening the tumor is relatively long. Regarding DEP, the need to control precisely 
laminar flow conditions and the electric field frequencies is a more critical point. A challenge for microfluidic 
cancer cell’s biophysical characterization is existing devices that have low sample throughput. To obtain clini-
cally relevant information, these devices must be able to measure biophysical properties of a large number of 
cells with true high throughputs. 
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