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Abstract 
A vibrational formulation, a technique, and an algorithm are proposed for 
assessing the resonance state of a package of rectangular plates and shells 
having point bonds and concentrated masses with different rheological prop-
erties of deformable elements under the influence of harmonic influences. 
The viscoelastic properties of elements are described using the linear Boltz- 
mann-Volterra theory. An algebraic system of equations with complex coeffi-
cients is obtained, which is solved by the Gauss method. Various problems on 
steady-state forced vibrations for structurally inhomogeneous mechanical 
systems consisting of a package of plate and shell systems with concentrated 
masses and shock absorbers installed in it were solved. A number of new 
mechanical effects have been discovered associated with a decrease in the 
maximum resonance amplitudes of the mechanical system as a whole. The 
concept of “global resonance amplitude” is introduced to study the behavior 
of the resonance amplitudes of a mechanical system. An analysis of the nu-
merical results showed that the interaction of resonant amplitudes is observed 
only in structurally inhomogeneous systems (in this case, with elastic and 
viscoelastic elements) and with a noticeable approximation of the natural 
frequencies. 
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1. Introduction 

Mechanical systems, consisting of a package of rectangular plates and shells with 
point bonds and concentrated masses with various rheological properties of de-
formable elements under the influence of harmonic influences, are widely used 
in aircraft manufacturing, mechanical engineering, shipbuilding and other in-
dustries and construction. Therefore, great importance is given to the study of 
forced vibrations of mechanical systems having point bonds and concentrated 
masses with various rheological properties of deformable elements. 

Here are some of these works, for example: In [1] [2], longitudinal and tor-
sional vibrations of a cylindrical shell with concentrated masses at its ends were 
studied. The work [3] [4] [5] is devoted to the calculation of the forced vibra-
tions of shells of revolution and plates with locally attached bodies. In [6] [7] [8], 
development trends of the construction industry, aerospace engineering, ship-
building, chemical and energy industries, and many other branches of modern 
technology are discussed, which are characterized by the increasing complexity 
of design decisions in the design of various objects and, in particular, are usually 
represented by thin-walled spatial structures and on the one hand, they raise the 
requirements for the reliability of these facilities in operation, and on the other 
hand, to reduce its weight and material consumption. Also, when designing 
complex structures, along with traditional metal materials, polymer materials 
and composites based on them are increasingly used [9] [10] [11]. Modern en-
gineering structures made of composite materials consist of a set of elastic and 
viscoelastic damping elements with various rheological properties, various types 
of supports and forces, elastic and viscoelastic constraints with significantly dif-
ferent rheology. Such mechanical systems were classified in works [12] [13] as 
structurally heterogeneous and the task of developing reliable methods and their 
analysis has not yet lost its relevance. 

The request for practice requires the creation of more accurate methods for 
solving such problems, and engineering and research organizations and higher 
educational institutions should focus on computer technologies widely imple-
mented in design. These methods and the algorithms based on them should take 
into account the actual conditions, structures, behavior as much as possible, 
carry our calculations without exceeding geometric idealization, consider the 
real rheological properties of structural elements, the most approximate design 
schemes to full-scale design and, as a result of the calculations, make a scientifi-
cally sound selection of its parameters [14] [15]. Carrying out numerical expe-
riments for complex structurally heterogeneous structures makes it possible to 
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understand the qualitative picture of the influence of various parameters and 
provide reasonable recommendations, not only at the design stage, but also for a 
model and full-scale experiment, to significantly reduce the amount of experi-
mental research. The development and implementation of the finite element 
method make it possible to solve the problem of creating a universal program for 
solving the statics and dynamics of an arbitrary type problem and target struc-
tures [16] [17]. The existence of such programs and software systems for a me-
chanical system consisting of a package of rectangular plates and shells with 
point bonds and concentrated masses with various rheological properties of de-
formable elements under the influence of harmonic influences will make judg-
ments on publications. To analyze such structures, it is more efficient to use a 
model with a discrete continuum [18].  

In [19], a new version of the differential-quadrature method was proposed for 
obtaining the vibrational characteristics of rectangular plates resting on elastic 
bases and bearing any number of spring-loaded masses. The accuracy of the 
technique is demonstrated by comparing the calculated results with published 
data. This work uses an uneven grid distance. The results will also demonstrate 
the effectiveness of the method in solving the problem of vibration of rectangu-
lar plates, bearing any number of sprung masses and resting on elastic bases. 

