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ABSTRACT  
Evoked potentials (EPs) have been widely used 
to quantify neurological system properties. Tra-
ditional EP analysis methods are developed 
under the condition that the background noises 
in EP are Gaussian distributed. Alpha stable 
distribution, a generalization of Gaussian, is 
better for modeling impulsive noises than 
Gaussian distribution in biomedical signal proc-
essing. Conventional blind separation and es-
timation method of evoked potentials is based 
on second order statistics or high order Statis-
tics. Conventional blind separation and estima-
tion method of evoked potentials is based on 
second order statistics (SOS). In this paper, we 
propose a new algorithm based on minimum 
dispersion criterion and fractional lower order 
statistics. The simulation experiments show that 
the proposed new algorithm is more robust than 
the conventional algorithm. 
 
Keywords: Evoked potentials (EPs), Alpha sta-
ble distribution, Blind source separation, Mini-
mum dispersion (MD), Fractional lower order 
statistics (FLOS) 
 
1. INTRODUCTION 
The brain evoked potentials (EPs) are electrical re-
sponses of the central nervous system to sensory stimuli 
applied in a controlled manner. The EPs have a number 
of clinical applications including critical care, operating 
room monitoring and the diagnosis of a variety of neu-
rological disorders [1, 2]. The analysis of EP characteris-
tics is of special interest in many clinical applications, 
such as the diagnosis of possible brain injury and disor-
ders in the CNS [11, 12]. Thus, the goal in the analysis of 
EPs is currently the estimation from the several poten-
tials, or even from a single potential. In recent years, 
signal processing techniques including adaptive filtering, 
three-order correlation, and singular value decomposition 
(SVD) have been used in fast estimation of EPs. Inde-
pendent component analysis (ICA) appeared as a prom-

ising technique in signal processing. Its main applica-
tions re in feature extraction, blind source separation, 
biomedical signal processing. ICA is based on the fol-
lowing principles. Assume that the original (or source) 
signals have been linearly mixed, and that these mixed 
signals are available. Conventional ICA is optimal in 
approximating the input data in the mean-square error 
sense, describing some second order characteristics of 
the data. Nonlinear ICA [3] method related to higher 
order statistical techniques is a useful extension of stan-
dard ICA. The data are represented in an orthogonal ba-
sis determined merely by the second-order statistics (co-
variance) of the input data [4]. Recent studies [5, 6] show 
that alpha stable distributions is better for modeling im-
pulsive noise, including underwater acoustic, 
low-frequency atmospheric, and impulsive EEG,ECG, 
than Gaussian distribution in signal processing. In gen-
eral, EP signals are always accompanied by ongoing 
electroencephalogram (EEG) signals which are consid-
ered noises in EP analysis. Often the EEG signals are 
assumed to be Gaussian distributed white noise for 
mathematical convenience. However, the EEG signals 
are found to be non-Gaussian in other studies (e.g., [9, 
10]). Consequently, EP analysis algorithms developed 
under the Gaussian EEG assumption may fail or may not 
perform optimally. Developing EP analysis algorithms 
without the Gaussian distribution assumption for the 
background noise thus becomes a key to ensuring the 
reliability of the analysis results. There are two kinds of 
noises in the EP signals obtained. The first one is the 
background EEG noise found in all EP recordings. The 
second one is the noise introduced by the impact accel-
eration experiment. An analysis shows that the alpha 
stable model fits the noises found in the impact accelera-
tion experiment under study better than the Gaussian 
model [8]. 

The kind of alpha stable distribution process has no its 
second order or higher order statistics. It has no close 
form probability density function so that we can only 
describe it by its characteristic function: 
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Figure 1. Evoked potentials (Left: without noises; Right: with noises). 

 
－∞<ξ <∞, δ >0,0<α ≤2, －1≤β ≤1. The charac-
teristic exponent α  determines the shape of the distribu-
tion. Especially, if 2=α , it is a Gaussian distribution. 
The dispersion δ  plays a role analogous to the variance 
of the second order process. β  is the symmetry parame-
ter and μ  is the location parameter. The distinct charac-
teristics of lower order stable process are its impulsive 
waveform and the thick tail in its distribution function. 
Due to the thick tails, lower order stable processes do not 
have finite second or higher-order moments. This feature 
may lead all second order moment based algorithms to fail 
or to function sub-optimally. The typical Evoked poten-
tials are shown in Figure 1. 
 
