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Abstract 
This paper studies quenching properties of solutions of a semilinear parabolic 
system with localized reaction sources in a square domain. The system has 
the homogeneous Dirichlet boundary condition and null initial condition. 
We prove that solutions quench simultaneously, and compute approximated 
critical values of the system using a numerical method. 
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1. Introduction 
Let ( ]0,Γ∈ ∞ , a and b be positive constants such that a b≤ , ( ) ( )1,1 1,1D = − ×− , 

[ ] [ ]1,1 1,1D = − × − ,  

{ } [ ]{ } { } [ ]{ } [ ] { }{ } [ ] { }{ }1 1,1 1 1,1 1,1 1 1,1 1D∂ = − × − ∪ × − ∪ − × − ∪ − × . We also let L 

be the operator such that tLu u u= − ∆ . In this paper, we study the following 
semilinear parabolic system: 

( ) ( )

( ) ( )

in 0, ,
1 0,0,

in 0, ,
1 0,0,

aLu D
v t

bLv D
u t

= × Γ − 

= × Γ
− 

                (1.1) 

( ) ( )
( ) ( ) ( )

, ,0 0 and , ,0 0 on ,

, , 0 and , , 0 on 0, .

u x y v x y D

u x y t v x y t D

= = 


= = ∂ × Γ 
          (1.2) 

Problem (1.1)-(1.2) illustrates the instabilities in some dynamical systems in 
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which certain reactions are localized to electrodes, catalytic membranes, or other 
surfaces and local sites are immersed in a bulk medium happening at the origin 
(0, 0), see [1] [2]. Additionally, (1.1) describes a thermal ignition driven by the 
temperature at a single point, see [3]. Chadam, Peirce, and Yin [4] examined the 
blow-up set of solutions when the initial data are nontrivial and nonnegative 
bounded functions. 

The quenching problem was initiated by Kawarada [5]. The model describes 
polarization phenomena in ionic conductors. Quenching also illustrates the 
phase transition between liquids and solids [6]. Chang, Hsu, and Liu [7] dis-
cussed the quenching rate of the problem (1.1)-(1.2) in an n-dimensional ball. 

The solutions u and v are said to quench if there exists a finite time Γ  such 
that 

( ) ( ){ }
( ) ( ){ }

max 1

and max , ,

, , : ,

,: 1 as .

D

v x y t D

u x y t x y

x y t

−

− −

∈ →

∈ → →Γ
 

To problem (1.1)-(1.2), there are critical values a* and b* (both are positive) 
such that the maximum of solutions u and v reaches 1 in a finite time if a > a* 
and b > b* while u and v exist globally and are bounded above by 1 if a < a* and 
b < b*, see [8]. 

The purposes of this paper are to prove solutions u and v to quench simulta-
neously at (0,0), and use a numerical method to determine approximated values 
of a* and b* of the problem (1.1)-(1.2). 

This paper is organized as follows. In Section 2, we prove that there are 
unique solutions u and v of the problem (1.1)-(1.2). In Section 3, we prove that 
either u or v quenches in a finite time. Then, we show that solutions u and v 
quench simultaneously at (0, 0). In Section 4, we calculate approximated values 
of a* and b*. This a* and b* associate with the existence of solutions of their 
steady state problem of the problem (1.1)-(1.2). Our numerical method is to 
evaluate an approximation of the steady solutions expressed in an integral re-
presentation form. For illustration, some examples are provided. 

2. Properties of u and v 

Let ( )1 , ,x y tβ  and ( )2 , ,x y tβ  be nontrivial, nonnegative, and bounded func-
tions on ( )0,D× ∞ . Here is a comparison theorem 

Lemma 2.1. Suppose that ( ), ,u x y t  and ( ), ,v x y t  are solutions of the fol-
lowing system: 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

1

2

, , 0,0, in 0, ,

, , 0,0, in 0, ,

, ,0 0 and , ,0 0 on ,

, , 0 and , , 0 on 0, .

Lu x y t v t D

Lv x y t u t D

u x y v x y D

u x y t v x y t D

β

β

≥ × Γ

≥ × Γ

≥ ≥

≥ ≥ ∂ × Γ

 

Then, ( ) 0, ,u x y t ≥  and ( ) 0, ,v x y t ≥  on [ )0,D× Γ . 
Proof. Let ε  be a positive real number, and 
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( ) ( ) ( )

( ) ( ) ( )

π 1sin 1 e ,
2 2

π 1sin 1 e ,
2

, , , ,

, , , ,
2

t

t

x y t x y t

x y t x y t

u x

v x

γ

γ

ε

ε

  Φ = + + +    
  Ψ = + + +    

 

where γ  is a positive real number to be determined. From the construction, 
( ), ,0 0x yΦ >  and ( ), ,0 0x yΨ >  on D . By assumptions and a direction 

computation, 

( )

( ) ( )

( )

1

2

1

1

0,0,

π π 3e sin 1 0,0, e
4 2 2 2

e 3 .
2

t

t t
t

t

t

u u x v tγ γ

γ

β

γ εε γ β

ε γ β

Φ −∆Φ − Ψ

      = − ∆ + + + + − +      
      

≥ −

 

