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Abstract 
This paper aims to present, in a unified manner, algebraic techniques for li-
near equations which are valid on both the algebras of quaternions and split 
quaternions. This paper, introduces a concept of v-quaternion, studies the 
problem of v-quaternionic linear equations by means of a complex represen-
tation and a real representation of v-quaternion matrices, and gives two alge-
braic methods for solving v-quaternionic linear equations. This paper also 
gives a unification of algebraic techniques for quaternionic and split quater-
nionic linear equations in quaternionic and split quaternionic mechanics. 
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1. Introduction 

A quaternion, which was found in 1840 by William Rowan Hamilton [1], is in 
the form of 1 2 3 4i j kq q q q q= + + + , 2 2 2i j k 1= = = − , ijk 1= − , where 

1 2 3 4, , ,q q q q ∈R , and ij ji k= − = , jk kj i= − = , ki ik j= − = . Quaternion al-
gebra has been playing a significant role recently in geometric and physical ap-
plications, many geometric problems can be represented by quaternions. In pa-
per [2], the authors showed that a unit timelike quaternion represents a rotation 
in the Minkowski 3 space, and expressed Lorentzian rotation matrix generated 
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with a time like quaternion. In paper [3], the authors studied the problem of us-
ing quaternions in unconstrained nonlinear optimization of 3-D rotations, and 
gave an easy and accurate method for applying the quaternion representation of 
3-D rotations. 

A split quaternion (or coquaternion), which was found in 1849 by James 
Cockle [4], is in the form of 1 2 3 4i j kq q q q q= + + + , 2i 1= − , 2 2j k 1= = , 
ijk 1= , where 1 2 3 4, , ,q q q q ∈R , and ij ji k= − = , jk kj i= − = − , ki ik j= − =  
and denotes the sets of quaternions and split quaternions respectively by H  
and sH . The quaternion ring H  and the split quaternion ring sH  are two 
associative and noncommutative 4-dimensional Clifford algebras, and the split 
quaternion ring sH  contains zero divisors, nilpotent elements and nontrivial 
idempotents. In paper [5], the authors stated the rotations in Minkowski 3 space 
by split quaternions. In paper [6], the authors studied dual split quaternions and 
screw motion in 3-dimensional Lorentzian space, and obtained the components 
of a dual split quaternion by replacing the L-Euler parameters with their split 
dual versions. In paper [7], the authors studied eigenvalue problem of a rotation 
matrix in Minkowski 3 space by using split quaternions, and gave the characte-
rizations of eigenvalues of a rotation matrix in Minkowski 3 space according to 
only first component of the corresponding quaternion. Quaternions and split 
quaternions in the study of geometry and physic are more than those, e.g. 
[8]-[13]. 

A v-quaternion is in the form of  
2 2

1 2 3 4i j k, i 1, j , ij ji k,q q q q q v= + + + = − = = − =          (1.1) 

in which 0 v≠ ∈R , 1 2 3 4, , ,q q q q ∈R , and 2k ijk v= = , jk kj iv= − = − , 
ik ki j= − = − . Let vH  denote the set of v-quaternion. Obviously, the set of all 
v-quaternion is also a noncommutative 4-dimensional Clifford algebra. Specially, 
when 1v = − , the ring of the v-quaternion vH  is the ring of the quaternion H ; 
when 1v = , the ring of the v-quaternion vH  is the ring of the split quaternion 

sH . 
In the geometry research and physical application of quaternion and split qu-

aternion, the problems of solving quaternionic and split quaternionic equations 
are often encountered. In paper [14], by means of a complex representation of 
quaternion matrices, the authors studied the problems of quaternionic linear 
equations, and gave an algorithm for quaternionic linear equations. In paper 
[15], by means of a complex representation and a real representation of split qu-
aternion matrices, the authors studied the split quaternionic least squares prob-
lem, and derived two algebraic methods for finding solutions of the problems in 
split quaternionic mechanics. For the problems of quaternions and split quater-
nions, the scholars need to discuss by classification. However, as two special cas-
es of four-dimensional algebra, it is of theoretical and practical significance to 
solve them in a unified way. This paper aims to present, in a unified manner, al-
gebraic techniques for linear equations which are valid on both the algebras of 
quaternions and split quaternions. This paper, by means of a complex represen-
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tation and a real representation of v-quaternion matrices, studies the problem of 
v-quaternionic linear equations, and gives two algebraic methods for solving 
v-quaternionic linear equations. This paper also gives a unification of algebraic 
techniques for quaternionic and split quaternionic linear equations in quater-
nionic and split quaternionic mechanics. 