2. DATA MODEL  
In the following, we present the basic data model used in 
both PCA and the source separation problem plotted in 
Figure 2, and discuss the necessary assumptions. We as-
sume that P signals si(n), i=1,2,…P are non-coherent, sta-
tistically independent. The noiseless linear ICA model 
with instantaneous mixing may be described by the equa-
tion 
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denoting the transpose) are observed signals, S(n)=[s1(n), 
s2(n),…,sP(n)]T are the source signals containing alpha 
stable distribution signals or noises which are supposed to 
be stationary and independent, and A is an unknown mix-
ing matrix. Our goal is to estimate S from X, with appro-
priate assumptions on the statistical properties of the 
source distributions. The solution is  

WZ(n)Y(n)=       (3) 
where W is called the de-mixing matrix, )(nZ  is the 
whitening vector. The general ICA problem requires A to 
be an PN ×  matrix of full column rank, with 

PM ≥ (i.e., there are at least as many mixtures as the 
number of independent sources). In this paper, we assume 
an equal number of sources and sensors to make calcula-
tion simple. We can write the signal model in matrix form 

as ASX = . Here X  is observation data matrix, S is 
source signals data matrix, mixture matrix A  is un-
known.  

 
3. WHITENING BY NORMALIZED 
COVARIANCE MATRIX 
Generally, it is impossible to separate the possible noise in 
the input data from the source signals. In practice, noise 
smears the results in all the separation algorithms. If the 
amount of noise is considerable, the separation results are 
often fairly poor. Some of the noise can usually be filtered 
out using standard PCA if the number of mixtures is larger 
than the number of sources [13].  

We introduce here a two-step separation method that 
achieves the BSS through minimization of a dispersion 
criterion. The first step is a whitening procedure that or-
thogonalizes the mixture matrix. Here we search for a ma-
trix B which transforms mixing matrix A  into a unitary 
matrix. Classically, for a finite variance signal, the whit-
ening matrix is computed as the inverse square root of the 
signal covariance matrix. In our case, impulsive EEG 
noises have infinite variances. However, we can take ad-
vantage from the normalized covariance matrix. 

Theorem 1 [7]：Let )](x),...,2(x),1(x[X N=  be a stable 
process vectors data matrix, then normalized covariance 
matrix of X  
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Converges asymptotically to the finite matrix when N→∞, 
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Theorem 2：We have eigen-decomposition of xΓ  as 
T

x UU 2Γ Ω=  and we can obtain whitening matrix 
TUB 1Ω= , then BXZ =  is orthogonal. 
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Figure 2. Data and system model. 

 
Proof：     
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So we can write 
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x ===  and thus the 

whitening of x(n)  is Bx(n)z(n) = . 

4. DEMIXING ALGORITHM  
The core part and most difficult task in BSS is learning of 
the separating matrix W. During the last years, many neu-
ral blind separation algorithms have been proposed. In the 
following, we discuss and propose separation algorithms 
which are suitable for alpha stable noise environments in 
PCA-type networks.  

Let us consider i th output weight vector PiWi ...2,1, = , 
standard PCA is based on second order statistics and 
maximize the output variances E{|yi(n)|2}=E{|Wi

TZ(n)|2} 
subject to orthogonal constraints Pii IWW =T . As lower 
order alpha stable distribution noise has no second order 
moment, we must select appropriate optimal criterion. 
FLOS and related other statistics are clearly defined in [5, 
6]. So we must use fractional lower order statistics (FLOS) 
[5, 6], that is to say, the PCA problem corresponding to 
p-order moment maximization is solution to optimization 
problem. For each PiWi ...2,1, =  
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Let objective function be 
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Here the Lagrange multiplier is ijλ , imposed on the or-
thogonal constraints. For each neuron, iW  is orthogonal 
to the weight vector ijj ≠,W . 

