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Abstract 
For the regression model about longitudinal data, we combine the robust es-
timation equation with the elemental empirical likelihood method, and pro-
pose an efficient robust estimator, where the robust estimation equation is 
based on bounded scoring function and the covariate depended weight func-
tion. This method reduces the influence of outliers in response variables and 
covariates on parameter estimation, takes into account the correlation be-
tween data, and improves the efficiency of estimation. The simulation results 
show that the proposed method is robust and efficient. 
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1. Introduction 

Longitudinal data is a dataset obtained by repeatedly measuring multiple times 
for each individual over a period of time. The longitudinal data is equivalent to 
the combination of cross section and time series data, and is composed of a plu-
rality of short time series. For a fixed time point, the observation data of differ-
ent individuals is similar to the cross-sectional data; for fixed individuals, dif-
ferent time points observation data is similar to time series. Therefore, longitu-
dinal data can make full use of the information inside the individual while dis-
tinguishing individual differences. In the fields of medicine and finance, the fre-
quency of longitudinal data appears to be higher and higher, so the research on 
longitudinal data is of great significance. 

Longitudinal data is a hot topic in statistical research in recent years. So far, 
significant progress has been made in the field of theoretical research. Liang et 
al. (1986) [1] extended generalized linear model research to longitudinal data, 

How to cite this paper: Huang, T.Y., Fan, 
Y.L. and Sun, Z.R. (2019) Robust Ele-
ment-Wise Empirical Likelihood Estima-
tion Method for Longitudinal Data. Jour-
nal of Applied Mathematics and Physics, 7, 
1408-1420. 
https://doi.org/10.4236/jamp.2019.76094 
 
Received: May 22, 2019 
Accepted: June 27, 2019 
Published: June 30, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2019.76094
http://www.scirp.org
https://doi.org/10.4236/jamp.2019.76094
http://creativecommons.org/licenses/by/4.0/


T. Y. Huang et al. 
 

 

DOI: 10.4236/jamp.2019.76094 1409 Journal of Applied Mathematics and Physics 
 

proposed a generalized estimating equation (GEE) method, introduced correla-
tion matrices in estimating equations, and gave corresponding estimates of re-
gression parameters and their variances. It is proved that the consistent estima-
tion of regression coefficients can be obtained by using GEE method even if the 
work correlation matrix is misspecified (See Diggle et al. (2002) [2] for more de-
tails). However, the principle of the GEE developed from the generalized linear 
model is similar to the principle of the weighted least squares method, and is 
sensitive to outliers. In the longitudinal data, because of repeated measurements, 
there are abnormal values in individual measurements, which will lead to a series 
of abnormal values in samples. In order to reduce the interference of outliers, 
Fan et al. (2012) [3] introduced a generalized estimating equation method based 
on the bounded scoring function of Huber function to achieve robustness. For 
the definition of Huber function, (see Huber (1964) [4]), Wang et al. (2013) [5] 
and Lv et al. (2015) [6] applied the bounded exponential score function to the 
generalized estimating equation. There are many articles (Qin et al. (2005) [7]; 
Wang et al. (2005) [8]; Qin et al. (2009) [9]; Zheng et al. (2013) [10]) about ge-
neralized estimation equation and robustness research. 

In the field of longitudinal data research, empirical likelihood methods are al-
so one of the frequently used methods. The empirical likelihood (EL) method 
was originally applied by Owen (1988) [11] to the estimation of the population 
mean of completely independent and identically distributed data. The method has 
the characteristics of asymmetric confidence intervals, transformation-preserving 
and better coverage probability. Azzalini (2017) [12] comprehensively intro-
duced the application of empirical likelihood method in statistical inference. Qin 
and Lawless (1994) [13] first linked the empirical likelihood method with the es-
timation equation. They proved that the empirical likelihood estimation is effec-
tive when the moment conditions are correctly specified in the estimation equa-
tion. Bondell and Stefansk (2013) [14] proposed a robust estimator in linear re-
gression which has relatively high efficiency compared to other robust estima-
tors by using generalized EL methods. Bai et al. (2010) [15] introduced the EL 
method into longitudinal data research, and proposed a weighted empirical like-
lihood (WEL) inference method for generalized linear models of longitudinal 
data. Wang et al. (2010) [16] established two methods based on generalized em-
pirical likelihood: elemental empirical likelihood and object empirical likelihood, 
where the element-wise empirical likelihood method can give slightly better 
coverage probabilities for small or medium samples. 

