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Abstract 
Nowadays, brain function evaluation using Functional Near Infrared Spectroscopy (fNIRS) is one of 
the most potential non-invasive monitoring techniques. This paper concerns usefulness of the 
NIRS signals denoising using the Hemodynamic Evoked Response (HomER) as graphical user inter-
face displays the NIRS data, fast independent component analysis (FASTICA) method to reduce da-
ta dimension and the combined Wavelet & PCA method for enhancing NIRS signals. NIRS signals in-
clude many types of noise, spread across a broad spectrum of frequencies, such as: low frequency 
noise from respiratory interference, 0.1 - 0.3 Hz, Mayer wave, about 0.1 Hz, cardiac interference, 
0.8 - 2.0 Hz, and other artifacts from head and facial motions. Meanwhile, electronic components 
generate high frequency noise. Multi-resolution wavelet and PCA was applied successfully to en-
hance the NIRS signals. It consists of adaptively modifying the wavelet coefficients based on the 
degree of noise contamination of the processed NIRS signal. This is done subsequently to the signal 
pre-processing by reducing data dimension using the FASTICA method. We demonstrate, using 
signal-to-noise ratio and correlation indicators, that the technique used is superior to the wavelet 
and moving average filter and outperforms the proposed denoising NIRS signal. 
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1. Introduction 
NIRS is a new medical device that can be used for long term monitoring of brain activity in several diseases of 
the human brain. Recently several laboratories have focused on NIRS for functional imaging. Among the most 
common methods used in the clinical setting are the traditional methods of magnetic resonance imaging (MRI) 
and positron emission tomography (PET). NIRS is a new technique in the medical imaging field. NIRS is gaining 
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recognition amongst clinicians as it has enabled functional studies of most areas of the brain. These studies focus 
on research for the prevention and treatment of strokes [1] [2], the observation of the state of newborn and adult 
brains, and the rehabilitation [3] of the brain after strokes. Additionally, research is exploring its application to 
the study of certain psychiatric disorders. NIRS works primarily by sensing the oxygen variation in the blood 
through the absorption of red and near-infrared light [4]. In NIRS, a light with a wavelength ranging from 630 
nm to 1000 nm is applied to the head and passes through the brain. The amount of light detected corresponds 
directly to the amount of oxygen present, which is of course a function of the oxy-deoxy hemoglobin concentra-
tion and the amount of blood present in the brain. Oxy-deoxyhemoglob based on the absorption and diffusion 
computation of light in the near infrared spectrum [5]; thus, the corresponding wavelengths can be determined. 
In last 10 years, NIRS has become the focus of several laboratories’ research. The goal is to improve it for use in 
medical equipment for monitoring brain function. When using NIRS to study changes in oxy-deoxygenated he-
moglobin in brain and scalp tissue, noise signals will reflect the subject (patient) movements since such motion 
will cause changes in scalp blood circulation. This type of noise is typically present in NIRS signals and results 
in significant distortion of NIRS data. Unfortunately, such noise appears quite regularly but without constant 
amplitude or location, meaning that it can be found anywhere in the spectrum. This noise is random and we have 
no prior information about such artifacts; however, several methods have been proposed for de-noising and/or 
removal of interference and motion artifacts from NIRS signals. Additionally, numerous methods exist to reduce 
global interference, which causes physiological noise effects. These methods consist of the subtraction of an av-
erage “noise” (cardiac) waveform [6], low-pass filtering, principal components analysis and adaptive filtering 
using a pulse oximetry reference waveform [7] [8]. Unfortunately simple low-pass filtering is a weak method in 
NIRS signals de-noising, because the frequency bands of physiological noise and stimulus evoked activations are 
highly overlapping. Subtraction of an average “noise” method corrects one type of oscillation but does not con-
sider the non-stationarity of the oscillation shape. Recently, adaptive filtering has been proposed as a possible 
method to NIRS noise removal. This latest method requires a reference signal correlated with the noise signal 
that should be removed [9] [10]. This method is also applicable to the removal of motion artifacts. To achieve 
this, we apply “Sources-Detectors”, which are co-located sources and detectors in each optode [11]. Additionally, 
some people suggest the application of wavelet decomposition for the detection and removal of interference 
from the NIRS signal [12]-[14]. All of these methods of denoising a NIRS signal are applied, but their success 
depends upon several factors such as “Sources-Detectors” positions, distance, and type of electronic components 
and the status of subjects.  