We choose γ  such that 13γ β> . Thus, 

( ) ( )1 0,0, 0 in 0, .t t DβΦ −∆Φ − Ψ > × Γ  

Suppose ( ) 0, ,x y tΦ ≤  somewhere in ( )0,D× Γ . Then, the set 

( ) ( ){ }: , , 0 for some ,t x y t x y DΦ ≤ ∈  

is non-empty. Let t  denote its infimum. Then, 0 t< < Γ  because ( ), ,0 0x yΦ >  
on D . Thus, there exists some ( )1 1,x y D∈  such that ( )1 1, , 0x y tΦ =  and 

( )1 1, , 0t x y tΦ ≤ . On the other hand, Φ  attains its local minimum at ( )1 1, ,x y t . 
Therefore, ( )1 1, , 0x y t∆Φ > . Then, at t t=  , 

( ) ( ) ( ) ( )1 1 1 1 1 1, , 0,0, , , 0,0, 0.t x y t t L x y t tβ βΦ − Ψ > Φ − Ψ >         (2.1) 

Follow a similar argument, we assume that ( ) 0, ,x y tΨ ≤  somewhere in 
( )0,D× Γ . Then, there exist some ( )ˆ 0,t ∈ Γ  and ( )2 2,x y D∈  such that 

( )2 2
ˆ, , 0x y tΨ = , ( )2 2

ˆ, , 0t x y tΨ ≤ , and Ψ  attains its local minimum at 

( )2 2
ˆ, ,x y t . Then at t t=   

( ) ( ) ( ) ( )2 2 2 2 2 2
ˆ ˆ ˆ ˆ, , 0,0, , , 0,0, 0.t x y t t L x y t tβ βΨ − Φ > Ψ − Φ >      (2.2) 

Let us assume that t̂ t<  . Since Φ  attains its local minimum at ( )1 1, ,x y t , 

( )ˆ0,0, 0tΦ > . By inequality (2.2), 

( ) ( ) ( )2 2 2 2 2
ˆ ˆ ˆ0 , , , , 0,0, 0.t tx y t x y t tβ≥ Ψ ≥ Ψ − Φ >  

This gives a contradiction. Hence, ( ), , 0x y tΨ >  in ( )0,D× Γ . Then, by (2.1), 
we show that ( ), , 0x y tΦ >  in ( )0,D× Γ . Through a similar calculation, we 
obtain the same result when t̂ t≥  . Let 0ε → , we have ( ), , 0u x y t ≥  and 
( ), , 0v x y t ≥  in ( )0,D× Γ . Follow 0u ≥  and 0v ≥  on D  and ( )0,D∂ × Γ , 

u and v are non-negative on [ )0,D× Γ . The proof is complete.              

By Lemma 2.1, 0 is a lower solution of the problem (1.1)-(1.2). On the other 
hand, if u and v do not quench, then max 1D u <  and max 1D v < , and solu-
tions u and v are bounded above by 1. Further, u and v cease to exist when 

1u ≥  and 1v ≥ . Therefore, 0 1u≤ <  and 0 1v≤ <  on [ )0,D× Γ . The exis-
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tence of classical solutions of the problem (1.1)-(1.2) is able to obtain by the 
Schauder fixed point theorem of [[9], pp. 502-504], and by Lemma 2.1 u and v 
are unique. 

Theorem 2.2. Problem (1.1)-(1.2) has unique classical solutions u and  
[ )( )2 ,1 2 0,v C Dα α+ +∈ × Γ  for some ( )0,1α ∈  such that 0 , 1u v≤ <  on [ )0,D× Γ . 

Lemma 2.3. 0tu ≥  and 0tv ≥  on [ )0,D× Γ . Further, 0tu >  and 0tv >  
in ( )0,D× Γ . 

Proof. From Theorem 2.2, ( ), ,u x y t  and ( ), ,v x y t  are nonnegative on 
[ )0,D× Γ . Let h be a real number in ( )0,Γ . Then, ( ), , 0u x y h ≥  and ( ), , 0v x y h ≥  

on D , and ( ), , 0u x y t h+ =  and ( ), , 0v x y t h+ =  on [ )0,D h∂ × Γ − . By the 
mean value theorem, there exist u1 (between ( )0,0,u t h+  and ( )0,0,u t ) and 
v1 (between ( )0,0,v t h+  and ( )0,0,v t ) such that 

( ) ( )
( )

( ) ( )( )

( ) ( )
( )

( ) ( )( )

2
1

2
1

, , , , 0,0, 0,0, ,
1

, , , , 0,0, 0,0, .
1

aLu x y t h Lu x y t v t h v t
v

bLv x y t h Lv x y t u t h u t
u

+ − = + −
−

+ − = + −
−

 

By Lemma 2.1, ( ) ( ), , , ,u x y t h u x y t≥+  and ( ) ( ), , , ,v x y t h v x y t+ ≥  on 
[ )0,D h× Γ − . This gives 

( ) ( ),
0

, , ,u x y t h u x y
h

t−
≥

+
 and 

( ) ( ),
0

, , ,v vx y t h x y
h

t+ −
≥  on [ )0,D h× Γ − . 

Taking 0h → , ut and vt are nonnegative on [ )0,D× Γ , respectively. To show 
that ut and vt are positive, let us differentiate (1.1) with respect to t. Then, ut and 
vt satisfy 

( )( )
( ) ( )

( )( )
( ) ( )

2

2

0,0, 0 in 0, ,
1 0,0,

0,0, 0 in 0, ,
1 0,0,

t t

t t

aLu v t D
v t

bLv u t D
u t

= ≥ × Γ 
− 


= ≥ × Γ
− 

 

( ) ( )
( ) ( ) ( )

, ,0 0 and , ,0 0 on ,

, , 0 and , , 0 on 0, .
t t

t t

u x y v x y D

u x y t v x y t D

≥ ≥ 


= = ∂ × Γ 
 

By the maximum principle [[10], p. 54], 0tu >  and 0tv >  in ( )0,D× Γ .   