Based on the existing research results of longitudinal data, this paper com-
bines the bounded scoring function based on Huber function and the robust es-
timation equation of weight function based on covariate with elemental empiri-
cal likelihood method, and proposes an effective robust estimation method. The 
effectiveness of the proposed method is derived from the advantages of the em-
pirical likelihood method, while robustness is obtained by means of robust esti-
mation equations. We carried out the simulation and the results showed that 

https://doi.org/10.4236/jamp.2019.76094


T. Y. Huang et al. 
 

 

DOI: 10.4236/jamp.2019.76094 1410 Journal of Applied Mathematics and Physics 
 

whether the correlation matrix used is consistent with the real correlation matrix 
or not, the estimation method in this paper can reduce the impact of outliers on 
the estimation and improve the estimation efficiency. 

The following content is divided into four subsections. In Section 1, we give 
the linear regression model of the longitudinal data and the estimation method 
used in this paper. The iterative algorithm of this paper is introduced in Section 
2. Section 3 is the simulation experiment part and Section 4 is the summary and 
outlook. 

2. Proposed Method 
2.1. Models 

Linear models are often used in longitudinal data research. Their structure is 
simple for analysis and the basis of many models. We will consider the following 
continuous response variable longitudinal regression model 

T , 1, , ; 1, ,ij ij ij iy x i n j mβ ε= + = =                 (2.1) 

where ijy  is the jth observation on the ith subject, ijx  is a p-vector of cova-
riance values and 0β  is a p-vector of unknown regression coefficients, 

( ) ( ) ( )( )1 2T , , , p
ij ij ij ijx x x x=  , ( ) ( ) ( )( )1 2T , , , pβ β β β=  . n is the number of subjects 

participating in the study, im  is the number of repeated measurements for the 
ith subject, 1, , nm m  are bounded positive integers. Denote the total sample 
size by 1 nN m m= + + . ijε  is the random error term, satisfying ( ) 0ijE ε = , 

( ) 2
ijVar ε σ= . We set ( )T

1 2, , ,
ii i i imY y y y=  , ( )1 2, , ,i i i imi

X x x x=   and 

( )T
1 2, , ,

ii i i imε ε ε ε=  . Then model (2.1) can be rewritten as  
T

i i iY X β ε= +                          (2.2) 

For the longitudinal data model, it is usually assumed that the variables be-
tween different individuals are independent of each other, and the different 
measurements of the same individual are related. The covariance matrix of the 

random vector iε  is ( ) ( )
1 1

2 2 2
i i iV R A R Aσ ρ ρ= = , where iV  is an i im m×  in-

vertible matrix, ( )R ρ  is a correlation matrix, ρ  is a correlation coefficient 

vector, 
1
2

ii mA Iσ= . Exchangeable structure (Exch), work-independent structure 

(Ind) and first-order autoregressive structure (AR(1)) are common related 
structures in practice. 

1
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Let  

( ) ( ) ( ) ( ){ } ( )T 1 T
1 2, , ,

ii i i im i i iZ z z z V Y Xβ β β β β−= = −       (2.3) 
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2.2. Proposed Estimator 

More generally, we can define an estimating equation  

( ) ( )
1 1 1

0
imn n

i i ij ij
i i j

X Z x zβ β
= = =

= =∑ ∑∑                    (2.4) 

Such estimating equation is susceptible to the influence of outliers. Bounded 
scoring function of Huber function and weight function depending on cova-
riates are introduced in formula (3)  

( ) ( ) ( ) ( ){ } ( )
11 1

T2 2
1 2, , ,

i

R R R R
i i i im i i i c i i iZ z z z A R W A Y Xβ β β β ψ β

−
−   

= = −      
   

  (2.5) 

Consequently, a robust estimation equation is obtained  

( ) ( )
1 1 1

0
imn n

R R
i i ij ij

i i j
X Z x zβ β

= = =

= =∑ ∑∑                   (2.6) 

where ( ) ( )( )min ,max ,c x c c xψ = −  is the bounded scoring function, it is used to 
limit the influence on outliers in response. Because it is applied to the standardized 
residuals, the value of c are generally between 1 and 2. ( )1 2, , ,

ii i i imW diag w w w=   
is the weight function. There are many ways to select the weight function, simi-
lar to the reference [14], we consider a function of the Mahalanobis distance  