In [20], a low computational cost developed a technique based on the eigen-
function decomposition method for studying the vibration of rectangular plates 
with a series of moving sprung masses. It is shown that the proposed method 
can significantly increase the computational efficiency of traditional methods by 
eliminating a large number of time-varying components in related matrices of 
ordinary differential equations. The dynamic behavior of the system is then in-
vestigated by conducting a comprehensive parametric study of the dynamic am-
plification of the coefficient of moving loads. The results show that ignoring the 
flexibility of the vehicle suspension system, both in the model with moving force 
and in the model with moving mass, can lead to a significant underestimation of 
the dynamic gain of the coefficient of moving loads. 

These methods are effective when the mass is attached by an elastic element 
and has one degree of freedom. Using the method leads to insurmountable dif-
ficulties when considering a package of plates with concentrated masses and dis-
continuous boundary conditions. 

Currently, methods, algorithms and programs for solving the problems of stat-
ics and dynamics of mechanical systems of multilayer rectangular plates and 
shells of elastic material [21] [22], under the influence of dynamic loads, have 
been sufficiently developed. Further development of plate and shell mechanical 
systems involves taking into account the rheological properties of the material 
under vibrational influences [23] [24] [25] [26]. In these works, the forced vibra-
tions of linear viscoelastic mechanical systems under vibrational stress are mainly 
considered. 

The brief review of the works shows that the study of the dynamic behavior of 
plate mechanical systems with attached masses and various discontinuous boun-
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dary conditions under the influence of external loads is evaluated differently, 
and each theory or method used has its advantages and disadvantages. 

To date, the question of assessing the level of vibrational processes of plate 
and shell dissipative mechanical systems with attached masses with different 
boundary conditions remains insufficiently studied and requires extensive study. 
Therefore, this problem is urgent, requiring a phased solution in the field of 
protection of electronic equipment from dynamic loads. 

2. The Mathematical Formulation of the Problem of Forced  
Steady-State Oscillations of Viscoelastic Systems with  
Point Bonds 

Consider a mechanical system consisting of N isotropic viscoelastic bodies (a 
package of rectangular plates or cylindrical shells) that occupy a volume nV  and 
are limited by surfaces ( )1,2, ,n n NΩ =  . It is assumed that one linear size of 
each body is much smaller than the other two (class of plates and shells).  

For each n, homogeneous boundary conditions are set on a part of the surface
fr bo
n n nΩ = Ω Ω  of the n-the body bo

nΩ , kinematic and (or) dynamic relation-
ships are imposed on the remaining free surface at a finite number of points: 
point rigid, elastic and (or) viscoelastic articulated type supports (rigid sup-
ports can be pinched), rigid elastic and (or) viscoelastic shock absorbers (mass-
less viscoelastic elements), connecting bodies (at 1N > ), concentrated masses

( )1,2, ,qnM q Q=  . The arrangement of bonds and masses on surfaces fr
nΩ  is 

arbitrary. At the edges of the plates or shells, uniform boundary conditions are 
specified. 

In the particular case, such a structurally inhomogeneous viscoelastic system 
consists of a finite number (N) of elastic and (or) viscoelastic with massive and 
without mass elements. 

The forced oscillations of a structurally inhomogeneous viscoelastic mechani-
cal system that occur in the presence of external periodic influences are consi-
dered. The study of this type of oscillation of the system allows us to identify the 
dependence of the maximum amplitudes of displacements and stresses at any 
point in the system on the parameters of the system itself and external influ-
ences. In this case, the dissipative properties of the system are manifested mainly 
in resonance modes. The values of the resonance amplitudes of displacements 
and stresses are used as a quantitative assessment of the intensity of dissipative 
processes. It is required to determine the amplitude-frequency characteristics of 
several characteristic points of a structurally inhomogeneous mechanical system, 
on the basis of these construct a graph of the change in the resonance amplitude 
of the mechanical system depending on the geometric and physic-mechanical 
parameters of the system [23]. 