In this paper, we address the task of NIRS signal denoising to enhance quality of diagnosis based on the new 
NIRS system. We consider the following candidate technique to obtain NIRS dataset: HomER toolbox, FASTICA, 
and wavelet with PCA. These techniques are the most commonly used NIRS based data. A toolbox HomER is 
applied to be the brain-computer interface and analyse the data in real time. We employ a FASTICA method to 
reduce the dimension of the data. Followed by the wavelet and PCA method to denoising the NIRS signals, per-
formance measurements are employed to evaluate the denoising signals in terms of signal quality enhancement.  

This paper is organized as follows: Section 2 briefly reviews and presents the extract NIRS signal using opti-
cal measurement via a continuous wave. Section 3 displays sources and types of noise. We describe methods 
and materials used in ICA for reducing data dimension, Multivariate Wavelet with PCA for denoising data, and 
the steps of our algorithm with performance measurements in Section 4. Experimental results and discussions 
based on a comparative study are presented in Section 5. Finally, conclusion is provided in Section 6. 

2. Extract NIRS Signals 
While many techniques exist for creating NIRS signals, in our work, we focus on optical measurement by con-
tinuous wave (CW). CW is most commonly used to evaluate brain function imaging. It consists of high temporal 
resolution and low cost photon detectors. Alternative types of NIRS creation are more complex. Some use light 
sources to measure the phase of the recovered signals (Frequency domain) or the temporal distribution of pho-
tons (Time domain). The Frequency and Time domain method is advantageous as it creates a three-dimensional 
(3D) image. NIRS by CW uses light sources to emit a continuous permanent beam at a specific location point in 
the tissue. Near infrared light can enter deep into the scalp via transfusion through the scalp layers: cranium, du-
ra mater, arachnoids, subarachnoid space, pia mater and cerebral cortex (see Figure 1). The light penetration is a 
function of the separation between the source and the detector. As the distance increases the light transfuses  
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Figure 1. Schemas of CW-NIRS data acquisition system and the position of light sources and detectors.    

 
deeper; however, the common limit on separation is usually interoptode distance (IOD) of 3 cm. While we have 
described a single source-single detector system, in actuality we used a network of sources and detectors on the 
subject’s head, each separated by approximately 3 cm. The measured quantity is directly related to the change in 
optical density ΔOD that occurs between the source and the detector. Each detector reports a voltage linearly 
varying with the amount of light detected. To obtain the chromophore concentration (Ci) for each detector, we 
often used Beer-Lambert law to convert light intensity to Ci according to the mathematical model shown in the 
following equation: 

                                  (1) 

where I0 is an input light intensity and I1 is an output light intensity. λ is the wavelength of source light, αi is the 
corresponding in tissue absorption, L is the path length between the optodes emission and detection, and c is the 
chromophore concentration. There are two major issues inherent to the basic form of Beer-Lambert equation. 
First, it does not consider diffusion, which would of course give rise to significant errors in the study. Second, 
the distance between the optodes does not correspond exactly to the distance traveled by light. To correct this 
error, a Differential path Length Factor (DPF) is added to the Beer-Lambert equation. Additionally a constant 
must be added to the equation for the diffusion model. This constant, however, creates a new problem in that 
CW-NIRS cannot evaluate this constant. In order to solve this problem, it is necessary to transform this equation 
to differential form. This does not obtain absolute concentrations; rather, it provides changes in concentration 
over time [15]. Using two different wavelengths, we construct a system of two linear equations with two un-
knowns: 

Δ[HbO2] and Δ[HbR] as shown in the following equation: 

                      (2) 

where Δ[HbO2] and Δ[HbR] are the chromophore concentration changes of oxyhemoglobin and de-oxyhemog- 
lobin respectively. εHbO2(λ) and εHbR(λ) are extinction coefficients, and ΔOD(λ) is the change in optical density 
measured at a given wavelength. 