( ) ( )

2

0
T 1

min 1,

r

ij

ij x x ij x

b
w

x m S x m−

 
    =   − −    

            (2.7) 

where 1r ≥ , 0b  is the 0.95 quantile of the chi-square distribution with the de-
gree of freedom equal to the dimension of ijx , xm  and xS  are some robust 
estimates of location and scatter of ijx . If ijx  deviates from the whole, 

( ) ( )T 1
ij x x ij xx m S x m−− −  will be larger and  

( ) ( )

2

0
T 1

r

ij x x ij x

b

x m S x m−

 
 
 − − 

 

will be smaller. Then the corresponding weight ijw  is less than 1. On the con-
trary, the corresponding weight ijw  is 1. Therefore, the influence of the outliers 
on the estimation can be controlled by the Mahalanobis distance function. For 
data without outlying points, we can set ( )c x xψ =  and 1ijw =  in the robust 
estimating Equation (2.6), and this will lead to the classical nonrobust estimating 
equation. 

Empirical likelihood method is a non-parametric statistical method, which has 
many good properties. The empirical likelihood and the estimated equation were 
first associated by Qin and Lawless (1994) [13]. Wang et al. (2010) [16] proposed 
two methods for combining empirical likelihood methods with estimation equa-
tions. Subject-wise empirical likelihood is assigning a probability ip  to each 
subject iy . Li et al. (2018) [17] introduced a robust estimation equation based 
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on the exponential score function and prove that a better estimate can be ob-
tained with outliers. Element-wise empirical likelihood is assigning a probability 
mass ijp  to each observation ijy . This paper combines the element-wise em-
pirical likelihood method with the robust estimation Equation (2.6) to obtain the 
following empirical likelihood ratio function  

( ) ( )1
1 1 1 11 1

sup | 0, 1, 0
i i im m mn n n

R
ij ij ij ij ij ij

i j i ji j
L Np p p p x zβ β

= = = == =

 
= ≥ = = 

 
∑∑ ∑∑∏∏  (2.8) 

Similar to Owen (1988) [11] classic empirical likelihood, by using the Lagran-
gian multiplier method, we obtain that ( )1L β  is maximized at  

( )( ) 11 1 , 1, , ; 1, ,R
ij ij ij ip x z i n j m

N
λ β

−
′= + = =           (2.9) 

where the vector ( )1 2, , , pλ λ λ λ ′=   satisfies 
( )
( )1 1

1 0
1

i
R

n m ij ij
Ri j

ij ij

x z
N x z

β
λ β= =

=
′+∑ ∑ . 

From this we can get  

( ) ( )( )1
1 1

2 log 2 log 1
imn

R
ij ij

i j
L x zβ λ β

= =

′− = +∑∑             (2.10) 

The estimate proposed in this paper is the maximum point of Equation (2.8), 
which is equivalently the minimum point of Equation (2.10). Recorded as  

( ) ( )( )RELGEE 1 1
ˆ arg max arg min 2logL Lβ β β= = −         (2.11) 

RELGEEβ̂  is the RELEGE estimate of β . Under some regular conditions, the es-
timate can be proved to be consistent and subject to an asymptotic normal dis-
tribution. ( )12 log L β−  subject to an asymptotic linear combination of 
independent chi-Square distribution. The proof process is similar to Wang et al. 
(2010) [16]. 

The parameter of interest in this paper is β . But the parameters σ  and ρ  
are unknown. Reference to He et al. (2005) [18], we can use a median of absolute 
deviations to give σ  a robust estimate  

( ) ( ){ }{ }T * T *ˆ 1.483median medianij ij ij ijy x y xσ β β= − − −     (2.12) 

where *β  is the current estimate of β . 
According to the above description of the correlation matrix, the specific ro-

bust estimation of the parameter ρ  depends on the selection of the relevant 
structure. Simply consider, when im m= , for Exchange-able structure (Exch)  

( )