Suppose that external forces applied to the nth body have different amplitudes, 
but the same frequencies; then the law of their change can be written as 

( ) ( )0e 1, , ; 1, ,i t
nj njP t P n N j J− Ω= = =                (1) 
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where Ω  is the set actual frequency of the external disturbing force; J is the 
number of components of the displacement vector; 0

njP  is the vector of ampli-
tudes of the external disturbing force directed along the j—the component of the 
displacement vector ( ),njP x t ; N is the number of elements in the system. To 
describe the relaxation processes occurring in point bonds or viscoelastic ele-
ments of the system, we accept the linear hereditary Boltzmann-Volterra theory: 

( ) ( ) ( ) ( )d
t

n n n n
mk n mk mkt E t R tσ ε τ ε τ τ

−∞

 
= + − − ⋅ 

 
∫ ,           (2) 

where ( )nR t  is the relaxation core of the n-the viscoelastic element or point 
bond, nE  is the instantaneous elastic modulus. 

In order for the stress to be a periodic function of time in the expression of 
heredity (2), the lower limit of the integral must be equal to minus infinity. The 
voltage will contain an aperiodic component if the lower limit is zero. 

Here, in contrast to the problems of natural vibrations, the smallness of the 
parameters of the relaxation core is not assumed. Poisson’s ratio is assumed 
constant (v = const). If ( ) 0R t = , then the system is elastic. 

We use the principle of possible (virtual) movements, which is realized by an 
equation similar to (2), with an additional term—the virtual work of surface 
forces pAδ : 

0a m pA A A Aσδ δ δ δ+ + + = ,                   (3) 

where , ,I mA A Aσδ δ δ —the virtual work of the internal forces of the bodies of 
the springs, as well as the forces of inertia, taking into account the concentrated 
masses. These works can be represented by the following relationships: 

1

1 1 1 1

n nL LN N
n n n n

a l l l l
n l n l

Aδ σ δε σ δε
′−

′ ′
′= = = =

= − −∑∑ ∑∑  

( ) ( )1
1 1 1 1 1

, d ,
n

QN J N J
q

m n nj nj qn nj n nj
n j n q jV

A U x t U V M U x t Uδ ρ δ δ
= = = = =

 
= − − 

 
∑ ∑ ∑∑ ∑∫    (4) 

( ) ( )
1 1

, d
n

N J

p nj nj
n j S

A P t U x t Sδ δ
= =

= ∑∑ ∫  

1
d

N
n n
mk mk

n
A Vσδ σ δε

=

= −∑ , 

where ( )1 2 3, ,q q q q
n n n nx x x x=  are the coordinates, nL  is the number of deformable 

elements (springs or shock absorbers) between the n and the (n + 1)-bodies, nQ  
is the number of concentrated masses on the n-the body, nL′  is the number of 
elastic (viscoelastic) supports on the n-the body, , , , , ,n n n n n n

mk mk l l l lσ ε σ ε σ ε′ ′  are the 
components of the stress and strain tensors of the n-the body, the l—the spring 
(deformable element or shock absorber) and l′—the elastic (viscoelastic) sup-
port, respectively, njU —the n-the component of the displacement vector, nS  
is the area of the n-th element. 

The law of steady-state oscillations of the nth element of system (4) will be 
sought in the form 
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( ) ( )0, e i t
nj njU x t U x − Ω= ,                     (5) 

where ( )0
njU x  is the complex amplitude of the forced oscillations. In contrast 

to the problem of natural oscillations, here Ω  the frequency will be real. 
We transform the variational Equation (4) in the same way as in [1], substi-

tuting relations (3), (4), (5) into it, and expressing the strains through the com-
ponents of the displacement vector ( ),njU x t . We transform t zτ− =  the integral 
terms of the type (2) contained in the equation by changing the variable to the 
form 

( ) ( ) ( ) ( ) ( )d
t

s cR t i tτ ϕ τ τ ϕ
−∞

− = Γ Ω +Γ Ω  ∫ . 

where ( ) ( ),с sΓ Ω Γ Ω  are relations that differ from the cosine and sine of the 
Fourier transforms only by numerical factors. This will eliminate the time func-
tion ( )tϕ  (which in this case has the form ( ) e i ttϕ − Ω= ) and obtain a variation 
equation for the displacement vector. 

Point connections, as in the problem of natural vibrations, are introduced under 
the sign of variation using the method of Lagrange multipliers. Then the varia-
tional equation will have the form: 

( ) ( )( )( ){ }0 2, , , 0s s s
nj nj nj njG F k L U xδ λ µ + Ω = ,             (6) 

where L- is the total virtual work of the mechanical system, and F- are the kine-
matic conditions of rigid point connections superimposed on the system. 

