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ABSTRACT 

The purpose of the study was to evaluate the effect of 
motion compensation by non-rigid registration com- 
bined with the Karhunen-Loeve Transform (KLT) 
filter on the signal to noise (SNR) and contrast-to- 
noise ratio (CNR) of hybrid gradient-echo echoplanar 
(GRE-EPI) first-pass myocardial perfusion imaging. 
Twenty one consecutive first-pass adenosine stress 
perfusion MR data sets interpreted positive for ische- 
mia or infarction were processed by non-rigid Regis- 
tration followed by KLT filtering. SNR and CNR 
were measured in abnormal and normal myocardium 
in unfiltered and KLT filtered images following non- 
rigid registration to compensate for respiratory and 
other motions. Image artifacts introduced by filtering 
in registered and nonregistered images were evalu-
ated by two observers. There was a statistically sig- 
nificant increase in both SNR and CNR between nor- 
mal and abnormal myocardium with KLT filtering 
(mean SNR increased by 62.18% ± 21.05% and mean 
CNR increased by 58.84% ± 18.06%; p = 0.01). Mo- 
tion correction prior to KLT filtering reduced sig- 
nificantly the occurrence of filter induced artifacts 
(KLT only-artifacts in 42 out of 55 image series vs. 
registered plus KLT-artifacts in 3 out of 55 image 
series). In conclusion the combination of non- rigid 
registration and KLT filtering was shown to in-
crease the SNR and CNR of GRE-EPI perfusion 
images. Subjective evaluation of image artifacts re- 
vealed that prior motion compensation significantly 
reduced the artifacts introduced by the KLT filter- 
ing process.  
 
Keywords: Cardiac First Pass Perfusion; Non-Rigid 
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1. INTRODUCTION 

While cardiovascular magnetic resonance (CMR) plays 
an increasingly important role in the evaluation of pa- 
tients with known or suspected coronary artery disease 
(CAD), the acceptance of first-pass perfusion CMR still 
depends on its ability to meet several conflicting techni- 
cal requirements. The needs for high speed dynamic 
imaging, high in-plane resolution (<3 mm), multi-slice 
coverage of the heart, linearity (quantifiable relationship 
between signal intensity and contrast agent concentration) 
and sufficient contrast to distinguish normal and abnor- 
mally perfused myocardium [1,2] place high demands on 
MRI hardware and image acquisition techniques. The 
signal-to-noise ratio (SNR) and contrast-to-noise ratio 
(CNR) are very often limited in first pass perfusion 
imaging because high temporal resolution tracking of the 
contrast agent bolus and multi-slice coverage require 
ultra-fast image acquisition and the use of parallel im- 
aging techniques. 

Although spatial and/or temporal low pass filtering of 
dynamic first-pass perfusion images can improve SNR, 
simple Fourier filtering causes blurring that may interfere 
with the visual assessment of perfusion defects. To im- 
prove SNR without sacrificing the image quality, wave- 
let temporal [3] and spatial filtering [4] have been ap- 
plied to denoise myocardial first-pass perfusion data. 
While improvement in quantitative results was signifi- 
cant, temporal filtering strictly relies on correct pixel- 
by-pixel correspondences and its applicability is limited 
by significant myocardium motion. As a result, register- 
ing the perfusion images [5-8] to compensate for com- 
plex motion patterns introduced by breathing, irregular 
heart beat and imperfect cardiac gating becomes not only 
a prerequisite for quantification of the myocardial perfu- 
sion data, but a necessary preceding step for temporal 
filtering.  
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The Karhunen-Loeve Transform (KLT) filter has been 
shown to significantly improve SNR in dynamic MRI [9]. 
The KLT filter can be viewed as a “smart averaging” ap- 
proach and its performance is highly dependent on the 
temporal correlation between images in a dynamic series 
[10]. Using the KL transform, the information content of 
a highly correlated time series of images can be represen- 
ted in a relatively small set of eigenimages; other modes 
representing the noise are dropped during the KLT re- 
construction, making the KLT filter very effective at pre- 
serving information and reducing noise. Unfortunately, 
the complex motion patterns introduced by breathing, 
irregular cardiac rhythm and imperfect cardiac gating 
often disturbs the temporal correlation of first-pass per- 
fusion images, and thereby spreads information over a 
larger number of eigenimages, leading to less efficient 
KLT reconstruction and discernible artifacts between 
perfusion frames with significant motion. In order to suc- 
cessfully apply the KLT filter to clinical perfusion data- 
sets with significant myocardial motion, we hereby pro- 
pose to apply non-rigid registration to compensate for re- 
spiratory motion and myocardial deformation between 
image frames. This novel combined approach of non- 
rigid registration prior to filtering is expected to improve 
the effectiveness of KLT filtering by concentrating the 
information content into a smaller number of eigeni- 
mages [11].  