3. Simultaneous Quenching and Global Existence 

In this section, we show that either u or v quenches in a finite time first. Then, we 
prove that u and v quench in the same time at (0, 0). Afterward, we prove that the 
problem (1.1)-(1.2) has a global solution when a and b are sufficiently small. 

Lemma 3.1. u and v both attain their maximum at (0, 0) for all ( )0,t∈ Γ . 
Proof. It suffices to prove that u attains its maximum along the x and y axes. 

Let us consider the first equation of (1.1) along the x-axis, we have 

( ) ( ) ( ) ( )
,0, ,0, ,0, .

1 0,0,t xx
aLu x t u x t u x t

v t
= − =

−
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Differentiate the above equation with respect to x to yield 

( ),0, 0.xLu x t =  

By the symmetry of D with respect to the x and y axes, ( )0,0, 0xu t =  for all 

( )0,t∈ Γ . By the Hopf’s lemma [11], p. 170], ( )1,0, 0xu t− >  for all ( )0,t∈ Γ . 

At t = 0, ( ),0,0 0xu x =  for all [ ]1,0x∈ − . By the maximum principle, 

( ),0, 0xu x t >  for all [ )1,0x∈ −  when ( )0,t∈ Γ . Similarly, for all ( )0,t∈ Γ , 

we obtain ( ),0, 0xu x t <  when ( ]0,1x∈ . Therefore, ( ) ( )0,0, ,0,u t u x t≥  for 

all [ ]1,1x∈ −  when ( )0,t∈ Γ . Likewise, ( ) ( )0,0, 0, ,u t u y t≥  for all [ ]1,1y∈ −  

when ( )0,t∈ Γ . Thus, ( ) ( )0,0, , ,u t u x y t≥  on ( )0,D× Γ . Similarly,  

( ) ( )0,0, , ,v t v x y t≥  on ( )0,D× Γ . Hence, u and v both attain their maximum 

at (0, 0) for all ( )0,t∈ Γ .                                            

Let 1φ  be the eigenfunction corresponding to the first eigenvalue ( )1 0λ >  of 
the Sturm-Liuoville problem below, 

0 in , 0 on .D Dφ λφ φ∆ + = = ∂  

This eigenfunction has the properties: 1 0φ >  in D and 1d d 1
D

x yφ =∫∫  [[12], p. 
10]. Let c be a positive real number such that ( )c ab a b≤ + . We show that ei-
ther u or v quenches in a finite time. 

Lemma 3.2. If 12 2c λ> , where ( )c ab a b≤ + , then either u or v quenches 
on D  in a finite time Γ . 

Proof. By Lemma 3.1, ( ) ( )0,0, , ,u t u x y t≥  and ( ) ( )0,0, , ,v t v x y t≥  on 
( )0,D× Γ . Let ( )ˆ , ,u x y t  and ( )ˆ , ,v x y t  be the solutions to the following pa-

rabolic system: 

( ) ( )

( ) ( )

ˆ in 0, ,
ˆ1 , ,

ˆ in 0, ,
ˆ1 , ,

aLu D
v x y t

bLv D
u x y t

= × Γ − 

= × Γ
−                 

 (3.1) 

( ) ( )
( ) ( ) ( )

ˆ ˆ, ,0 0 and , ,0 0 on ,
ˆ ˆ, , 0 and , , 0 on 0, .

u x y v x y D

u x y t v x y t D

= = 


= = ∂ × Γ 
          (3.2) 

By the maximum principle, ( )ˆ , , 0u x y t ≥  and ( )ˆ , , 0v x y t ≥  on [ )0,D× Γ . 
Further, ˆu u−  and ˆv v−  satisfy the system below: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

ˆ ,
1 0,0, 1 1 , , 1

ˆ .
1 0,0, 1 1

ˆ ˆ, , , ,

ˆ ˆ, 1 , ,,, ,

a a a aL u u
v t v x y t

b b b bL

v x y t v x y t

u x y t u x y t
v v

u t u x y t

− = − ≥ −
− − − −

− = − ≥ −
− − − −

 

By ˆ 0u u− =  and ˆ 0v v− =  on D  and ( )0,D∂ × Γ , and the maximum 
principle, we have ˆu u≥  and ˆv v≥  on [ )0,D× Γ . It suffices to prove either 
û  or v̂  to quench over D  in a finite time. 

Multiplying 1φ  on both sides of (3.1) and integrating expressions over the 
domain D, we obtain 
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1
1 1

1
1 1

ˆ ˆd d d d d d ,
ˆ1

ˆ ˆd d d d d d .
ˆ1

t
D D D

t
D D D

u x y u x y a x y
v

v x y v x y b x y
u

φ
φ φ

φ
φ φ

− ∆ =
−

− ∆ =
−

∫∫ ∫∫ ∫∫

∫∫ ∫∫ ∫∫
 

Use the Green’s second identity [[10], p. 96] and (3.2), it yields 

1
1 1 1

1
1 1 1

ˆ ˆd d d d d d ,
ˆ1

ˆ ˆd d d d d d .
ˆ1

D D Dt

D D Dt

u x y u x y a x y
v

v x y v x y b x y
u

φ
φ λ φ

φ
φ λ φ

 
= − +  − 

 
= − +  − 

∫∫ ∫∫ ∫∫

∫∫ ∫∫ ∫∫
 

By the Maclaurin’s series, we have 

2
1 1 1 1 1

2
1 1 1 1 1

ˆ ˆ ˆd d d d d d d d ,

ˆ ˆ ˆd d d d d d d d .