The task is now formulated as follows: let ( )njP t —the forcing external force 
satisfy relations (1); depending on the frequency Ω  of the driving external force, 
it is required to find the modulus of the displacement vector (amplitude of the 
forced oscillations) ( )0

njU x  satisfying the given homogeneous boundary condi-
tions and equation (6). The Lagrange multipliers (if necessary) can also be de-
termined, the physical meaning of which is the reaction of point rigid bonds. 

3. Construction of Solving Equations of Linear Problems  
on Forced Steady-State Oscillations of Dissipative  
Mechanical Systems 

The solution to variational Equation (6) will be sought in the form of a superpo-
sition of fundamental basic orthogonal functions. For elements free of concen-
trated masses, and all point connections (supports, racks), they are assumed to 
be known. Then, as the desired displacement field satisfying the given homoge-
neous boundary conditions and the variational Equation (6), we take a finite 
sum of these fundamental basic orthogonal functions [24]: 

( ) ( ) ( )0

1
, 1, , ; 1, ,

K
k k

nj nj nj
k

U x x n N j Jγ
=

= Φ = =∑              (7) 

where k
njγ  are the unknown coefficients. 

In the equations obtained after substituting the sum (7) into relation (6), the 
Lagrange coefficients , ,s s r

nj nj njkλ µ  and k
njγ  factors will be generalized coordinates. 
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The dimension of the system will be the same as in the case of free oscillations. It 
can be represented in matrix form as 

( ) ( ) ( )
1

2 0

1 1 1 1

ˆnNN N L
n n n

ln ln n n l n l n nj
n n n l

A f A f A f A B Pξ
′−

′ ′
′= = = =

 
+ Ω + Ω + Ω −Ω = 

 
∑ ∑ ∑∑ .   (8) 

A vector—a column 0
njP


—structurally consists of two subvectors. If equation 
(8) is first differentiated with respect to the Lagrange multipliers , ,s s r

nj nj njkλ µ , 
then the upper subvector of the vector 0P



—becomes zero, and its dimension 
will be equal to the total number of Lagrange multipliers. The vector of ampli-
tudes of the driving forces will be the lower subvector 0

njP


. Moreover, in formula 
(1) it is assumed that the external perturbing force has a distributed character. 
The task, in fact, will not change if the applied force is taken concentrated. Then 
the virtual work on the area of the element will be replaced by the virtual work of 
the concentrated force, and only the amplitude vector 0

njP


 will change, which, 
in addition to the amplitude of the concentrated force, will be filled with zeros. 

We solve the system (8) by the Gauss method with the selection of the main 
element in columns and also in rows. The initial system of Equations (8) has 
complex coefficients; therefore, a program that implements the algorithm was 
written for systems with complex coefficients and complex unknowns. 

The right side of the system, i.e. vector 0
njP


, set in the form  
0 0 0

nj nj njP i IP RP= ⋅ +


,                       (9) 

where 0 0,nj njRP IP  are the real and imaginary parts of the load vector, moreover, 
0 0njIP = , 

The components of the vector of unknowns will be complex quantities, i.e. 
ξ ′ —the vector can be represented as I Riξ ξ ξ′ = + . In order for the coupling 
reactions and the amplitudes of the forced vibrations to make real sense, we 
must accept: ξ ξ′ = , i.e., as the generalized coordinates , , ,s s r k

nj nj nj njkλ µ γ , we 
must take the modules of the corresponding components of the vector ξ . Then 
the components of the displacement vector can be uniquely determined by k

njγ  
formula (7). Substituting the coordinates of any point in the system into the last 
formula, we obtain the amplitude of its oscillations for a given driving frequency 
Ω . 

4. Numerical Implementation of the Algorithm 

In this section, several problems will be solved in which the amplitude-frequency 
characteristics for the displacements of individual points of structurally inho-
mogeneous viscoelastic systems will be obtained and analyzed. 

Example 1. In this problem, the amplitude—frequency characteristics of me-
chanical systems are determined depending on its geometric parameters. The me-
chanical system is a package of two square elastic plates connected in the center 
by one weightless viscoelastic shock absorber. On both plates there is one at-
tached mass. The plates are articulated on the contour, the same in geometric 
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and mechanical parameters: 
11 2 3 22 10 N m , 7.8 10 kg m , 0.35, 0.001 mE hρ ν= × = × = = . 