The purpose of this study was to evaluate the effect of 
applying a non-rigid registration algorithm for motion 
correction prior to KLT filtering to reduce image noise 
and improve SNR and CNR in GRE-EPI first-pass perfu- 
sion images.  

2. MATERIALS AND METHODS  

2.1. Magnetic Resonance Imaging 

Twenty-one, first-pass adenosine stress perfusion data- 
sets clinically interpreted as positive for ischemia or 
infarction (diagnosis confirmed by a previous X-ray 
angiography exam in eight cases) were selected, pro- 
cessed and analyzed retrospectively with institutional 
review board (IRB) approval. Each dataset consisting of 
four 10 mm slices (one horizontal long-axis and 3 short- 
axis views with approximately 10 mm gap) was acquired 
using an average field-of-view of 400 mm × 320 mm and 
a matrix size of 160 × 120. Images were acquired every 
heart beat during bolus injection of gadopentetate dimeg- 
lumine (Gd-DTPA) at a dose of 0.1 mmol/Kg with an 
injection rate of 4 mL/s. Perfusion images were acquired 
using a fat suppressed saturation-recovery T1-weighted 
GRE-EPI sequence with TSENSE acceleration rate 2 on 
a 1.5 T MR System (MAGNETOM Avanto, Siemens 
Healthcare, Germany). Acquisition parameters were as 
follows: TR/TE = 5.8 ms/1.09 ms, TI = 100 ms, band-  

width = 1935 Hz/pixel, EPI factor = 4, flip angle = 25˚, 
center-out k-space reordering and 60 measurements (car- 
diac cycles). Patients were instructed to hold their breath 
as long as possible, and afterwards they were allowed to 
breathe freely. For each subject, only those slices (either 
short axis or horizontal long axis views) that showed one 
or more clinically interpreted perfusion defects were 
included in the analysis. This resulted in a total of 55 
image series (out of the 84 available) that were processed 
as described in the following sections. 

2.2. Non-Rigid Registration 

The applied motion correction is based on a variational 
non-rigid registration algorithm [12,13]. This approach 
can be considered as an extension of the classic optical 
flow method. In this framework, a dense deformation 
field is estimated as the solution to a calculus of variation 
problem and the cost function is defined as the sum of 
image similarity measure and regularization terms. The 
classic gradient descent is used to solve the correspon- 
ding Euler equation. To speed-up the convergence and 
avoid local optima, a multi-scale image pyramid is 
created. We selected the local cross correlation ratio as 
the image similarity measure, as its explicit derivative 
can be more efficiently calculated than mutual informa- 
tion and still general enough to cope with intensity fluc- 
tuation and imaging noise between two adjacent per- 
fusion frames. 