There are several factors that influence the accuracy of the measurements such as: choice of illumination wa-
velength, optodes positions, noise from electrical interferences, physiology noise and environmental subjectivity. 
Due to this, a signal processing is a necessary step to reduce noise from the light intensity signal. Noise sources 
will be discussed in detail in the following section. 

3. Noise Types 
3.1. Physiological Noise 
NIRS physiological noise is the internal noise that arises while the patient is immobile. Though we find noise on 
NIRS signal, we can’t delete this type of noise because we have almost no information about it. To deal with it,  
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we use an average filter to reduce the power of the noise. Sources of this noise found in the NIRS signal is the 
frequency of the heartbeat, about 0.7 to 1.5 Hz, the frequency of blood pressure or Mayer wave, 0.1 Hz, and the 
frequency of breathing, between 0.13 and 0.33 Hz. These frequencies appear in the signal as noise. Additionally, 
hemodynamic fluctuation cycle is considered noise; however, this particular noise is useful in identifying normal 
and sick subjects. 

3.2. Electronics Components and Experimental Noise 
Electronic noise results from the electronic components used in the experiment and is generally found in the 
frequency domain. To eliminate it, we always use a low-pass filter. Interference light can be minimized by mod-
ulating the emitted light and demodulating the detected signal. Additional experimental noise is motion artifact. 
This noise is difficult to handle because motion artifact appears as appropriate information. This is due to optode 
position and weak contact between electrodes and head. Recently several methods have been proposed to reduce 
the impact of motion artifact using Wiener, Kalman filtering and Wavelet-based [16]-[18], to add to the filtering 
proposed in the introduction. Finally, to improve the quality of our data, it’s necessary to ensure we have good 
coupling with the skin. With all this, if there are no physiological oscillations present, meaning there is no signal 
detection from our optical receiver, then it is clear that we have a problem in optode. Figure 2 presents types of 
signals and noises from NIRS. 

4. Materials and Methods 
Schematic representation of a NIRS system for brain functional evaluation is shown in Figure 1. The dataset is 
obtained from Polystim laboratory, Montreal, Canada. Raw data of 47 patients have a stroke disease has been 
analyzed to test the performance of the proposed approach. The age of the patients in the dataset ranges from 20 
to 70 years. In the following, a brief description of signals extraction using the NIRS system and their enhance-
ment signals. Here, the NIRS signals were analyzed in preprocessing to get the Δ[HbO2] and Δ[HbR]. 

As mentioned above, each type of filter discussed can help in de-noising NIRS signal; however, we have no 
filter to efficiently remove all noise types because we have a variable frequency with variable magnitude. To 
accommodate such variability, we need a filter with adaptability. Each recorder consists of 24 NIRS signals (12 
by λ735 nm and 12 by λ850 nm). We used independent component analysis (ICA) to reduce large dimension da-
ta, and then we applied multivariate de-noising using wavelets and principal component analysis. Figure 3 
presents our methodology for the signal processing to evaluate brain function based on NIRS data.  

 

 
Figure 2. Schemas of physiological oscillations including the cardiac cycle, 
breath cycle, motion artifact (right side) and Mayer waves.                 
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Figure 3. Schematic of the NIRS data analysis, The NIRS data from detectors, then 24 signals, is reduced by ICA method 
and after which de-noising by wavelets and principal component analysis occurs.                                    