Let R  be the real number field, i= ⊕C R R  the complex number field. If 

1 2 3 4i j k vq q q q q= + + + ∈Η , 1 2 3 4i j kq q q q q= − − −  is the conjugate of q. For 
any matrix ( ) m n

st vA a ×= ∈H , ( )stA a= , ( )T
tsA a= , ( )*

tsA a= , 1A−  denote 
the conjugate, the transpose, the conjugate transpose and the inverse of the ma-
trix A, respectively. 

This paper is organized as follows. In Section 2, we give two new matrix re-
presentations of v-quaternion matrix, and discuss some properties and conclu-
sions of complex representation and real representation of v-quaternion matric-
es. In Section 3, we present the complex representation method for solving 
v-quaternionic linear equations and some numerical examples. In Section 4, we 
present the real representation method for solving v-quaternionic linear equa-
tions and some numerical examples. In Section 5, we summarize this paper. 

2. Complex Representation and Real Representation of  
V-Quaternion Matrices  

For any v-quaternion matrix  
( ) ( )1 2 3 4 1 2 3 4 1 2i j k i i j j m n

vA A A A A A A A A B B ×= + + + = + + + = + ∈H ,  

1 2 3 4, , , m nA A A A ×∈R , 1 2, m nB B ×∈C , the complex representation CA  of the 
v-quaternion matrix A is defined to be  

1 2

2 1

,C B vB
A

B B
 

=  
 

                       (2.1) 

and the real representation RA  of the v-quaternion matrix A is defined to be  

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

.R

A A vA vA
A A vA vA

A
A A A A
A A A A

− 
 − =
 −
 

− 

                 (2.2) 

For any v-quaternion matrix , m n
vA B ×∈H , n p

vC ×∈H , a∈R , for  
{ },C Rσ ∈ , it is easy to prove the following equalities by direct calculation.  

( ) ( ) ( ), , ,A B A B aA aA AC A Cσ σ σσ σ σ σ σ+ = + = =         (2.3) 

and  
1 ,C C

m nQ A Q A− =                       (2.4) 

where 
0

0
t

t
t

vI
Q

I
 

=  
 

. 

Similarly, by direct calculation we get the following results.  
1 1 1, , ,R R R R R R

m n m n m nP A P A R A R A S A S A− − −= = =           (2.5) 
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where 

0 0 0
0 0 0

0 0 0
0 0 0

t

t
t

t

t

I
I

P
I

I

− 
 
 =
 
 

− 

, 

0 0 0
0 0 0

0 0 0
0 0 0

t

t
t

t

t

vI
vI

R
I

I

 
 
 =
 
 
 

,  

0 0 0
0 0 0
0 0 0

0 0 0

t

t
t

t

t

vI
vI

S
I

I

 
 − =
 −
 
 

, and 1
t tP P− = − , 1 1

t tR R
v

− = , 1 1
t tS S

v
− = . 

Lemma 2.1 For two special cases of quaternion ( )1v = −  and split quater-
nion ( )1v =  matrices, clearly by (2.1) and (2.2) the complex representation and 
the real representation are respectively to be 

1 2 3 4

2 1 4 31 2

3 4 1 22 1

4 3 2 1

, , .C R m n

A A A A
A A A AB B

A A A
A A A AB B
A A A A

×

− − − 
 −−   = = ∈   − 
 

− 

H      (2.6a) 

1 2 3 4

2 1 4 31 2

3 4 1 22 1

4 3 2 1

, , .C R m n
s

A A A A
A A A AB B

A A A
A A A AB B
A A A A

×

− 
 −   = = ∈   − 
 

− 

H       (2.6b) 

For any v-quaternion matrix m n
vA ×∈H , the rank ( )rank A  of the matrix A is 

defined to be  

( ) ( )1rank rank ,
2

CA A≡                     (2.7) 

or  

( ) ( )1rank rank .
4

RA A≡                     (2.8) 

By the definition of rank and (2.3), it is easy to get the following results by di-
rect calculation. If , m n

vA B ×∈Η , n p
vC ×∈Η , then  

( ) ( ) ( )rank rank rankA B A B+ ≤ +  and ( ) ( ) ( ){ }rank min rank , rankAC A C≤ . 