The estimated gradient of )( iJ W  with respect to iW  
is  
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At the optimum, the gradients must vanish for 
Pi ,...2,1= , and ijj

T
iWW δ= .These can be taken into ac-

count by multiplying (6) by T
jW from left. We can ob-

tain )}W)(Z(|W)(Z|)(Z{W T2TT
i

p
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serting these into (6), we can get 
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A practical gradient algorithm for optimization problem 

(5) is now obtained by inserting (7) into 
))((ˆ)()()1( nJnnn iii WWW ∇−=+ μ ,  

where )(nμ is the gain parameter. The final algorithm is 
thus 
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As )()()( T nnny ii WZ= , (8) can be written as follow 
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Let )(||)( 2 tconjttg p−= , then )(tg  is appropriate PCA 
network nonlinear transform function for lower order al-
pha stable distribution impulse noises.  

Considering that during the iteration error item of gra-

dient ∑
=

−
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1
)()( WWI  might be zero instantaneously, 

we modify (9) in order to improve robustness of algorithm 
as 
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Thus PW,...,W,W 21  can be obtained. 
Let Y(n)=[y1(n), y2(n), ..., yP(n)]T, W=[W1, W2, …, WP]. 

For whole network, solution to W  and optimization 
problem is 
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According above derivation, by using 
)(||)( 2 tconjttg p−= , the algorithm for learning W  is thus 

))(Y())](Y()(W)(Z)[()(W)1(W T ngngnnnnn −−=+ μ  (12) 

5. Performances Analysis 
Different nonlinear function can be applied to different 
blind signal separation problem. Many popular functions 
are g(t)=sign(t) and g(t)=tanh(t) corresponding to thedou-

ble exponential distribution |)|exp(
2
1 x− and the in-

verse-cosine-hyperbolic distribution
)cosh(

11
xπ

, re-

specttively. For the class of symmetric normal inverse  
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Figure 3. The nonlinear function of alpha stable distribution. 

Gaussian (NIG), it is straightforward to obtain according 

to [14]
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α , where K1(.) and 

K2(.) are the modified Bessel function of the second kind 
with index 1 and 2. 

For lower order alpha stable distribution noise has no 
second order or higher order moment, we must select 
appropriate nonlinear function g(t)=| t |p-2 conj(t) (p <α ). 
If t is real data, then g(t)=| t |p-1 sign(t). If p=1, then 
g(t)=sign(t). Figure 3 shows the nonlinear function of 
alpha stable distribution for differentα . 
We start from the learning rule (12), and we assume that 
there exists a square separating matrix TH  such 
that )()( T nn ZHU = . The separating matrix HT must be 
orthogonal. To make the analysis easier, we multiply 
both sides of the learning rule (12) by TH . We obtain  

))()(lg())]()(()(
)()[()()1(

nWnZnZnWgnWH
nZHnnWHnWH

TTT

TTT

−
+=+ μ          (13) 

For the sake of PIHH =T , we can get 

))(WHH)(Z())](ZHH)(W()(WH
)(ZH)[()(WH)1(WH

TTTTT

TTT

nngnngn
nnnn −+=+ μ  (14) 

Define )()( T nn WHQ = , )(()( T nn Q)HW -1= , (14) is written as 
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Geometrically the transformation multiplying by the 
orthogonal matrix TH simply means a rotation to a new 
set of coordinates such that the elements of the input 
vector expressed in these coordinates are statistically 
independent. 

Analogous differential equation of (15) is obtained as 
matrix form: 

)}QU()UQ({)}QU(U{/Q TTT ggEgEdtd −=  (16) 
According to [15], we can easily prove that (16) has 

stable solution. For the sake of Q=HTW, thus W= 
(HT)-1Q is asymptotic stable solution of (12). Figure 4 
shows the stability and convergence of algorithm based 
on SOS and FLOS. From Figure 4, we know the algo-
rithm based on FLOS has better stability and conver-
gence than the algorithm based on SOS. 