 
We extracted 24 NIRS signals; this refers to the coupling of source-detector (S1D1, S1D2, S1D3…S4D1…. 

etc.). We obtained a matrix [24*number of samples] and reduced it by ICA method. This step can reduce the glo- 
bal noise when it appears only in independent signals.  

4.1. Independent Component Analysis Method 
ICA is a multivariate data analysis that has been studied recently in the signal processing community for blind 
source separation. This work proposes to demonstrate the interest of ICA in a particular to reduce the dimension 
of the original data. The concept of ICA assumes that data is linearly mixed via a set of separate independent 
sources and then separates these signal sources according to their statistical independency as measured by mu-
tual information [19]-[22]. The model for ICA can be expressed with the following mathematical equation: 

x A s= ∗                                           (3) 
where x is the mixed signal source vector, A is the mixing matrix and s is the signal source. The goal of ICA 
method is to find a demixing matrix A‒1 that separates the signal source vector S into a set of sources that are 
statistically independent, meaning A‒1 is the inverse matrix to go from the source vector S to the signal vector X. 
The estimated independent source signals should be equal to the original independent source signals. Our com-
puted S depends upon the following expression: 

1S A X−= ∗                                         (4) 
Our algorithm is based on the FASTICA in which negentropy is utilized as it is an excellent measurement of 

non-Gaussianity. This method can be reduced our NIRS data (24 signals* number of samples) without negative-
ly affecting of the appropriate information in each signal. A limiting factor of ICA methods, as with all methods, 
is that it cannot give the same performance with high dimensionality because it will not diffuse the internal 
structure of NIRS data [23] [24]. Figure 4 presents a model of the ICA method and its implementation will pre- 
sent in algorithm subsection. 

4.2. Multivariate Wavelet Denoising NIRS Signals Using PCA 
The wavelet transform method effectively applies with many different types of signals in order to detect fre-
quencies as a function of time. Due to the aforementioned NIRS channels characteristics, multivariate wavelet 
denoising is a good method to reduce global noise from signals. The concept uses principal component analysis 
to kill insignificant principal components in order to obtain an additional denoising effect. This method does not 
aim to discover new variables of interest, but to simply eliminate insignificant components. A multiscale of PCA 
has been proposed by Bakshi in order to fine tune the limits in statistical process control and dimensionality re-
duction of data. Classically, we make PCA based on the symmetric covariance or correlation matrix. This matrix 
can be computed from the data matrix where the covariance matrix is scaled by sums of squares and cross prod-
ucts. We apply the same methodology for computing the correlation matrix. PCA solves the eigenvalues and ei-
genvectors of a square symmetric matrix with sums of squares and cross products. The eigenvector associated 
with the largest eigenvalue reflects the same orientation as the first principal component and the eigenvector as-
sociated with the second largest eigenvalue determines the orientation of the second principal component. The 
trace of this square matrix represents the sum of the eigenvalues, while the number of columns in the matrix 
represents the number of eigenvectors. Multiscale PCA begins with a multivariate signal, “NIRS Signals”, and  
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Figure 4. Model of ICA method in general case.                                       

 
uses a simple representation at each resolution level. By this step, we can generalize a normal PCA of a multiva-
riate signal represented as a matrix of different levels simultaneously. We used PCA to perform an approxima-
tion of the coefficients matrix in the wavelet, and finally we reconstructed NIRS signals by selecting the number 
of retained principal components [25]-[30]. 