D D D Dt

D D D Dt

u x y u x y a v x y a x y

v x y v x y b u x y b x y

φ λ φ φ φ

φ λ φ φ φ

 
≥ − + + 

 

 
≥ − + + 

 

∫∫ ∫∫ ∫∫ ∫∫

∫∫ ∫∫ ∫∫ ∫∫
 

Let ( ) 1d dˆ
D

R t xu yφ= ∫∫  and ( ) 1d dˆ
D

t xP v yφ= ∫∫ . Adding above inequalities  

together and using the Jensen’s inequality [[12], p. 11], we obtain 

( ) ( ) 2 2
1

d .
d

R P R P aP bR a b
t

λ+ ≥ − + + + + +            (3.3) 

As ( )c ab a b a b≤ + ≤ ≤ , we have 

( ) ( ) ( )
2 2

2 .
2

a c P b c R aba b c c PR cPR
a b

− + −  ≥ + − + ≥ + 
 

Hence, 

( )22 2 .aP bR c R P+ ≥ +  

Then, differential inequality (3.3) becomes 

( ) ( ) ( )2
1

d 2 .
d

R P R P c R P c
t

λ+ ≥ − + + + +  

Let ( ) ( ) ( )E t R t P t= + . Then, ( ) 0E t ≥  in [ )0,T  and 

2
1

d 2 .
d

E E cE c
t

λ≥ − + +  

Using separation of variables and integrating both sides over (0, t), we obtain 

( ) 11 1 1
2 2 2 2 2 2

1 1 1

22 tan tan .
8 8 8

cE t
t

c c c

λ λ

λ λ λ
− −

    −    ≤ +
    − − −    

 

Suppose that ( )E t  exists for all 0t > . By the assumption 12 2c λ> , we 
have 

( )( )1 2 2
1 1tan 2 8 if .cE t c tλ λ−  − − →∞ →∞  

 

But, ( )( )1 2 2
1 1tan 2 8cE t cλ λ−  − −  

 is bounded above by π 2 . This is a 
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contradiction. It implies that ( )E t  ceases to exist in a finite time Γ̂ . This 
shows that either ( )R t  or ( )P t  does not exist when t approaches Γ̂ . Thus, 
either û  or v̂  quenches on D  at Γ̂ . Since ˆu u≥  and ˆv v≥ , either u or v 
quenches on D  in a finite time Γ  where ˆΓ ≤ Γ .                       

From the result of Lemma 3.1, we know that (0, 0) is a quenching point of u 
and v if they quench. Let *Γ  be the supremum of the time Γ  for which the 
problem (1.1)-(1.2) has unique solutions u and v. 

Theorem 3.3. If *Γ < ∞ , then either ( )0,0,u t  or ( )0,0,v t  quenches at 
*Γ . 
Proof. Suppose that both u and v do not quench at (0,0) when *t = Γ . Then, 

there exist positive constants 1k  and 2k  such that ( ) 10,0, 1u t k≤ <  and 
( ) 20,0, 1tv k≤ <  for all *0,t  ∈ Γ  . This shows that ( )( ) 11 0,0,a v t Q− <  and 

( )( ) 21 0,0,b u t Q− <  for some positive constants 1Q  and 2Q  when 
*0,t  ∈ Γ  . Then, by Theorem 4.2.1 of [[13], p. 139], u and  

( )2 ,1 2 *0,v C Dα α+ +  ∈ × Γ  . This implies that there exist positive constants 3k  
and 4k  such that ( ) 3, , 1u x y t k≤ <  and ( ) 4, , 1v x y t k≤ <  for all  
( ) *, , 0,x y t D  ∈ × Γ  . In order to arrive a contradiction, we need to show that u 
and v can continue to exist in a larger time interval )*

10, t Γ +  for some posi-
tive 1t . This can be achieved by extending the upper bound. Let us construct 
upper solutions ( ) ( )3, ,x y t k f tψ =  and ( ) ( )4, ,x y t k g tσ = , where f(t) and g(t) 
are solutions of the following differential system: 

( ) ( ) ( )

( ) ( ) ( )

* *
3

4

* *
4

3

d  for , 1,
d 1
d  for , 1.
d 1

ak f t t f
t k g t

bk g t t g
t k f t

= > Γ Γ =
−

= > Γ Γ =
−

 

By ( ) ( )* *
3 41, 1k f k gΓ < Γ < , and the Picard iteration, f(t) and g(t) are positive 

functions, and ( )41 0a k g t− >    and ( )31 0b k f t− >   . This implies that f(t) 
and g(t) are increasing functions of t. Let 1t  be a positive real number deter-
mined by ( )*

3 1 5 1k f t kΓ + = <  and ( )*
4 1 6 1k g t kΓ + = <  for some positive 

constants 5k  and 6k  greater than 3k  and 4k  respectively. By our construc-
tion, ( ) ( ), , 0,0,x y t tψ ψ=  and ( ) ( ), , 0,0,x y t tσ σ=  satisfy, 