* *
1

ˆ ˆ
ˆ

0.5 1

n
ij iji j j r r

nm m p
ρ

′′= >=
− −

∑ ∑
                    (2.13) 

where 
T *

*ˆ
ˆ

ij ij
ij c

y x
r

β
ψ

σ

 −
=   

 
. For first-order autoregressive structure (AR(1)), 

We use robust moment estimators  

ˆ 1a a
b b

ρ = − −                        (2.14) 
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where * *
11

n
i iia r T r

=
′= ∑ , * *

21
n

i iib r T r
=

′= ∑ , ( )T* * * *
1 2, , ,i i i imr r r r=  , 1T  is m-order 

diagonal matrix ( )1,1,1,1, ,1,1diag   and 2T  is m-order diagonal matrix 
( )0,1,1,1, ,1,0diag  . 

3. Algorithm 

Since the maximal estimation of computational empirical likelihood will en-
counter numerical calculation problems, when solving RELGEEβ̂ , we refer to the 
Newton-type algorithm of Lagrange multiplier for constrained optimization prob-
lems proposed by Özdemir (2018) [19]. In order to make the calculation simple and 
without loss of generality, we pull ijp , ijy , ijx  and ( )R

ijz β  into a column 
vector. Like ( ) ( )11 2 11 1 1, , , , , , , , ,

nN m n nmp p p p p p p=    , ( )1 2, , , Ny y y , 
( ) ( ) ( )( )1 2, , ,R R R

Nz z zβ β β  and ( )1 2, , , Nx x x  are the same. We get  

( ) ( )2
1 11

sup | 1, 0,
N N N

R
i i i i i i

i ii
L p p p p x zβ β

= ==

 = = > 
 

∑ ∑∏         (3.1) 

This problem can also be defined as follows  

( )
( )0,1 1

, min ln
i

N

ip i
J p pβ

∈ =

 = −  
∑                  (3.2) 

under the constraints 1 1N
ii p

=
=∑  and ( )1 0N R

i i ii p x z β
=

=∑ . 
Lagrangian multiplier method is commonly used to find the extreme value of 

a general constrained function. We can get  

( ) ( )T T
0 1 0 1

1 1 1
, , , ln 1

N N N
R

i i i i i
i i i

J p p p p x zβ λ λ λ λ β
= = =

 = − + − − 
 

∑ ∑ ∑     (3.3) 

where 1
0 Rλ ∈  and T

1
pRλ ∈  are Lagrange multipliers  

0
T

1

,
p

A
λ
λβ
  

= Λ =   
   

                     (3.4) 

The first order gradient of Equation (3.3) is  

( )
( ) ( )( )

( )

T

T
,

R A DG A
J A

G A

 ∇ + Λ
 ∇ Λ =
 
 

               (3.5) 

where  

( )
T

1
1 2

1 1 1 0 p
N

J A
p p p ×

 
∇ = − − − 

 
 , ( ) ( )1 11,N N R

i i i ii iG A p p x z β
= =

 = − ∑ ∑  

( )G A  Jacobi matrix about A can be written  

( )
( ) ( ) ( )

T

1 1 2 2 1

1 1 1 0l p

NR R R
N N i i ii

DG A
x z x z x z p xβ β β φ

×

=

 
 =

  −   ∑





 (3.6) 

where 
( )R

i
i

z β
φ

β
∂

=
∂

. 

So the Hessian matrix of Equation (3.3) is  
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( ) ( ) ( )
( )

T,
,

0 p p

B A DG A
HL A

DG A ×

 Λ
Λ =  

  
               (3.7) 

where ( )

T
1 1 12

1

T
1 2 22

2

T
12

T T TT T T
1 1 1 1 2 2 1

1 0 0

10 0

,

10 0

0

N N
N

N N p p

x
p

x
p

B A

x
p

x x x

λ φ

λ φ

λ φ

λ φ λ φ λ φ ×

 − 
 
 

− 
 

Λ =  
 
 − 
 
      − − −      





    





, 

it’s a ( ) ( )N k N k+ × +  matrix. 

By Newton iteration, we can get  

( ) ( )1

1

, , 0t t
t t t t

t t

A A
HL A L A+

+

− 
Λ +∇ Λ = Λ −Λ 

             (3.8) 

where the value of ,t tA Λ  represents the result of iteration ,A Λ  at the tth time, 
the value of 1 1,t tA + +Λ  is calculated by ,t tA Λ . 