4.3. Algorithm 
The Matlab algorithm we developed includes two consecutive parts. First it receives 24 to 32 channels of Near 
Infrared Spectroscopy from a portable NIRS device, which is data based on a HomER toolbox that records and 
processes in real time. Specification of the Toolbox allows the algorithm to perform the 24 or 32 signals and ap-
ply different signals and image processing techniques. In the second part, the algorithm extracts and reduces the 
data using FASTICA toolbox, and then applies a Multivariate Wavelet denoising with PCA in order to produce 
data with as minimal noise as possible. Finally, it measures several performance indicators: Signal to Noise Ra-
tio and correlation in order to evaluate enhanced data or signals [31]. We used 24 signals including 12 signals 
based on λ735 and 12 signals based λ850. We reduced and observed data, with the percent of data reduction set 
to 33.4%. Our algorithm, shown below, is divided into the following three steps: 

1) We use homer Toolbox to extract signals from our data acquisition system and perform our analysis. We 
save our data as NIRS format “.nirs” for independent processing. Additionally, this toolbox possesses the capa-
bility to reconstruct an image from obtained signals. 

2) Next, we use FASTICA for reducing the dimension of our data using negentropy technique according to the 
following stages: 

a) Center the data “signal” or take the mean of the data, E{signal} 
b) Whiten signal to maximize non-Gaussian characteristics: “filtering”, E{xxT}, … 
c) Choose an initial random vector, ||A||=1, … 
d) Normalize the non-Gaussian where A=A/||A||, … 
e) Iterate until convergence 
f) Compute the final independent component where S=[A1 A2 A3 ⋅⋅⋅ An] * X 
g) Separate the sources where S1 S2 S3 S4 ⋅⋅⋅ Sn are source signals. 
3) Lastly, we use Multivariate Wavelet denoising with PCA to reduce the global noise because simply per-

forming step 2 is not sufficient to enhance the quality of the NIRS signals. The technique used here is divided 
into the following stages: 

a) Read multivariate signals (S1⋅⋅⋅Sn) 
b) Determine the level of wavelet decomposition  
c) Choose retained number of principal components based on Kaiser’s rule and perform multiscale of PCA. 
In order to evaluate our performance algorithm for enhancing NIRS signals, we computed the signal to noise 

ratio SNR and correlation coefficient between signals processed and the original signals. These indicators can be 
expressed by the following equations: 

                               (5) 

The SNR indicator computed represents a comparison between the original signal power and the noise signal 
power. SNR value reflects enhancement by signal processing. 

                                   (6) 
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where σs and σx are the standard deviations of source signal and output signal respectively. 
We computed the correlation coefficient as a second indicator for evaluating the relationship between source 

signal (s) and output signal (x), where s is the original signal and x is the signal after noises cancelation. Figure 
5 illustrates in details the processing of the 3 initial steps of the general algorithm. 

5. Experimental Results and Discussions 
We first provide some results on natural NIRS signals in order to understand the improvements obtained using 
our methodology. All the experiments were done on Matlab v. 2012a, run on an Intel core i7, 3.2 GHz processor. 
As we mentioned above, our algorithm divides into 3 principal steps. Via empirical computation, we arrived at 
33.4% reduction of data dimension. FASTICA is efficient for pre-denoising and strong for reducing data dimen-
sion. Based on this, we present results of denoising signals by Wavelet and principal component analysis as illu-
strated in Figure 6. Evaluation of the performance of denoising the signal is presented in Table 1. It presents  

 

 
Figure 5. Scheme of general algorithm applied on NIRS system.                                               

 

 
Figure 6. Result of denoising applied to NIRS signals after FASTICA reduc- 
ed dimension processing.                                           
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Table 1. Results of signal to noise ratio and the correlation.                                                   