The registration of perfusion frames is more robust if 
the two slices to be aligned have similar contrast. A 
consecutive motion compensation strategy was therefore 
developed to improve the performance of registration. 
The first step of proposed registration workflow aims to 
detect a key-frame for the perfusion series. This key- 
frame will be defined as the reference image and relative 
motion between other phases and this reference will be 
corrected. To improve the motion compensation, this 
key-frame should be a frame in which the myocardium 
has good contrast against the blood pool and surrounding 
tissues. We propose a key-frame selection approach 
which is based on the observation that during the contrast 
uptake the image intensity in regions where the contrast 
bolus enters will have higher standard deviation (SD) 
along the time dimension. As the first step, the standard 
deviation image for the perfusion series is computed.  

Although the inconsistent myocardial motion can 
degrade the sharpness of myocardium, the contrast 
between myocardium and surrounding tissues in the SD 
image is found to be consistently noticeable. This 
observation holds true for the described perfusion MR 
pulse sequences. The next step is to select a frame having 
similar contrast as the SD image. For this purpose, the 
cross correlation ratios (CC) between every phase in the  
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perfusion series and the SD image are computed. During 
the passing of contrast bolus, the CC ratio will keep in- 
creasing and reaches its peak around the time point 
where the myocardium blood perfusion is maximized. 
We therefore pick the phase corresponding to the maxi- 
mal CC ratio as the key-frame.  

As shown in Figure 1, motion compensation starts 
from the key-frame and its direct neighbors (previous 
and next). After the first registration is finished, the next 
frame is registered to its warped neighbor that has been 
transformed into the key-frame coordinate system. The 
complete series is corrected by consecutively performing 
multiple 2D-2D registrations between temporally adja- 
cent slices. 

2.3. Karhunen-Loeve Transform (KLT) Filter 

The applied denoising filter is based on the Karhunen 
-Loeve Transform (KLT, a.k.a. Principal Component 
Analysis) in the temporal dimension. The KLT filter 
takes advantage of temporal redundancy in the dynamic 
image series. It can be considered as a “smart averaging” 
method to enhance SNR because any KLT filtered image 
is a linear combination of the original series of images. 
The KLT filtering removes eigenimages associated with 
low variance (or small eigenvalues), therefore the  
 

 

Figure 1. An illustration of the consecutive motion correc- 
tion strategy. Motion compensation starts from the key- 
frame (central image) and its direct neighbors. Every image 
is aligned to its transformed previous neighbor. In this 
scheme, registration is performed between two perfusion 
phases with similar contrast, and every slice is registered to 
the transformed version of its predecessor. Specifically, in 
Step 1 a direct neighboring frame A is registered to the key 
frame; in step 2 the frame A is transformed (wrapped) to the 
coordinate of the key frame, and A’ frame is obtained. Dur-
ing step 3 frame B, successor of frame A is registered to the 
transformed slice A’. In step 4 frame B is transformed 
(wrapped) to the coordinate of the key frame and B’ is ob- 
tained. As a result the motion corrected series consist of 
slices A’, B’. 

filtering operation is a low-rank approximation of the 
original data matrix and is optimal in the 2-norm or 
Frobenius norm sense [14]. 

Similar to a traditional low-pass filter, the KLT filter 
has three steps. First, the temporal KLT is applied to the 
dynamic image series to generate a series of eigenimages 
[15]. Unlike the original images, eigenimages form an 
orthogonal basis set. The total variance of each eigeni- 
mage is the corresponding eigenvalue. Second, the noise- 
dominated eigenimages are identified and eliminated. 
Only eigenimages that contain significant spatially cohe- 
rent structures are kept. It has been shown previously 
that the noise only eigenimages can be automatically se- 
lected based on the width of the central peak of the 2D 
autocorrelation function of each eigenimage—a measure 
of the spatially coherent structure in the image [9]. The 
width of the central peak can be described by its full 
width at half maximum (FWHM). We choose FWHM = 
2.0 pixels as the cutoff criterion; thereby all eigenimages 
with autocorrelation FWHM less than this are considered 
to contain only noise. Third, after identifying those eige- 
nimages dominated by noise, filtered images are recon- 
structed by applying the inverse KLT to the remaining 
eigenimages. By removing the noise-dominated eigeni- 
mages, the noise level is lowered and the SNR is im- 
proved. In other words, the KLT eigenvalues represent 
the distribution of the source data’s energy (variance) 
among each of the eigenimages. When m eigenimages 
are retained in the data set, the percentage energy con- 
tained in the KLT filtered images is the sum of the first 
m eigenvalues scaled by the total energy (sum of all p 
eigenvalues). The root-mean-square (RMS) relative 
noise level (RNL) of the filtered images is defined as the 
ratio of the noise standard deviation after to before KLT 
filtering: 