We can get the iterative expression of ,t tA Λ   

( ) ( )11

1

, ,t t
t t t t

t t

A A
HL A L A−+

+

   
= − Λ ∇ Λ   Λ Λ   

             (9) 

Summarize the algorithm for estimating the parameter RELGEEβ̂  as follows: 
Step 1. Set the initial value of 0 1, , ,p β λ λ  and the threshold ξ , where the in-

itial value of β  can be set to the estimated value obtained by the least squares 
method to speed up the convergence. 

Step 2. Calculate ( ),t tHL A Λ  and ( ),t tL A∇ Λ  at the tth time. 
Step 3. Calculate 1 1,t tA + +Λ  according to Iterative Formula (3.9). 
Step 4. Let 1t t← + , repeat Step 2 and Step 3 until 1t tβ β ξ+ − <  is satisfied 

and obtain a convergent RELGEEβ̂ . At this point, the solution of the robust em-
pirical likelihood estimate is completed. 

4. Simulation Study 

In this section, we present a simulation study. The estimators obtained by the 
RELGEE method proposed in this paper are compared with the estimators ob-
tained by the common element empirical likelihood method (ELGEE). The finite 
sample properties of the estimators are explored. The main research contents are 
as follows: 

1) Estimated relative efficiency when there is no pollution in the data; 
2) Estimated robustness when the data is contaminated; 
3) The effect on the estimation efficiency when the work correlation matrix is 

correctly or incorrectly specified. 
The model is set to  

T , 1, 2, , ; 1, 2,3ij ij ijy x i n jβ ε= + = =                  (4.1) 
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where the number of repeated observations is 3, ( ) ( ) ( )( )1 2 3T , ,ij ij ij ijx x x x= , 
( )( )T

3~ 0,0,0 ,ijx I , ( )T 7,1.7, 1.5β = −  and  

( ) ( ) ( )( )T T
1 2 3, , ~ 0,0,0 ,i i i N Rε ε ε ρ . 

Considering sample size 50n =  and 100n = . Let ( )R ρ  take exchangeable 
structure (Exch) and first-order autoregressive structure (AR(1)), where the pa-
rameter ρ  is taken as 0.3 and 0.7 respectively. Because of the different values of 
parameter ρ  and the different settings of real correlation matrix and work 
correlation matrix, We repeat the simulation 1000 times for different settings to 
calculate MSE (×100) that represents 100 times the mean square error of the 
sample under different conditions. Since there are three parameters, we find the 
average of the mean square error of the three parameters. 

In order to study the problem (1), we compared the mean squared error of the 
estimating method (RELGEE) and the ordinary element empirical likelihood 
method (ELGEE) in the case of no pollution. The simulation results are shown 
in Table 1. 

When processing non-polluting data, due to the robust processing of the lon-
gitudinal data to some extent, resulting in the loss of part of the information, the 
efficiency of robust estimation is usually lower than the non-stable estimate 
when there is no pollution. Table 1 shows that the mean square error of RELGEE 
estimator is only slightly larger than that of ELGEE estimator, which shows that 
this method is efficient even in the case of no pollution. 

In order to explore questions (2) and (3), we have designed three ways of pol-
lution: 

 
Table 1. Comparison of Two Estimators under Non-pollution Conditions. 

Non-pollution TR 

n ρ WR Exch AR(1) 

   ELGEE RELGEE ELGEE RELGEE 

 0.3 Exch 0.57386 0.58100 0.57386 0.58100 

  AR(1) 0.58885 0.60091 0.54477 0.56010 

50  Ind 0.72633 0.73693 0.72633 0.73693 

 0.7 Exch 0.28785 0.29751 0.36407 0.37805 

  AR(1) 0.36407 0.37805 0.28785 0.29751 

  Ind 0.66757 0.67960 0.66757 0.67960 

 0.3 Exch 0.27770 0.27829 0.39119 0.41201 

  AR(1) 0.34903 0.35454 0.29119 0.29492 

100  Ind 0.44306 0.43724 0.40696 0.41015 

 0.7 Exch 0.17467 0.17678 0.16708 0.16904 

  AR(1) 0.19500 0.19504 0.14110 0.14566 

  Ind 0.42543 0.42879 0.40011 0.42267 

WR: Woring R, TR: True R. 
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(C1). Pollution of the response variable Y: randomly turn S% of ijy  into 

ijy b+ , ( )~ 2,1b N . 
(C2). Pollution only for covariate X: randomly turn S% of ijx  into ijx a+ , 

( )( )T
3~ 1,1,1 ,a N I . 