The relaxation core for viscoelastic shock absorbers is selected as the Rzhanit-
syn-Koltunov core, i.e.: 

( ) 1e tR t A tβ α− −= ,                      (10) 

where , ,A α β  are the kernel parameters [25]. The viscosity of the shock ab-
sorber is adopted such that its creep deformation during the quasistatic process 
is a small fraction (~12%) of the total deformation. 

The parameters of the relaxation core (10) are as follows:  
0.01, 0.1, 0.05A α β= = = . This corresponds to approximately 60% of the con-

tribution of creep strain to the total deformation of a viscoelastic body under a 
quasistatic loading process. The instantaneous stiffness C0 of the shock absorber 
is fixed and taken equal to 10.  

The masses are equal to each other ( 1 2 0.05 kgM M= = ), one of them (M1) 

1 1
0.14, 0.1 mM Mx y= =  is fixed on the lower plate at a point, and the other (M2) 

2 2
0.02 m, 0.1 mM Mx y= =  is fixed on the upper plate at a point or. As a har-

monically exciting load, a driving harmonic load P(t) uniformly distributed over 
the area of both plates is considered. The amplitude vector of this load is equal to 
a unit vector. Depending on the position of the load M2, the amplitudes of dis-
placements of the forced vibrations of the central points ( 0.1 mx y= = ) of the 
lower and upper plates were found depending on the frequency of the forced 
loads. 

Figure 1 and Figure 2 show the case when the mass M2 is at the point of the 
upper plate 

2 2
0.02 m, 0.1 mM Mx y= = . 

At these positions of mass M2, the qualitative pictures of the amplitude—fre- 
quency characteristics of the upper and lower plate. 

It can be seen from Figure 3 and Figure 4 that, at 
2 2

0.18 m, 0.1 mM Mx y= =  
coordinates M2, the damping ability of the structure is the same. 

Thus, the coincidence of the graphs of the amplitude-frequency characteristics 
at different locations of the mass M2 confirms the symmetry of Figure 3 and 
Figure 4. 

Here, two central points on the lower and upper plates are selected as charac-
teristic points. Points with other coordinates give qualitatively the same results. 

Example 2. We consider a structurally no uniform system consisting of elastic 
rectangular plates with concentrated masses, connected in the center by one 
weightless viscoelastic shock absorber (Figure 5). The concentrated mass is ap-
plied at a point 0.1 mx y= =  and 1 1M = . 

In this case, in specific calculations, the kernel parameters are as follows:. The 
coefficient of stiffness moments C0 ranged from 10−4 to 10−1. 

As a harmonically exciting load, a driving harmonic load P(t) uniformly dis-
tributed over the area of the upper plate is considered. The amplitude vector of 
this load is equal to a unit vector. 

https://doi.org/10.4236/jamp.2019.711182


M. Mirziyod et al. 
 

 

DOI: 10.4236/jamp.2019.711182 2679 Journal of Applied Mathematics and Physics 
 

One can introduce the concept of “global resonance amplitude” to study the 
behavior of the resonance amplitude of a mechanical system depending on the 
geometric and physico-mechanical parameters of mechanical systems: where 

maxА kk
Aδ =  is the k-number of the resonant peak. 

Figure 5 shows a graph of the global coefficient of resonance amplitude Аδ  
versus the instantaneous stiffness of the C0 shock absorber for a structurally in-
homogeneous mechanical system of the central point of the bottom plate. De-
pending on the value of C0, the amplitude Аδ  is determined either by the first, 
second, or third resonance peak. The minimum Аδ  value corresponds to the 
value of C0 at which the low frequencies (first and second) of the mechanical 
system get as close as possible. 

The role of the global resonance amplitude depending on C0 for homogeneous 
mechanical systems is played by the resonance amplitude corresponding to the 
first frequency (Figure 5). For dissipative inhomogeneous mechanical systems, 
the resonance amplitude is corresponding to both the first and second frequen-
cies. “Role change” occurs at the point where the real parts of the natural frequen-
cies are closest to each other (Figure 6). 

 

 
Figure 1. Frequency response plotted for the center points of the bottom 
plate at 

1 1
0.14, 0.1 mM Mx y= = , 

2 2
0.02 m, 0.1 mM Mx y= = . 

 

 
Figure 2. Frequency response constructed for the center points of the 
upper plate at 

1 1
0.14, 0.1 mM Mx y= = , 

2 2
0.02 m, 0.1 mM Mx y= = . 
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Figure 3. Frequency response plotted for the center points of the bottom 
plate at 

1 1
0.14, 0.1 mM Mx y= = , 

2 2
0.18 m, 0.1 mM Mx y= = . 