3. Algebraic Method of Complex Representation  

If ,m n m p
v vA B× ×∈ ∈H H , then by the definition of complex representation and 

(2.3), AX B=  if and only if C C CA X B= . That is AX B=  has a solution X if 
and only if C CA Y B=  has a solution CY X= . 

Theorem 3.1 For ,m n m p
v vA B× ×∈ ∈H H . Then 

1) V-quaternionic linear equations AX B=  have a solution if and only if 

( ) ( )rank rank ,A A B= , i.e. AX B=  has a solution if and only if C CA Y B=  
has a solution, and if ( ) ( )rank rank ,A A B n= = , then v-quaternionic linear eq-
uations AX B=  have a unique solution. 

2) If Y is a solution to C CA Y B= , then the following v-quaternion matrix is a 
solution to AX B= , 
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[ ]( )11 , j ,14 j

p

n n n p
p

I
X I I Y Q YQ

I
v

−
 
 = +
 
  

             (3.1) 

in which 
0

0
t

t
t

vI
Q

I
 

=  
 

. 

Proof: If Y is a solution of C CA Y B= , by (2.4),  

( ) ( )1 1 ,C C C C C C
n p n pA Y B A Q YQ B A Q YQ B− −= ⇔ = ⇔ =       (3.2) 

i.e. 1
n pQ YQ−  is a solution of C CA Y B= , therefore  

( )11ˆ
2 n pY Y Q YQ−= +                      (3.3) 

is also a solution of C CA Y B= . Let  

11 12 2 2

21 22

, , , 1, 2.n p n p
ts

z z
Y z s t

z z
× × 

= ∈ ∈ = 
 

C C             (3.4) 

It is easy to get, by direct calculation,  

1 2 2 2

2 1

ˆ ˆˆ ,
ˆ ˆ

n pz vz
Y

z z
× 

= ∈ 
 

C                   (3.5) 

in which  

( )1 11 22 2 12 21
1 1 1ˆ ˆ, .
2 2

z z z z z z
v

 = + = + 
 

              (3.6) 

By (3.5), we construct a v-quaternion matrix.  

[ ]1 2
1 ˆˆ ˆ j , j .12 j

p

n n
p

I
X z z I I Y

I
v

 
 = + =
 
  

              (3.7) 

Clearly ˆCX Y= . This means that ˆCX Y=  is a solution of C CA Y B= , so X 
is a solution of AX B= . 

From the statement above we get following results. When the v-quaternionic 
linear equations AX B=  have a solution, we can find a solution by a solution 
of complex representation equation C CA Y B=  from the formula (3.1). 

The following two special cases about quaternions and split quaternions come 
from Theorem 3.1 respectively with 1v = −  and 1v = . 

Corollary 3.2 For ,m n m pA B× ×∈ ∈H H . Then 
1) The quaternionic linear equations AX B=  have a solution if and only if 

( ) ( )rank rank ,A A B= , i.e. AX B=  has a solution if and only if C CA Y B=  
has a solution, and if ( ) ( )rank rank ,A A B n= = , then quaternionic linear equa-
tions AX B=  have a unique solution. 

2) If Y is a solution to C CA Y B= , then the following quaternion matrix is a 
solution to AX B= ,  

[ ]( )11 , j ,
j4

p
n n n p

p

I
X I I Y Q YQ

I
−  

= +  − 
              (3.8) 
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in which 
0

0
t

t
t

I
Q

I
− 

=  
 

. 

Corollary 3.3 For ,m n m p
s sA B× ×∈ ∈H H . Then 

1) The split quaternionic linear equations AX B=  have a solution if and 
only if ( ) ( )rank rank ,A A B= , i.e. AX B=  has a solution if and only if 

C CA Y B=  has a solution, and if ( ) ( )rank rank ,A A B n= = , then split quater-
nionic linear equations AX B=  have a unique solution. 