(C3). Simultaneous contamination of X and Y: randomly turn S%/3 of ijy  
into ijy b+ , ( )~ 2,1b N , randomly turn S%/3 of ijx  into ijx a+ , 

( )( )T
3~ 1,1,1 ,a N I . 

Where S% is pollution rate. In this paper, 0.06 and 0.1 are selected. Some si-
mulation results are shown in Tables 2-4. 

Table 2 is the simulation results under C1. By comparison, in most cases, the  
 
Table 2. Comparison of Two Estimators under C1. 

C1 TR 

n ρ YP WR Exch AR-1 

    ELGEE RELGEE ELGEE RELGEE 

   Exch 1.04790 0.79504 0.99345 0.74981 

  0.06 AR-1 1.07018 0.81152 0.97866 0.73729 

 0.3  Ind 1.14262 0.87243 0.98603 0.76988 

   Exch 1.23468 0.88941 1.50948 1.05796 

  0.1 AR-1 1.29277 0.92924 1.43798 1.02313 

50   Ind 1.33828 0.98621 1.46806 1.03712 

   Exch 0.80301 0.56517 0.91464 0.62653 

  0.06 AR-1 0.89749 0.65623 0.86469 0.62672 

 0.7  Ind 1.18518 0.99555 1.02135 0.84933 

   Exch 1.15356 0.78475 1.30655 0.79852 

  0.1 AR-1 1.28685 0.90425 1.24750 0.79105 

   Ind 1.46320 1.12052 1.39281 1.01290 

   Exch 0.42925 0.36534 0.45132 0.41615 

  0.06 AR-1 0.44041 0.37885 0.44808 0.40805 

 0.3  Ind 0.47229 0.41564 0.45741 0.42950 

   Exch 0.49700 0.44274 0.42543 0.38569 

  0.1 AR-1 0.50975 0.45279 0.41175 0.37517 

100   Ind 0.53253 0.48246 0.43528 0.38958 

   Exch 0.26753 0.23767 0.28060 0.24274 

  0.06 AR-1 0.30773 0.27131 0.28723 0.23802 

 0.7  Ind 0.42582 0.39690 0.47786 0.43469 

   Exch 0.33180 0.25774 0.36312 0.30250 

  0.1 AR-1 0.39815 0.31492 0.38295 0.30005 

   Ind 0.51711 0.46137 0.50765 0.46074 

YP: Pollution probability of the response variable Y. 
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Table 3. Comparison of Two Estimators under C2. 

C2 TR 

n ρ XP WR Exch AR-1 

    ELGEE RELGEE ELGEE RELGEE 

   Exch 12.91886 0.99187 13.97928 1.02373 

  0.06 AR(1) 12.82331 0.99716 14.12307 1.02851 

 0.3  Ind 13.06875 1.03024 13.80362 1.00403 

   Exch 42.76916 3.00972 39.56463 2.88551 

  0.1 AR(1) 43.36231 3.05236 39.30508 2.88421 

50   Ind 43.31341 3.05817 40.03126 2.89432 

   Exch 14.44630 0.88005 13.3182 0.89685 

  0.06 AR(1) 14.57675 0.93714 13.72404 0.87365 

 0.7  Ind 14.76241 1.09283 13.10561 0.93932 

   Exch 39.52561 2.89129 37.91395 2.73270 

  0.1 AR(1) 40.71029 3.08226 37.78436 2.74435 

   Ind 40.76240 3.18213 39.59294 2.85362 

XP: Pollution probability of covariate X. 

 
Table 4. Comparison of Two Estimators under C3. 