RNL m p                 (1) 

when m out of p eigenimages pass through the filter. The 
KLT filter takes advantage of the temporal redundancy 
in the image series; the registration process increases 
temporal redundancy such that energy is concentrated 
into fewer eigenimages, thereby improving the efficiency 
of the filtering. Less energy loss through the filtering 
process translates into fewer artifacts in the filtered 
images. However, not every frame has the same temporal 
redundancy as its neighbors and as a result the SNR gain 
is expected to vary across the image series after KLT 
filtering. 

2.4. Quantitative Measurements 

Non-rigid registration was first performed in each series 
to allow for semi-quantitative analysis of signal enhance- 
ment and to improve the temporal correlation among 
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dynamic images prior to KLT filtering. The registered 
images were checked to assess the registration success 
by visually comparing the similarity of the left ventricu- 
lar shape between the unregistered and registered images. 
Subsequently the KLT filter was applied to all image 
series. The mean energy (image information) concen- 
trated in the preserved eigenvalues after registration and 
KLT filtering was evaluated and compared, using a Stu- 
dent t-test, to the mean energy concentrated in the eigeni- 
mages after KLT filtering in images that were not regis- 
tered prior to filtering. Three consecutive image frames 
showing peak contrast enhancement in the normal myo- 
cardium were selected and regions of interest (ROI) were 
manually drawn in abnormal and normal myocardium for 
CNR calculation according to the equation CNR = 
(Snormal – Sabnormal)/σn, where Snormal, Sabnormal are the mean 
signal intensities of normal and abnormal perfused 
myocardium and σn is the standard deviation of the noise 
from a region outside the body. While parallel acqui- 
sition techniques like TSENSE are known to cause spa- 
tial variability in image noise, we only compare relative 
changes in SNR and CNR measured in the same ROIs in 
identical images processed by different methods. In this 
context, ROI-based measurements of signal and noise are 
appropriate. The three consecutive image frames at peak 
contrast enhancement were chosen for signal evaluation 
to account for the variable reduction of the temporal 
noise on each image frame introduced by the application 
of the KLT filter. Identical ROIs were drawn simul- 
taneously in registered unfiltered images and registered 
filtered images using a Leonardo workstation (Siemens 
Healthcare, Germany).  

In order to asses blurring or other image artifacts 
induced by the filtering process, KLT filtered images 
with and without prior registration were evaluated by 
two experienced observers by comparing them to the 
registered non-filtered images. All images series were 
scored by each of the observers according to a binary 
scoring system (artifact = 1, no change = 0). A score of 1 
from either one of the two observers resulted in an over- 
all artifact score for the image series.  

3. RESULTS  

All 55 image series were successfully registered and no 
artifacts due to registration were noted. The comparison 
of energy preservation between non-registered and regis- 
tered KLT filtered images showed that a higher percen- 
tage of energy (hence image information) is preserved 
when the same eigenimage cutoff is applied (Figure 2). 
Motion correction by non-rigid registration resulted in a 
statistically significant increase (t-test, p < 0.001) in the 
mean energy concentrated in the preserved eigenimages 
with KLT filtering (1.46% image information loss  