 

 
Figure 4. Frequency response constructed for the center points of the 
upper plate at 

1 1
0.14, 0.1 mM Mx y= = , 

2 2
0.18 m, 0.1 mM Mx y= = . 

 

 
Figure 5. Change in the coefficient of the global resonant am- 
plitude relative to the stiffness of the shock absorber (Struc- 
turally homogeneous system). 

 

 
Figure 6. Change in the coefficient of the global resonant am- 
plitude relative to the stiffness of the shock absorber (Struc- 
turally inhomogeneous system). 
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At this point, i.e. at the point where the “Change of Roles” is observed, the 
global resonance amplitude Аδ  reaches its minimum. At this point, in compar-
ison with other points, the energy intensity will be the highest (intense). 

Thus, the results obtained for the structurally inhomogeneous viscoelastic struc-
ture under consideration are completely consistent with the solutions of the prob-
lem of free damped vibrations and confirm the fact of a sharp increase in the in-
tensity of dissipative processes when the fundamental frequencies approach each 
other in inhomogeneous viscoelastic systems. 

5. Conclusions 

1) Based on the principle of possible displacements, a mathematical formula-
tion and methods for solving the problem of forced vibrations of structurally 
homogeneous and inhomogeneous mechanical systems consisting of a package 
of plates (or shells) with point supports and attached masses under the influence 
of harmonic loads are formulated. 

2) The problems of forced oscillations of dissipative homogeneous and inho-
mogeneous plate systems with concentrated supports and mass attachments are 
solved. 

3) To describe the dissipative properties of the system as a whole, the concept 
of “global resonance amplitude” is introduced. In the case of a structurally ho-
mogeneous mechanical system, the global resonant amplitude is entirely deter-
mined by the resonant amplitude corresponding to the first natural frequency. 

4) In the case of a structurally inhomogeneous mechanical system, the global 
resonance amplitude, depending on the stiffness of the shock absorber, is played 
by the resonance amplitudes corresponding to the first natural frequency (up to 
C = C0), and then the resonant amplitude corresponding to the second natural 
frequency. 

6. Recommendations 

In some cases, the real structure working under vibrational influences can be 
represented as a combination of plate dissipatively inhomogeneous mechanical 
systems with an attached finite number of rigid masses, and others can have a 
complex structure due to the use of various materials with different rheological 
properties. Therefore, when designing such structures, it is constantly necessary 
to solve the problems of calculating the strength of the underlying change in the 
global resonance amplitude from the geometric and physico-mechanical para-
meters of the system’s elements. 
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Designations 

Notation content 

N : the number of system elements 

nV : volume 

( )1,2, ,n n NΩ =  : bounded surfaces 

bo
nΩ : surface of homogeneous boundary conditions 

( )1,2, ,qnM q Q=  : concentrated masses 

fr
nΩ : Surface arrangement of bonds and masses 

Ω : the actual frequency of external disturbing forces 

J: the number of displacement vector components 
0

njP : vector of amplitudes of external disturbing force 

( )nR t : the relaxation core of the nth viscoelastic element 

nE : instant modulus of elasticity 

v: is the Poisson’s ratio 

Аσδ : virtual work of internal forces 

IАδ : virtual work of inertia force 

mАδ : virtual work of concentrated masses 

nL : the number of deformable elements 

nL′ : the number of viscoelastic supports 

nQ : number of concentrated masses on the n-th body 

, , , , ,n n n n n n
mk mk l l l lσ ε σ ε σ ε′ ′ : components of stress and strain tensors n-th body 

njU : n-th component of the displacement vector 

nS : area of the n-th element 

( )0
njU x : complex amplitude of forced oscillations 

( ),njU x t : components of displacement vector 

( ) ( ),с sΓ Ω Γ Ω : relations, from the cosine and sine of the Fourier transforms 

L: total virtual work of the mechanical system 

F: kinematic conditions of rigid point connections 
k
njγ : unknown coefficients 

, ,s s r
nj nj njkλ µ : Lagrange multipliers 

, ,A α β : relaxation core parameters 

0 0,nj njRP IP :real and imaginary parts of the load vector 

I Riξ ξ ξ′ = + : vectors of unknown complex quantities 

M1 and M2: concentrated masses 

Аδ : global resonance amplitude 

C0: koefficient instant shock absorber stiffness 
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