C3 TR 

n ρ YXP WR Exch AR-1 

    ELGEE RELGEE ELGEE RELGEE 

   Exch 17.02696 1.67541 13.75782 1.83632 

  0.06 AR(1) 17.02611 1.68535 13.80805 1.77938 

 0.3  Ind 16.81146 1.69671 13.69043 1.70931 

   Exch 17.74346 1.62392 15.18327 1.75757 

  0.1 AR(1) 18.27163 1.59380 15.07867 1.73827 

50   Ind 19.71323 1.63598 15.07310 1.73339 

   Exch 19.71323 1.66511 16.65348 1.49746 

  0.06 AR(1) 20.38681 1.82246 16.67835 1.47826 

 0.7  Ind 19.18665 1.92724 15.74532 1.71987 

   Exch 15.62539 1.63831 15.67169 1.71610 

  0.1 AR(1) 17.59703 1.83022 16.35533 1.61183 

   Ind 14.57003 2.01667 16.47950 1.73774 

YXP: Pollution probability of the response variable Y when Pollution probability of covariate X is 0.06. 

 
mean square error of the estimator in this paper is smaller than that of the esti-
mator in ELGEE method. Comparing different pollution intensity, we can see 
that the greater the pollution intensity, the more obvious the superiority of ro-
bust estimation efficiency, which shows that the estimation method in this paper 
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has a strong robustness. It can also be seen that when the working matrix is set 
incorrectly, the difference of estimator is relatively small; when the working cor-
relation matrix is a real matrix, the estimation efficiency is the highest; when the 
working matrix is independent structure (Ind), the estimation efficiency is the 
lowest without considering the correlation between data. 

Table 3 and Table 4 are part of the results under C2 and pollution mode C3. 
Similar to Table 2, in most cases, the mean square error of this estimator is 
smaller than that of ELGEE estimator. Compared with Table 2, the mean square 
error of ELGEE estimator is only one-tenth of the mean square error of ELGEE 
estimator when the pollution intensity is significantly increased. The estimation 
method in this paper can significantly reduce the impact of outliers on the esti-
mator. Similarly, the estimation efficiency is the highest when the working cor-
relation matrix is a real matrix. When there is intra-group correlation in the 
model, the estimation efficiency is the lowest when the correlation is neglected 
in the estimation, which reflects the necessity of considering the longitudinal 
data model. 

It is worth adding that because the method in this paper is a non-parametric 
method, the distribution of random errors does not necessarily follow the nor-
mal distribution. We simulate the distribution of random errors satisfying t(3) 
again. The simulation results are shown in Table 5. Bias (×100) represents 100 
times the deviation. 

In Table 5, in all cases, the mean square error of the estimator in this paper is 
less than that of ELGEE estimator, which shows that the estimation method 
constructed in this paper can also effectively and robustly estimate the data of 
heavy-tailed distribution. 

5. Summary 

We introduce the generalized estimating equations commonly used in longitu-
dinal data, and derive robust estimation functions. Then we combine the robust 
estimation equations with the elemental empirical likelihood method to obtain 
the empirical likelihood ratio function of the estimated parameters. We show a  
 
Table 5. The error distribution of data satisfies t(3). 

t(3) 

n ρ WR Bias (×100) MSE (×100) 

   ELGEE RELGEE ELGEE RELGEE 

 0.3 Exch −0.03467 −0.05221 1.81182 1.01774 

  AR(1) 0.17968 0.30765 1.75744 1.15462 

50  Ind 0.26076 0.11889 2.14819 1.30291 

 0.7 Exch 0.55148 0.64514 0.84950 0.58737 

  AR(1) 0.18788 0.18082 1.25479 0.67416 

  Ind −0.19433 −0.07454 2.04687 1.18954 
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relatively optimized algorithm that can improve the efficiency and computation-
al time of operation. We do a systematic simulation study. The simulation re-
sults show that our method maintains high estimation efficiency when the data 
is not polluted; in the case of data pollution, the estimator of this paper is ob-
viously better than the non-robust estimator. With the increase of pollution in-
tensity, the robustness of our method is more significant, and it has a significant 
resistance to outliers. When the working matrix is set incorrectly, the difference 
of estimator is relatively small; when the working correlation matrix is a real 
matrix, the estimation efficiency is the highest; when the working matrix is 
independent structure (Ind), the estimation efficiency is the lowest without con-
sidering the correlation between data. At the same time, since the estimator in 
this paper is based on empirical likelihood method, it is suitable for the longitu-
dinal data of thick-tailed distribution. There are still many problems worth fur-
ther study in this paper, such as the application of estimation methods to partial 
linear models and variable selection based on robust estimation. 
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