( ) ( ) ( )

( ) ( ) ( )

* *
1

* *
1

, ,  in , ,
1 0,0,

, ,  in , ,
1 0,0,

aL x y t D t
t

bL x y t D t
t

ψ
σ

σ
ψ

= × Γ Γ +
−

= × Γ Γ +
−

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) )

* * * *
3 4

* *
3 4 1

, , , ,  and , , , ,  on ,

, , 0 and , , 0 on , .

x y k u x y x y k v x y D

x y t k f t x y t k g t D t

ψ σ

ψ σ

Γ = ≥ Γ Γ = ≥ Γ

= > = > ∂ × Γ Γ +
 

By Lemma 2.1, ( ) ( ), , , ,x y t u x y tψ ≥  and ( ) ( ), , , ,x y t v x y tσ ≥  on  

)* *
1,D t× Γ Γ + . Therefore, we find solutions u and v to the problems (1.1)-(1.2) 

on )* *
1,D t× Γ Γ + . This contradicts the definition of *Γ . Hence, either 

( )0,0,u t  or ( )0,0,v t  quenches at *Γ .                                
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Let ( ) ( ) ( )2
0 ,x y C D C Dϕ ∈ ∩  such that ( )0 , 0x yϕ∆ < , ( )0 , 0x yϕ >  in D, 

and ( )0 , 0x yϕ =  on D∂  and ( )0max , 1x D x yϕ∈ ≤ . Let ( ), ,x y tϕ  be the so-
lution to the following first initial-boundary value problem: 

( )
( ) ( )
( ) ( )

0

0 in 0, ,

, ,0 ,  on ,

, , 0 on 0, .

Lw D

w x y x y D

w x y t D

ϕ

= × ∞

=

= ∂ × ∞

 

By the maximum principle, ( ), , 0x y tϕ >  in [ )0,D× ∞  and is bounded 
above by ( )0 ,x yϕ , and it satisfies 

( ) [ )
( )

, , 0,
max , , 1.

x y t D
x y tϕ

∈ × ∞
≤  

Let ( )2 0,t ∈ Γ  such that ( )2 70,0, 1v t k≤ <  for some positive constant 7k . 
Then, 

( ) ( )
( )

2 2

7 2

, , , ,
.

1 1 0,0,
a x y t a x y t

k v t
ϕ ϕ

≥
− −

                  (3.4) 

As ( )2, , 0tu x y t >  and ( )2, , 0x y tϕ >  in D, and ( ) ( )2 2, , , , 0tu x y t x y tϕ= =  
on D∂ , we choose a positive real number 1µ  less than 1 such that 

( ) ( )1 2
2

7

, ,
, ,  on .

1t

a x y t
u x y t D

k
µ ϕ

≥
−

                (3.5) 

Also, ( ) ( ) ( )1, , , , 1 0,0,tu x y t a x y t v tµ ϕ= −    for all ( ) [ )0, ,,x y t D∈∂ × Γ . 
Let us define ( ) ( ) ( ) ( )1, , , , , , 1 0,0,tI x y t u x y t a x y t v tµ ϕ= − −   . By inequalities 
(3.4) and (3.5), ( )2, , 0I x y t ≥  on D . Let  

( ) ( ) ( ) ( )2, , , , , , 1 0,0,tH x y t v x y t b x y t u tµ ϕ= − −    where 2µ  is a positive real 
number less than 1. Similar to the previous argument, we choose 2µ  such that 

( )2, , 0H x y t ≥  on D . We modify the proof of Lemma 3.4 of [7] to obtain the 
result below. 

Lemma 3.4. ( ), , 0I x y t ≥  and ( ), , 0H x y t ≥  on [ )2 ,D t× Γ . 
Proof. By a direct computation, 

( )
( ) ( )

( )

11
2

1

0,0, ,
1 0,0,1 0,0,

.
1 0,0,

t
t tt t

t

aaI u v t
v tv t

aI u
v t

µ ϕµ ϕ

µ
ϕ

= − −
−−  

∆ = ∆ − ∆
−

 

From the above expression, we have 

( )
( )( ) ( )12 0,0, 1  in 0, .

1 0,0,
t

aLI v t D
v t

µ ϕ= − × Γ
−  

 

By 1ϕ ≤  on [ )0,D× ∞ , 1 1µ < , and ( )0,0, 0tv t >  for all ( )0,t∈ Γ , it gives 
0LI ≥  in ( )0,D× Γ . In addition, ( )2, , 0I x y t ≥  on D , and ( ), , 0I x y t =  on 
( )2 ,D t∂ × Γ . By the maximum principle, ( ), , 0I x y t ≥  on [ )2 ,D t× Γ . Similarly, 

( ), , 0H x y t ≥  on [ )2 ,D t× Γ .                                        
Here is the result of simultaneous quenching. 
Theorem 3.5. If either u or v quenches at (0, 0) when t = Γ , then u and v 
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quench simultaneously at (0, 0) when t = Γ . 
Proof. If not, let us assume that v quenches at (0, 0) when t = Γ  but u con-

tinues to exist beyond Γ . That is, there exists a positive constant 8k  such that 

80 1u k≤ ≤ <  for all ( ) [ )3, , 0,x y t D t∈ × Γ +  for some 3 0t > . By Lemma 3.4, 
we have 

( ) ( )
( ) ( ) ( )

( ) [ )1 2
2

0,0, 0,0,
0,0,  and 0,0,  for all , .