 Signal SNR/Wavelet SNR/moving  
average filter 

SNR/wavelet  
& PCA Correlation/Wavelet Correlation/moving  

average filter 
Correlation/wavelet  

& PCA 

λ735 nm
 

S1 39.90 33.43 38.63 0.98 0.96 0.99 

S2 37.50 35.06 34.11 0.89 0.15 0.9 

S3 32.86 29.33 40.2 0.81 0.74 0.83 

S4 20.83 5.35 29.91 0.83 0.50 0.85 

S5 16.63 10.55 12.49 0.91 0.57 0.75 

S6 38.60 24.38 39.19 0.89 0.96 0.99 

S7 39.39 32.84 39.78 0.99 0.41 0.90 

S8 3.20 4.31 2.34 0.98 0.55 0.98 

S9 33.26 36.64 33.70 0.93 0.41 0.94 

S10 47.11 35.40 48.27 0.96 0.65 0.94 

S11 40.51 39.03 41.25 0.92 0.82 0.96 

S12 3.9 32.94 7.59 0.69 0.34 0.72 

λ850 nm
 

S13 32.8 33.43 38.63 0.81 0.96 0.99 

S14 39.9 32.9 7.6 0.7 0.6 0.74 

S15 32.7 33.4 38.6 0.84 0.95 0.9 

S16 39.9 33.4 38.66 0.91 0.96 0.99 

S17 37.51 35.02 34.14 0.9 0.89 0.91 

S18 32.8 29.3 40.22 0.83 0.83 0.85 

S19 20.82 5.32 29.9 0.85 0.84 0.86 

S20 25.1 12.12 32.91 0.88 0.8 0.86 

S21 38.61 24.39 39.2 0.9 0.96 0.99 

S22 46.2 29.8 34.1 0.98 0.73 0.90 

S23 45.6 34.9 40.20 0.89 0.76 0.93 

S24 6.2 6.07 30.36 0.83 0.70 0.95 

Average 30.3 26.5 31.92 0.88 0.7 0.9 

 
signal to noise ratio (SNR) and correlation (Corr) applied on three denoising techniques. These indicators dem-
onstrated good average results for SNR (31.9252) and correlation (0.9005) of multivariate wavelet & PCA. It is 
clear from our SNR and Correlation values for wavelet and multivariate wavelet & PCA that these are, in prin-
ciple, more adapted to the NIRS data. The results of Table 1 show the variation between adaptive methods 
(wavelet and multivariate wavelet & PCA) and a non-adaptive denoising method (moving average filter). Note, 
adaptive methods are not limited to the two methods applied to NIRS data. However, in the case of our NIRS de-
vice we have no ideal signal as reference to apply other adaptive methods. In addition, the noise quantity on 
NIRS signals reflects the type of light sources and detectors. When we have good light quantity emitted, these 
light detectors will give us quality information represented by high magnitude signals. We choose to do a com-
promise among the following constraints in order to get minimum noise and thus receive accurate medical di-
agnoses: miniaturized NIRS device, reduced power consumption, minimized electronic component noise [32] 
[33]. Miniaturized NIRS device used a low power consumption which provides weak amplitude of NIRS signals. 
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6. Conclusions 
In this paper, we presented a new algorithm dedicated to processing NIRS signals based on HomER toolbox for 
extracting NIRS signals, a FASTICA method for reducing NIRS data, and Wavelet & PCA for efficiently denois-
ing NIRS signals, while all sub-algorithms used Matlab v. 2012a.  

Simulation results of the FASTICA method displayed an efficiency in data reducing at 33.4% (3 signals taken 
from 12 signals based on wavelength 735 nm and 3 signals taken from 12 signals based on wavelength 850 nm). 
Denoising achieved using multivariate wavelet & PCA. We provided a performance indicator using SNR 
(31.9252) and correlation (0.9005). These indicators displayed an advantage to our methods relative to conven-
tional methods in denoising signals. Our algorithm is adaptive to several types of biomedical signals such as 
EEG and ECG. Furthermore, the three steps composing our algorithm are relatively simple. Multivariate wavelet 
& PCA uses the principle of thresholding, which makes no complicated assumptions on the structure of the sig-
nal; thus, no particular model of the NIRS signal is needed to be assumed. The denoising method should, there-
fore, be chosen according to the signals in hand. So, in our case, we found Multivariate wavelet & PCA is a 
successful, fully adaptive method for our type of NIRS signals. With this in mind, further work will focus on 
developing a hardware implementation of FPGA in order to achieve robustness and extract high quality infor-
mation for proper medical diagnoses.  
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