2) If Y is a solution to C CA Y B= , then the following split quaternion matrix 
is a solution to AX B= ,  

[ ]( )11 , j ,
j4

p
n n n p

p

I
X I I Y Q YQ

I
−  

= +  
 

            (3.9) 

in which 
0

0
t

t
t

I
Q

I
 

=  
 

. 

In the similarly way, we have the following result. 
Theorem 3.4 For , ,m n p q m q

v v vA C B× × ×∈ ∈ ∈H H H . Then 
1) V-quaternionic matrix equation AXC B=  has a solution if and only if 

( ) ( )rank rank ,A A B=  and ( )rank rank
C

C
B

 
=  

 
, i.e. AXC B=  has a solution 

if and only if C C CA YC B=  has a solution, and if ( ) ( )rank rank ,A A B n= = , 

( )rank rank
C

C p
B

 
= = 

 
, then v-quaternionic matrix equation AXC B=  has a 

unique solution. 

2) If Y is a solution to C C CA YC B= , then the following v-quaternion matrix 
is a solution to AXC B= , 

[ ]( )11 , j ,14 j

p

n n n p
p

I
X I I Y Q YQ

I
v

−
 
 = +
 
  

            (3.10) 

in which 
0

0
t

t
t

vI
Q

I
 

=  
 

. 

The proof process is similar to the Theorem 3.1. 
Remark 1 The above theorems and corollaries not only give the necessary and 

sufficient conditions for quaternion and split quaternion matrix equations 
,AX B AXC B= =  to have a solution, but also a unification of representation 

for a solution. 
Example 3.1 
Let  

i 1 j i
and .

1 j k 1
A B

+   
= =   − + − −   

 

Find all solutions of the v-quaternionic linear equations AX B= . 
By the complex representation of the v-quaternion matrix, we know  
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i 1 0 i 0
1 0 i 1 0

, ,
0 1 i 1 0 i
1 i 1 0 0 1

C C

v
v v

A B

   
   − − −   = =
   − −
   

− −   

 

and if 7 45
2

v ±
≠ , then ( ) ( )rank rank , 4C C CA A B= = , i.e.  

( ) ( )rank rank , 2A A B= = , then the v-quaternionic linear equations AX B=  
have a unique solution. 

For the matrix equation C CA Y B= , the unique solution is easily found to be  

( )

( )
2 2

2 2

2 2

2 2

1 25 1
7 1 7 1

13 i i
7 1 7 1 .

1 2 5 1
7 1 7 1

1 3i i
7 1 7 1

v vv
v v v v

v vv
v v v vY

v v
v v v v

v v
v v v v

− − +
 − + − + 
 − −−
 

− + − + =
 − − +
 − + − + 

+ 
 − + − + 

 

By (3.1), we easily find the unique solution X of v-quaternionic linear equa-
tions AX B= , and  

[ ]( )1
2 2

T

2 2 2 2

1
1 , j 14 j

5 1 1 2 3 1j i k .
7 1 7 1 7 1 7 1

n pX I I Y Q YQ
v

v v v v
v v v v v v v v

−
 
 = +
 
  

− + − − + = + − − + − + − + − + 

 

The following two examples are special cases of the above conclusion. 
Case 1: For quaternionic linear equations AX B=  with 1v = − . It is easy to 

know CA  and CB  by (2.6a),  

i 1 0 1 i 0
1 0 1 i 1 0

,
0 1 i 1 0 i
1 i 1 0 0 1

C CA B

−   
   − − −   = =
   − −
   

− −   

 

and ( ) ( )rank rank , 4C C CA A B= = . Clearly, the linear equations C CA Y B=  
have a unique solution. The unique solution is easily found to be  

2 1
3 3
1 i 0
3 .
1 2
3 3

10 i
3

Y

 − 
 
 
 

=  
 
 
 
 −
 

 

By (3.8), we easily find the unique solution X of quaternionic linear equations 
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AX B= , and  

[ ]( )
T

1
2 2

11 2 1 1, j j i .
j4 3 3 3n pX I I Y Q YQ−    = + = +   −   

 