1 0,0, 1 0,0,t t

a t b t
u t v t t t

v t u t
µ ϕ µ ϕ

≥ ≥ ∈ Γ
− −

 

By Lemma 3.1, u and v both attain their maximum at (0,0) for all ( )0,t∈ Γ . 
Then, ( )0,0, 0u t∆ <  and ( )0,0, 0v t∆ <  on [ )2 ,t Γ . Combine (1.1) with above 
inequalities to give 

( )
( ) ( ) ( )
( )
( ) ( ) ( )

1

2

0,0,
0,0, ,

1 0,0, 1 0,0,

0,0,
0,0, .

1 0,0, 1 0,0,

t

t

a t au t
v t v t

b t bv t
u t u t

µ ϕ

µ ϕ

≤ <
− −

≤ <
− −

 

From them, we get a compound inequality 

( )
( )

( ) ( )
( ) ( )

( )
( )

1

2

0,0, 1 0,0, d 0,0, 1 0,0,
.

1 0,0, d 0,0, 1 0,0, 0,0,
a t u t u t u ta
v t b v t v t b t

µ ϕ
µ ϕ

− −
≤ ≤

− −
   (3.5) 

From the left-side inequality, we have 

( )
( )

( ) ( )
( )

1 0,0, d 0,0,
d 0,0, .

1 0,0,1 0,0,
a t u t

v t
u tb v t

µ ϕ
≤

−−  
 

Since ( )0 0,0, 1tϕ< ≤  for all ( )0,t∈ ∞ , there exists a positive constant 
0δ >  such that ( )0,0, tϕ δ>  for all [ )2 ,t t∈ Γ . Integrating both sides over the 

interval [ ]2 ,t s  where ( )2 ,s t∈ Γ , we obtain 

( ) ( ){ }
( ) ( )

1
2

2

ln 1 0,0, ln 1 0,0,

ln 1 0,0, ln 1 0,0, .

a v s v t
b

u s u t

µ δ
− − −      

≥ − − −      

 

By assumption, v quenches at (0, 0) when t = Γ , we have ( )ln 1 0,0,v s− → −∞    
as s −→ Γ . Since ( )2ln 1 0,0,v t−    and ( )2ln 1 0,0,u t−    are both bounded, 
the above inequality implies ( )ln 1 0,0,u s− → −∞    as s −→ Γ . Therefore, u 
quenches at (0, 0) when t = Γ . It contradicts that u exists on [ )30,D t× Γ + . 
Follow the second half of inequality (3.5), we can prove that v quenches at (0, 0) 
when t = Γ  if u quenches at (0, 0) when t = Γ . The proof is complete.      

Now, we prove that u and v exist globally when a and b are sufficiently small. 
Our method is to construct global-exist upper solutions of the problem 
(1.1)-(1.2). 

Lemma 3.6. If a and b are sufficiently small, then there is a global solution to 
the problem (1.1)-(1.2). 

Proof. It suffices to construct upper solutions which exist all time. Let 
( ) ( )2 2, 2q x y A x y= − −  and ( ) ( )2 2, 2m x y B x y= − −  where A and B are 

positive real numbers such that 1 2A <  and 1 2B < . Clearly, 0 , 1q m≤ <  for 

https://doi.org/10.4236/jamp.2019.77099


W. Y. Chan 
 

 

DOI: 10.4236/jamp.2019.77099 1482 Journal of Applied Mathematics and Physics 
 

all ( ),x y D∈ . In addition, 

( )
4 .

1 0,0 1 2
a aLq A

m B
− = −

− −
 

If a is sufficiently small, then we have the inequality: ( )4 1 2A a B≥ − . This 
leads to 

( ) ( ) in 0, .
1 0,0

aLq D
m

≥ × ∞
−

 

Similarly, if b is sufficiently small, we have ( )4 1 2B b A≥ −  and 

( ) ( ) in 0, .
1 0,0

bLm D
q

≥ × ∞
−

 

By Lemma 2.1, ( ) ( ), , ,q x y u x y t≥  and ( ) ( ), , ,m x y v x y t≥  on [ )0,D× ∞ . 
Hence, u and v both exist globally. The proof is complete.                  

Lemma 3.7. u and v are non-decreasing functions in a and b respectively. 
Proof. Let u  and v  be solutions to the problem (1.1)-(1.2) corresponding 

to 1a a=  and 1b b= , and u  and v  be solutions when 2a a=  and 2b b= , 
where 1 2a a≥  and 1 2b b≥ . Then, u u−  and v v−  satisfy the parabolic sys-
tem: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2 2 2

1 2 2 2

,
1 0,0, 1 0,0, 1 0,0, 1 0,0,

.
1 0,0, 1 0,0, 1 0,0, 1 0,0,

a a a aL u u
v t v t v t v t

b b b bL v v
u t u t u t u t

− = − ≥ −
− − − −

− = − ≥ −
− − − −



 



 

 

As 0u u− =  and 0v v− =  on D  and ( )0,D∂ × Γ , we have u u≥  and 
v v≥  by Lemma 2.1.                                               

4. Approximated Values of a* and b* 

Let U(x, y) and V(x, y) be steady-state solutions of the problem (1.1)-(1.2). They 
satisfy 

( )

( )

 in ,
1 0,0

 in ,
1 0,0

aU D
V

bV D
U

−∆ = − 

−∆ =
− 

                   (4.1) 

( ) ( ), 0 and , 0 on .U x y V x y D= = ∂                (4.2) 

From Lemma 2.3, ( ), , 0tu x y t ≥  and ( ), , 0tv x y t ≥  on D  for all 0t ≥ . 
Based on Theorem 10.4.2 of [[10], pp. 532-533], we have the following result. 