6. EXPERIMENTAL RESULTS 
From Section I we know that the noise for EP could be a 
lower order stable process. Through computer simula-
tions, we will demonstrate the effectiveness of the pro-
posed algorithm under alpha stable noise conditions. We 
use correlation coefficient as follows to evaluate the per- 
formances of the proposed algorithms: 
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Experiment 1 

Two independent sources are linearly mixed. One is the 
periodical noise free EP signal, and the period is 128 
points, the sampling frequency is 1000Hz. The other is 
an alpha stable non-Gaussian noise with 7.1=α . Two 
algorithms are used in the experiment, including: (1) 
SOS with nonlinear function )tanh()( ttg = ;(2) FLOS 
with )(||)( 2 tconjttg p−= ，respectively. Figure 4 shows 
the stability and convergence of algorithm based on SOS 
and FLOS. We know the algorithm based on FLOS has 
better stability and convergence than the algorithm based 
on SOS. 

We can get signals waveforms in time domain shown 
in Figure 5, where (a) and (b) are source signals, (c) and 
(d) are separated signals based on SOS, (e) and (f) are 
separated signals based on FLOS. For FLOS algorithm, 
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Figure 4. The stability and convergence. 

 
Figure 5. Separating results: (a)-(b) are the source signals. (c)-(d) are the separated signals with SOS. (e)-(f) are the 
separated signals with FLOS. 

 
Figure 6. Separating results: (a)-(b) are the source signals. (c)-(d) are the separated signals with SOS. (e)-(f) are the 
separated signals with FLOS.   
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Table 1. Comparison between the two algorithms. 

Correlation coefficient 
(FLOS) 

Correlation coefficient 
(SOS) Iteration 

times EP noise EP noise 
50 0.1244 0.1044 0.0044 0.0004 

100 -0.3450 -0.3050 -0.0050 -0.0063 
150 0.4378 0.4378 0.1378 0.1072 
200 0.6766 0.7706 0.1716 0.1212 
250 -0.9291 -0.9091 -0.1711 -0.1451 
300 -0.9287 -0.9107 -0.3937 -0.2231 
350 -0.9293 -0.9113 -0.4993 -0.2923 
400 0.9295 0.9195 0.3945 0.3045 
450 0.9299 0.9292 0.2935 0.1935 
500 -0.9501 -0.9593 -0.2804 -0.1904 

 

 
Figure 7. The correlation coefficients of EP and noise.

the correlation coefficient between the separated and 
source EP signals is 0.9213, and the correlation coeffi-
cient between the separated and source alpha stable 
non-Gaussian noises is –0.9098. 

Experiment 2 

We repeat simulations when GSNR is 20dB. Two inde-
pendent sources are linearly mixed. One is the periodical 
noise free the brain evoked potential (EP) signal, and the 
period is 128 points, the sampling frequency is 1000Hz. 
The other is an alpha stable non-Gaussian noise 
with 7.1=α . Two algorithms are used in the experiment, 
including: (1) SOS with nonlinear function )tanh()( ttg = ; 
(2) FLOS with )(||)( 2 tconjttg p−= , respectively. We can 
get signals in time domain shown in Figure 6, where (a) 
and (b) are source signals, (c) and (d) are separated sig-
nals based on SOS,(e) and (f) are separated signals based 
on FLOS. For FLOS algorithm, the correlation coeffi-
cient between the separated and source EP signals 
is–0.9213, and the correlation coefficient between the 
separated and source alpha stable non-Gaussian noises is 
–0.9098.  

Experiment 3 

Separate the mixed signals again with the new FLOS 
algorithm and conventional SOS algorithm, respectively. 
And the results of 10 independent experiments are shown 

in Table 1. The correlation coefficients of EP and of the 
noise are calculated at some iteration times and plotted in 
Figure 7. From Table 1, we get that the performance of 
the new algorithm is better than the Conventional algo-
rithm.  
7. CONCLUSION 
Alpha stable distributions, is better for modeling impul-
sive noise than Gaussian distribution in biomedical sig-
nal processing. Conventional blind separation and esti-
mation method of evoked potentials is based on second 
order statistics. In this paper, we modify conventional 
algorithms and analyze the stability and convergence 
performance s of the new algorithm. From above simula-
tion, we can easily obtain the following conclusions: the 
proposed class of algorithm of estimation of evoked po-
tentials based on FLOS is more robust than conventional 
algorithms based on SOS so that its separation capability 
is greatly improved under both Gaussian and fractional 
lower order stable distribution noise environments.  
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