Case 2: For split quaternionic linear equations AX B=  with 1v = . It is easy 
to know CA  and CB  by (2.6b),  

i 1 0 1 i 0
1 0 1 i 1 0

,
0 1 i 1 0 i
1 i 1 0 0 1

C CA B

   
   − − −   = =
   − −
   

− −   

 

and ( ) ( )rank rank , 4C C CA A B= = . Clearly, the linear equations C CA Y B=  
have a unique solution. The unique solution is easily found to be  

4 1
5 5
3 2i i
5 5 .
1 4
5 5
2 3i i
5 5

Y

 
 
 
 
 

=  
 
 
 
 − −
 

 

By (3.9), we easily find the unique solution X of split quaternionic linear equa-
tions AX B= , and  

[ ]( )
T

1
2 2

11 4 1 3 2= , j j i k .
j4 5 5 5 5n pX I I Y Q YQ−    + = + +     

 

4. Algebraic Method of Real Representation  

If ,m n m p
v vA B× ×∈ ∈H H , then by the definition of real representation, AX B=  if 

and only if R R RA X B= . That is AX B=  has a solution X if and only if 
R RA Y B=  has a solution RY X= . 
Theorem 4.1 For ,m n m p

v vA B× ×∈ ∈H H . Then 
1) V-quaternionic linear equations AX B=  have a solution if and only if 

( ) ( )rank rank ,A A B= , i.e. AX B=  has a solution if and only if R RA Y B=  
has a solution, and if ( ) ( )rank rank ,A A B n= = , then v-quaternionic linear eq-
uations AX B=  have a unique solution. 

2) If Y is a solution to R RA Y B= , then the following v-quaternion matrix is a 
solution to AX B= , 

[ ]
i

1 1 1 1, i, j, k .j16
1 k

p

p

n n n n n p n p n p p

p

I
I

X I I I I Y P YP R YR S YS Iv v v

I
v

 
 − 

   = − + +      
 
  

    (4.1) 

Proof: If Y is a solution of R RA Y B= , by (2.5),  
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( ) ( )1 1 1 1 ,R R R R R R
m n n p m p n pA Y B P A P P YP P B P A P YP B− − − −= ⇔ = ⇔ =    (4.2) 

i.e. 1
n pP YP−  is a solution of R RA Y B= . Similarly, 1 1,n p n pR YR S YS− −  are also so-

lution of R RA Y B= .  

( )1 1 11ˆ
4
1 1 1
4

n p n p n p

n p n p n p

Y Y P YP R YR S YS

Y P YP R YR S YS
v v

− − −= + + +

 = − + + 
 

              (4.3) 

is also a solution of R RA Y B= . Let  

11 12 13 14

21 22 23 24 4 4

31 32 33 34

41 42 43 44

, , , 1, 2,3, 4.n p n p
ts

z z z z
z z z z

Y z s t
z z z z
z z z z

× ×

 
 
 = ∈ ∈ =
 
 
 

R R      (4.4) 

It is easy to get, by direct calculation,  

1 2 3 4

2 1 4 3 4 4

3 4 1 2

4 3 2 1

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆˆ = ,
ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ

n p

z z vz vz
z z vz vz

Y
z z z z
z z z z

×

− 
 − ∈
 −
 

− 

R                (4.5) 

in which  

( ) ( )1 11 22 33 44 2 21 12 43 34
1 1ˆ ˆ, ,
4 4

z z z z z z z z z z= + + + = − + −      (4.6a) 

3 31 42 13 24 4 41 32 23 14
1 1 1 1 1 1ˆ ˆ, .
4 4

z z z z z z z z z z
v v v v

   = − + − = + + +   
   

   (4.6b) 

By (4.5), we construct a v-quaternion matrix.  

[ ]1 2 3 4

i
1 1ˆˆ ˆ ˆ ˆi j k , i, j, k .j4

1 k

p

p

n n n n p

p

I
I

X z z z z I I I I Y I
v

I
v

 
 − 
 = + + + =  
 
 
  

        (4.7) 

Clearly ˆRX Y= . This means that ˆRX Y=  is a solution of R RA Y B= , so X 
is a solution of AX B= . 