Lemma 4.1. If ( )0 , , 1u x y t≤ <  and ( )0 , , 1v x y t≤ <  on [ )0,D× ∞ , then u 
and v converge monotonically to U(x,y) and V(x,y) on D  respectively as 
t →∞ . 

Let ( ), ; ,G x y ξ η  be the Green’s function of the operator: −∆  over the do-
main D. The integral representation of the solution of the problem (4.1)-(4.2) is 
given by 
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( ) ( ) ( ), , ; , d d ,
1 0,0D

aU x y G x y
V

ξ η ξ η=
−∫∫             (4.3) 

( ) ( ) ( ), , ; , d d .
1 0,0D

bV x y G x y
U

ξ η ξ η=
−∫∫             (4.4) 

By Lemma 3.7, u and v are respectively non-decreasing functions in a and b. 
Then, by Lemma 3.6, there exist a* and b* for which u and v exist globally and 
less than 1 if *a a<  and *b b< . By Lemma 4.1, u and v converge to U and V 
when *a a<  and *b b< . Thus, U and V exist and they are bounded above by 1 
when *a a<  and *b b< , and ( )max , 1D U x y =  and ( )max , 1D V x y =  if 

*a a>  and *b b> . 

Let us construct sequences of integral solutions: ( ){ } 1
,j j

U x y
∞

=
 and  

( ){ } 1
,j j

V x y
∞

=
 such that ( ) ( )0 0, 0, , 0U x y V x y≡ ≡ , and they satisfy 

( ) ( ) ( )

( ) ( ) ( )

1

1

, , ; , d d ,
1 0,0

, , ; , d d ,
1 0,0

j
jD

j
jD

aU x y G x y
V

bV x y G x y
U

ξ η ξ η

ξ η ξ η

−

−

=
−

=
−

∫∫

∫∫
 

for 1,2,3,j = 
. We follow Theorem 4 of [14] to obtain the following result. 

Theorem 4.2. Suppose that *a a<  and *b b< , the sequences { } 1j j
U

∞

=
 and 

{ } 1j j
V

∞

=
 converge monotonically to solutions U and V of the Equations (4.3) and (4.4) 

where 10 1j jU U U−< < < <  and 10 1j jV V V−< < < <  in D for 2,3,j = 
. 

To determine ( ), ; ,G x y ξ η , we map the domain D onto the unit disk S: 
2 2 1x y+ <  through a conformal mapping. Let J denote this mapping. By the 

Riemann Mapping Theorem, J exists and is unique. This theorem is stated be-
low. 

Theorem 4.3 (Riemann Mapping Theorem). Suppose that z is a point lo-
cating in Λ which is a simply-connected two-dimensional domain with more 
than one boundary point, and υ  is a point of Λ, then there exists a unique 
analytic function ( )J zς =  which is regular in Λ and maps Λ conformally onto 
the unit disk S: 1ς <  in such a way that ( ) 0J υ =  and ( ) 0J υ′ > . 

Let z x iy= +  and z iξ η= +  be some points in a simply-connected two 
dimensional domain Λ. From the result of [[15], pp. 288 and 304], the Green’s 
function is positive in Λ and is given by 

( ) ( ) ( )
( ) ( )

11, ; , ln ,
2π

J z J z
G x y

J z J z
ξ η

−
=

−





               (4.5) 

where ( ) ( ) ( )2πe p zJ z z z −= −  , and ( )p z  is a real harmonic function in Λ. With 
this ( )J z , we map Λ onto S conformally. (4.5) is expressed as 

( ) ( ) 1, ; , ln .
2π

G x y p z z zξ η = − −                 (4.6) 

The Taylor series representation of ( )p z  with respect to z  is given by 
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( ) ( )
0

ˆ ,j
j

j
p z c z z

∞

=

= −∑   

where ˆ jc  is a complex number given by ˆˆ ˆj j jc a ib= + . Let eiz z r θ− =  where 
r z z= −   and θ  is the angle between the line segment zz  and the positive 
x-axis. Then, the above series is represented by 

( ) ( ) ( )
0

ˆ ˆˆ ˆcos sin cos sinj
j j j j

j
p z r a j b j i b j a jθ θ θ θ

∞

=

 = − + + ∑ . 

To determine an approximation of ( ), ; ,G x y ξ η , we let DΛ = . By ( )p z  is 
a real function, we have 

( ) ( )
0

ˆˆ cos sinj
j j

j
p z r a j b jθ θ

∞

=

= −∑ . 

From the symmetry of D with respect to the x-axis, y-axis, and y = x, we have 

2 1 4 2
ˆ ˆ ˆ 0j j jb a a+ += = =  for 0,1,2,j = 

. The truncated Taylor polynomial of p(x, 
y) (that is, p(z)) at some finite 4n terms, where n is a positive integer, is given by 

( ) ( )4
4 4

0
ˆ, cos 4

n
j

n j
j

p x y r a jθ
=

= ∑ . 