without motion correction). SNR and CNR were signifi- 
cantly improved by the combination of motion correction 
and KLT filtering. Figure 3 demonstrates the SNR im- 
provement that non-rigid registration plus KLT filtering 
had on the short-axis perfusion images of one patient. 
The expected SNR gain due to KLT filtering calculated 
for each of the 55 dynamic image series was estimated 
using Eq.1 to be 95.95% ± 26.02% increase over the 
baseline value (minimum SNR gain over the baseline 
value: 50.76%, maximum SNR gain: 144.95%). The 
variability in SNR gain was due to variability in the 
automatically calculated filter cutoff from series to series. 
The regionally measured mean increase over baseline in 
SNR with KLT filtering for the three evaluated peak 
enhancement frames was 62.18% (minimum SNR gain 
over baseline value: 21.48%, maximum SNR gain over 
baseline value: 106.81%). This SNR increase translated 
into a statistically significant increase in CNR between 
normal and abnormally perfused myocardium (mean 
increase over baseline value 58.84% ± 18.06%; 2 sample 
t-test, p = 0.01); the increase in CNR over baseline value 
ranged from 10.62% to 111% after registration and fil- 
tering (Figure 4).  

The subjective evaluation of perfusion images by two 
independent observers showed that non-rigid registration 
reduced the occurrence of filter induced artifacts from 42 
out of the 55 image series to only 3 out of 55 series. Fig- 
ure 5 shows a representative example of how the regis- 
tration process eliminates filtering induced artifacts; this 
artifact could have been mistakenly classified as a per- 
fusion defect if only the KLT filtering would have been 
used to improve the overall SNR of the GRE-EPI perfu- 
sion image.  
 

 

Figure 2. An example of percentage cumulative energy (vari-
ance) in the retained eigenmodes. After image registration, 
more energy is preserved when the same eigeni- mage cutoff is 
applied in KLT filtering. 

Copyright © 2012 SciRes.                                                                       OPEN ACCESS 



G. Mihai et al. / J. Biomedical Science and Engineering 5 (2012) 871-877 875

Original     Registered     Registered+KLT

Basal 
 
 
 
 
 
 
Medial 
 
 
 
 
 
 
Apical 

 

Figure 3. The effect of registration and KLT filtering in 
improving the image quality of the short axis first pass 
perfusion MR images in a patient. There is clear 
SNR/CNR improvement with registration and KLT fil-
tering (middle and right column) over the original im-
ages (left column). 
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Figure 4. Boxplots reflecting the SNR and CNR increase due 
to KLT filtering after registration (as compared with only reg-
istered images). 
 

 

Figure 5. Examples of perfusion images at the same dyna- mic 
phase: (A) original, (B) registered, (C) registered and KLT 
filtered and (D) only KLT filtered image. Observe the filter 
induced artifact (arrow, D) that may be mistakenly classified as 
a perfusion defect, while the protective effect of registration 
against the filter induced artifact is clearly seen in C. 

4. DISCUSSION 

In this study, a non-rigid registration method was com- 
bined with a KLT filter method to test the improvement 
in SNR/CNR of the GRE-EPI first pass perfusion acqui- 
sition.  

MR myocardial perfusion imaging offers a non-inva- 
sive, high resolution method to assess tissue perfusion 
and detect myocardial ischemia [16,17] without the use 
of ionizing radiation. Assessment of myocardial perfu- 
sion is generally based on visual evaluation and detection 
of perfusion abnormalities during the first-pass of a con- 
trast bolus. While the introduction of parallel imaging 
and the EPI readout improved considerably the speed of 
acquisition allowing for more complete heart coverage 
and reduction of characteristic “dark rim artifacts”, both 
strategies are applied at the expense of image SNR. Our 
choice of GRE-EPI first pass perfusion images to test the 
combined effect of non-rigid registration and KLT fil- 
tering was inspired by the superior diagnostic confidence 
and fewer image artifacts resulting from this technique 
(despite its lower calculated SNR) as demonstrated in a 
direct side-by-side comparative study with GRE and 
SSFP MR first pass perfusion sequences [18].  