From the statement above we get following results. 
The following two special cases about quaternions and split quaternions come 

from Theorem 4.1 respectively with 1v = −  and 1v = . 
Corollary 4.2 For ,m n m pA B× ×∈ ∈H H . Then 
1) The quaternionic linear equations AX B=  have a solution if and only if 

( ) ( )rank rank ,A A B= , i.e. AX B=  has a solution if and only if R RA Y B=  
has a solution, and if ( ) ( )rank rank ,A A B n= = , then quaternionic linear equa-
tions AX B=  have a unique solution. 

2) If Y is a solution to R RA Y B= , then the following quaternion matrix is a 
solution to AX B= ,  
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[ ]( ) i1 , i, j, k .
j16
k

p

p
n n n n n p n p n p

p

p

I
I

X I I I I Y P YP R YR S YS
I
I

 
 − = − − −
 −
 
−  

     (4.8) 

Corollary 4.3 For ,m n m p
s sA B× ×∈ ∈H H . Then 

1) The split quaternionic linear equations AX B=  have a solution if and 
only if ( ) ( )rank rank ,A A B= , i.e. AX B=  has a solution if and only if 

R RA Y B=  has a solution, and if ( ) ( )rank rank ,A A B n= = , then split quater-
nionic linear equations AX B=  have a unique solution. 

2) If Y is a solution to R RA Y B= , then the following split quaternion matrix 
is a solution to AX B= ,  

[ ]( ) i1 , i, j, k .
j16
k

p

p
n n n n n p n p n p

p

p

I
I

X I I I I Y P YP R YR S YS
I
I

 
 − = − + +
 
 
  

     (4.9) 

In the similarly way, we have the following result. 
Theorem 4.4 For , ,m n p q m q

v v vA C B× × ×∈ ∈ ∈H H H . Then 
1) V-quaternionic matrix equation AXC B=  has a solution if and only if 

( ) ( )rank rank ,A A B=  and ( )rank rank
C

C
B

 
=  

 
, i.e. AXC B=  has a solution 

if and only if R R RA YC B=  has a solution, and if ( ) ( )rank rank ,A A B n= = , 

( )rank rank
C

C p
B

 
= = 

 
, then v-quaternionic matrix equation AXC B=  has a 

unique solution. 
2) If Y is a solution to R R RA YC B= , then the following v-quaternion matrix 

is a solution to AXC B= , 

[ ]
i

1 1 1 1, i, j, k .j16
1 k

p

p

n n n n n p n p n p p

p

I
I

X I I I I Y P YP R YR S YS Iv v v

I
v

 
 − 

   = − + +      
 
  

   (4.10) 

The proof process is similar to the Theorem 4.1. 
Remark 2 The above theorems and corollaries not only give the necessary and 

sufficient conditions for quaternion and split quaternion matrix equations 
,AX B AXC B= =  to have a solution, but also a unification of representation 

for a solution. 
Example 4.1 
For two v-quaternion matrices A and B in Example 3.1, find solutions of the 

v-quaternionic linear equations AX B= . 
By the real representation of the v-quaternion matrix, we know  
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0 1 1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0 0

1 0 0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0

, ,
0 1 0 0 0 1 1 0 0 0 0 1
1 0 0 1 1 0 0 0 0 0 1 0
0 0 0 1 1 0 0 1 0 0 1 0
0 1 1 0 0 0 1 0 0 0 0 1

R R

v
v v

v
v v

A B

− −   
   − − −   
   −
   

− − − −   = =   − −
   

− − −   
   −   

− − − −      

 

and if 7 45
2

v ±
≠ , then ( ) ( )rank rank , 8R R RA A B= = , i.e.  

( ) ( )rank rank , 2A A B= = , then the v-quaternionic linear equations AX B=  
have a unique solution. 

For the matrix equation R RA Y B= , the unique solution is easily found to be  

( )
( )
( )

( )
2

5 1 0 1 2 0
0 3 0 1
0 5 1 0 2 1
3 0 1 01 .