Let n = 8. By the result of [16], ( )32 ,p x y  is given by 

( )
( )
( )
( )
( )

32

4

8

12

16

, 0.012057806957047935

0.011754632105672258 cos 4

0.00028938542181895446 cos 8

0.000013152624399033289 cos 12

0.0000006047527162152378 cos 16

p x y

r

r

r

r

θ

θ

θ

θ

=

−

−

−

−

 

( )
( )
( )
( )

20

24

28

32

0.000000030379417891529316 cos 20

0.0000000015825483904242497 cos 24

0.00000000008646383804505168 cos 28

0.000000000004011350923277267 cos 32 .

r

r

r

r

θ

θ

θ

θ

−

−

−

−

 

By (4.6) and the above expression, an approximation of G at z iξ η= +  is 
given by 

( ) ( ) ( )( )32
1ˆ , ; , , ln .
2π

G x y p x y x iy iξ η ξ η= − + − +  

Thus, approximated solutions of U and V of (4.3) and (4.4) are able to eva-
luate through an iterative scheme. A numerical method of finding an approxi-
mation of a* and b* is stated below. 

Step 1: Assign a positive value for a. Choose a positive value for b (say b1). Set 
( )0

ˆ , 0U x y =  and ( )0̂ , 0V x y =  for all ( ),x y D∈ . Let ( )ˆ ,jU x y  and 
( )ˆ ,jV x y  be approximated solutions of ( ),jU x y  and ( ),jV x y  given by 

( )
( )

( )
1

ˆ , d d ,ˆ1 0,0
ˆ , ; ,j

D j

G xx y yaU
V

ξ η ξ η
−

=
−∫∫            (4.7) 
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( )
( )

( )
1

ˆ , d d .ˆ1 0,0
ˆ , ; ,j

D j

G xx y ybV
U

ξ η ξ η
−

=
−∫∫            (4.8) 

Compute ( )ˆ ,jU x y  and ( )ˆ ,jV x y  for 1,2,3,j = 
 and ( ),x y D∈ . At this 

1b b= , ˆ
jU  and ˆ

jV  are bounded by 1 and converge. That is, ( )ˆmax , 1jD U x y <  
and ( )ˆmax , 1jD V x y <  for 1,2,3,j = 

 and satisfy 

( ) ( )

( ) ( )

6
1

6
1

ˆ ˆmax , max , 1 10 ,

ˆ ˆmax , max , 1 10 ,

j jD D

j jD D

U x y U x y

V x y V x y

−
−

−
−

− < ×

− < ×
 

for j N>  for some positive integer N. 
Step 2: With the same value of a in Step 1, choose another value for b (say b2). 

Set ( )0
ˆ , 0U x y =  and ( )0̂ , 0V x y =  for all ( ),x y D∈ . To each ( ),x y D∈ . 

evaluate iterative integral (4.7) and (4.8) for 1,2,3,j = 
. At this 2b b= , ˆ

jU  
and ˆ

jV  do not exist. That is, ( )ˆmax , 1jD U x y ≥  and ( )ˆmax , 1jD V x y ≥  for 
some positive integer j. Calculate ( )3 1 2 2b b b= + . Then, at 3b b= , evaluate (4.7) 
and (4.8) and compute ˆmax jD U  and ˆmax jD V  for 1,2,3,j = 

. 
Step 3: Set 1 3b b=  if ( )ˆmax , 1jD U x y <  and ( )ˆmax , 1jD V x y <  for 

1,2,3,j = 
, and satisfy 

( ) ( )

( ) ( )

6
1

6
1

ˆ ˆmax , max , 1 10 ,

ˆ ˆmax , max , 1 10 ,

j jD D

j jD D

U x y U x y

V x y V x y

−
−

−
−

− < ×

− < ×
 

for j N>  for some positive integer N. Otherwise, set 2 3b b=  if  
( )ˆmax , 1jD U x y ≥  and ( )ˆmax , 1jD V x y ≥  for some positive integer j. This 

procedure stops when 1 3b b≠  and 6
1 3 1 10b b −− < ×  (or 6

2 3 1 10b b −− < ×  if 

2 3b b≠ ). Then, set *
3b b=  and *a a= . Otherwise, calculate ( )3 1 2 2b b b= + . 

Then, at 3b b= , evaluate (4.7) and (4.8), and compute ˆmax jD U  and ˆmax jD V  
for 1,2,3,j = 

. Then, repeat Step 3. 
When we evaluate (4.7) and (4.8), the domain D is divided into 225 (15 15× ) 

grid points uniformly. The B-Spline interpolation is used to interpolate the func-
tion value at these grid points. We use Mathematica to evaluate (4.7) and (4.8). 
As examples, we compute two groups of approximated values of *a  and *b . In 
the first group, we set 0.250000a =  and vary the value of b. In the second one, 
we let a = b, then they change together. The results are listed in Table 1. 

5. Conclusion 

In this paper, we prove that u and v reach their maximum at (0, 0) for all 0t > . 
Lower and upper bounds of tu  and tv  at (0, 0) are obtained. From these re-
sults, we then show that u and v quench simultaneously at (0, 0). A numerical  

 
Table 1. Approximated critical values. 

Group Approximated *a  Approximated *b  

1 0.250000 1.801318 

2 0.848362 0.848362 
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method is introduced to compute approximated critical values of the semilinear 
parabolic system, and two sets of result are reported. 
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