In this study we demonstrated that the SNR and CNR 
of GRE-EPI first-pass perfusion images could be signifi- 
cantly increased through the combination of motion cor- 
rection and KLT filtering. The data showed that prior 
non-rigid registration of the dynamic first-pass images 
prevented filter induced artifacts, opening the door for 
the use of the KLT denoising filter in myocardial per- 
fusion imaging. Successful non-rigid registration impro- 
ved the temporal correlation between images, and was 
shown to preserve more information in the eigenimages 
retained by the KLT filtering process. Based on subjec- 
tive image evaluation, KLT filtering without prior mo- 
tion correction caused discernible artifacts in 76% of the 
image series; with registration, this percentage decreased 
to only 1.8%. While no formal comparison between the 
original data sets and filtered and registered perfusion 
images was performed, the measurable improvements in 
SNR and CNR as the result of registration and filtering 
were visually obvious, and are expected to improve both 
diagnostic accuracy and confidence.  

We note that both Principal Component Analysis 
(PCA) [19] and temporal-spatial wavelet denoising [4] 
have been applied to improve the SNR of first pass per- 
fusion images with promising results in canine models of 
myocardial ischemia. These methods however were only 
shown to work well on animal data where respiratory 
miss-registration was not a factor [4].  

The success of KLT filtering on perfusion images is 
based on the exploitation of the temporal correlation  
between dynamic images. Previous experience with this 
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filter in dynamic cine imaging showed a large reduction 
of temporally random noise without degradation of image 
sharpness or introduction of artifacts [9]. In this scenario, 
no motion correction was needed and the temporal cor- 
relation was sufficient for the success of KLT filtering, 
probably due to the repetitive nature of the cardiac cycle 
and a consistent image contrast [20]. However, in first- 
pass perfusion MR imaging, the image contrast changes 
with the arrival of contrast agent, and complex motion 
patterns introduced by respiration and heart beat irregu- 
larities can disrupt the temporal correlation of the images 
and diminish the effectiveness of temporal filtering 
methods.  

Motion correction is also a critical step in quantitative 
evaluation of signal enhancement and tissue kinetics. 
Various methods have been proposed to correct for mo- 
tion of the left ventricle in first-pass imaging, starting 
with the manual shifting of images to a reference frame 
[21] and continuing with semi-automatic and automatic 
registration approaches [5-8,22] that either use anato- 
mical landmarks for myocardium registration or attempt 
to take into consideration the changes in contrast and 
signal intensity of the myocardium in a perfusion MR 
scan. While any of these methods may work for a speci- 
fic circumstance, there is currently no generally accepted 
approach of myocardium registration and/or image filter- 
ing in perfusion MRI.  

Our study has a few limitations. First, we were unable 
to provide any SNR/CNR assessments between the ori- 
ginal data sets, the KLT-image sets and KLT-motion cor- 
rected data sets. This was prevented by the different 
position of the myocardium between original and non- 
rigid registered data sets. Second, we only used retro- 
spectively evaluated patients and from those only the 
slices with obvious perfusion defects for the SNR/CNR 
evaluation. Another limitation could be the use of hand- 
drawn ROI rather than standard myocardial segmentation 
method to evaluate the quantitative SNR/CNR improve- 
ments.  

Future work will focus on determining the clinical 
utility of this technique that needs to be evaluated in a 
blinded clinical assessment of different approaches used 
to detect perfusion defects. It would be interesting also to 
find out how the current results would generalize to a 
series that covered the entire myocardium, especially 
with regard to the key-frame selection and processing.  

In conclusion, our approach for denoising GRE-EPI 
perfusion images using non-rigid registration and KLT 
filtering significantly increased SNR and CNR and is 
anticipated to further add to the superior diagnostic ad- 
vantage of the GRE-EPI sequence. The improvement in 
image quality may favor both qualitative interpretation 
and quantitative evaluation of first-pass perfusion im- 

ages. 
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