1 2 0 5 1 07 1
0 1 0 3
0 2 1 0 5 1

1 0 3 0

v v v
v v v

v v v
v v v

Y
v vv v

v v
v v

v v

− + − 
 − − 
 − + −
 
− − − =  − − +− +

 
− − 

 − − + 
 − − − 

 

By (4.1), we easily find the unique solution X of v-quaternionic linear equa-
tions AX B= , and  

[ ]2 2 2 2

T

2 2 2 2

1
i

1 1 1 1, i, j, k j16
1 k

5 1 1 2 3 1j i k .
7 1 7 1 7 1 7 1

n p n p n pX I I I I Y P YP R YR S YS
v v v

v
v v v v

v v v v v v v v

 
 − 

   = − + +      
 
  

− + − − + = + − − + − + − + − + 

 

The following two examples are special cases of the above conclusion. 
Case 1: For quaternionic linear equations AX B=  with 1v = − . It is easy to 

know RA  and RB  by (2.6a),  

0 1 1 0 0 1 0 0 0 1 0 0
1 0 0 0 1 0 0 1 1 0 0 0

1 0 0 1 0 0 0 1 1 0 0 0
0 0 1 0 0 1 1 0 0 1 0 0

, ,
0 1 0 0 0 1 1 0 0 0 0 1
1 0 0 1 1 0 0 0 0 0 1 0
0 0 0 1 1 0 0 1 0 0 1 0
0 1 1 0 0 0 1 0 0 0 0 1

R RA B

− − −   
   − − −   
   
   

− −   = =   − −
   

− − −   
   −   

− − − −      

 

https://doi.org/10.4236/jamp.2019.78118


G. Wang et al. 
 

 

DOI: 10.4236/jamp.2019.78118 1729 Journal of Applied Mathematics and Physics 
 

and ( ) ( )rank rank , 8R R CA A B= = . Clearly, the linear equations R RA Y B=  
have a unique solution. The unique solution is easily found to be  

6 0 3 0
0 3 0 0
0 6 0 3
3 0 0 01 .
3 0 6 09
0 0 0 3
0 3 0 6
0 0 3 0

Y

− 
 − 
 
 
 =  
 

− 
 − 
  

 

By (4.8), we easily find the unique solution X of quaternionic linear equations 
AX B= , and  

[ ]( )2 2 2 2

T

1
i1 , i, j, k
j16
k

2 1 1j i .
3 3 3

n p n p n pX I I I I Y P YP R YR S YS

 
 − = − − −
 −
 
− 

 = +  

 

Case 2: For split quaternionic linear equations AX B=  with 1v = . It is easy 
to know RA  and RB  by (2.6b),  

0 1 1 0 0 1 0 0 0 1 0 0
1 0 0 0 1 0 0 1 1 0 0 0

1 0 0 1 0 0 0 1 1 0 0 0
0 0 1 0 0 1 1 0 0 1 0 0

,
0 1 0 0 0 1 1 0 0 0 0 1
1 0 0 1 1 0 0 0 0 0 1 0
0 0 0 1 1 0 0 1 0 0 1 0
0 1 1 0 0 0 1 0 0 0 0 1

R RA B

− −   
   − − −   
   −
   

− − − −   = =   − −
   

− − −   
   −   

− − − −      

 

and ( ) ( )rank rank , 8R R RA A B= = . Clearly, the linear equations R RA Y B=  
have a unique solution. The unique solution is easily found to be  

4 0 1 0
0 3 0 2
0 4 0 1
3 0 2 01 .
1 0 4 05

0 2 0 3
0 1 0 4
2 0 3 0

Y

− − 
 − 
 −
 
− − = −  − −
 

− 
 − 
− −  

 

By (4.9), we easily find the unique solution X of split quaternionic linear equa-
tions AX B= , and  
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[ ]( )2 2 2 2

T

1
i1 , i, j, k
j16
k

4 1 3 2j i k .
5 5 5 5

n p n p n pX I I I I Y P YP R YR S YS

 
 − = − + +
 
 
 

 = + +  

 

5. Conclusion 

The goal of this paper is to solve the quaternion and split quaternion linear equ-
ations in a unified manner. First, we give the definition of the v-quaternion and 
two new matrix representations of v-quaternion matrix. Then we derive two al-
gebraic methods for solving the linear equations of v-quaternion. It is notewor-
thy that this paper not only gives algebraic techniques for solving the linear equ-
ations over v-quaternion algebras, but also a unification of algebraic techniques 
for linear equations in quaternionic and split quaternionic theory. 
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