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Abstract 
We investigate the elementary wave interactions for the simplified combus-
tion model in magnetogasdynamics. Under the modified entropy conditions, 
we construct the unique solution and observe some interesting phenomena; 
such as, the combustion wave may be extinguished by the contact discontinu-
ity or the shock wave. Especially, the transition between the detonation wave 
and the deflagration wave is also captured.  
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1. Introduction 

Magnetogasdynamics is very important in studying engineering physics [1]-[9]. 
It is difficult to investigate the governing equations of Magnetogasdynamics 
flows; the corresponding results are less than the conventional gas dynamics. 
When the velocity field and the magnetic field are everywhere orthogonal, the 
magnetogasdynamics flow is still important. 

In [3], Helliwell discussed the non-conducting inviscid gas at rest when 
ionization of the gas takes place across a shock wave and obtained that the 
magnetogasdynamic combustion wave has similar properties with the conventional 
gas dynamics. In [6], Mareev investigated the above problem further and they 
could use the obtained results to study the hypersonic gas flow around a thin 
wedge in an axial magnetic field. 

In [4], Hu and Sheng constructed the unique Riemann solution of the 
one-dimensional inviscid flow 
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under the assumption B kρ= , where 0τ > , 0p ≥ , u, 0B ≥  and µ  are 
respectively the specific volume, pressure, velocity, transverse magnetic field and  

magnetic permeability. 
2

2
uE e= +  is the specific total energy. and e is the  

specific internal energy. The Riemann problem of the conventional gas 
dynamics combustion models was investigated by many people ([10] [11] [12] 
[13], etc.). Zhang and Zheng [13] studied the Riemann problem of the 
conventional gas dynamics flow of combustible ideal gases  
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with an infinite rate of reaction which is described by  
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Under the proposed global entropy conditions, they constructed uniquely the 
Riemann solutions by the characteristic analysis. In [11], we modified the above 
global entropy conditions and constructed the unique solution of the generalized 
Riemann problem for (2) and (3). 

In [5], we obtained uniquely the Riemann solutions for (1) and (3) under the 
modified entropy conditions in [11] with the following initial data  

( )( ) ( ), , , ,0 , , , ,  0,p u q x p u q xτ τ ± ± ± ±= ± >              (4) 

where 0, ,p uτ ± ± ±>  are arbitrary constants,  
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and 0 0q >  is a constant. 
2

2
uE e q= + +  is the specific total energy, where q is  

the chemical binding energy. The temperature T satisfies Boyle and Gay-Lussac’s 
law: p RTτ = . iT  is the ignition temperature. For polytropic gases, we know  

( )e e T=  and 
2

2 1
u pE qτ

γ
= + +

−
, where 1γ >  is the adiabatic exponent. For  

simplicity, we usually assume that R and γ  remain unchanged during the 
reaction. We also assume that the combustion process is exothermic, i.e. the 
energy used up in recombing the atoms to form the new molecules is smaller for 
the burnt gas than the binding energy of the unburnt gas [10]. 
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In the present paper, we are concerned with the wave interactions of the 
elementary waves of the Chapman-Jouguet (CJ) model (1) and (3). we can 
capture some interesting combustion phenomena by investigating the elementary 
wave interactions. For example, in most cases expect for Case 5. In Section 3, the 
combustion wave may be extinguished by the contact discontinuity or the shock 
wave. Especially, a detonation wave may be transformed into a deflagration wave 
by the contact discontinuity (see Case 1 and Case 2 in Section 3) and a deflagration 
wave may be transformed into a detonation wave by the contact discontinuity 
(see Case 4 in Section 3) or by the shock wave (see Case 6 in Section 3) which 
shows the transition between the detonation wave and the deflagration wave. In 
the case that when combustion waves interact with the contact discontinuity, our 
results are very different from the conventional gas dynamics combustion model 
(2) and (3) where there is no transition from the detonation (deflagration) wave 
to the deflagration (detonation) wave and the combustion wave can not be 
extinguished by the contact discontinuity. 

This paper is organized as follows. In Section 2, we present the results of the 
Riemann problem for the CJ model (1), (3) with the initial values (4). In Section 
3, the elementary wave interactions are considered case by case under the 
modified entropy conditions in [11]. 

2. Preliminaries 

As a preparation, we study the Riemann problem for the CJ model (1), (3) with 
the initial data (4) and we refer the detailed discussions to [4] [5]. 

There are three eigenvalues of (1) which are 

1
2

1

p

p

BBp e e

e

τ
τµλ

 − + 
 = −
 
 
 

, 

2 0λ =  and 

1
2

3

p

p

BBp e e

e

τ
τµλ

 − + 
 =
 
 
 

. If 0pe >  and 0e pτ + > , (1) is strictly  

hyperbolic. The characteristic fields 1,3λ  are genuinely nonlinear and 2λ  is 
linearly degenerate. 

Considering the self-similar solution ( )( ), , xp u
t

τ ζ ζ = 
 

, for any smooth 
solution we have  
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The forward or backward rarefaction waves R




 passing through the point 
( )0 0 0, ,p uτ  are  
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The Rankine-Hugoniot jump conditions at ζ σ=  are as follows  
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where [ ] r lτ τ τ= − , etc. 
The contact discontinuity J is given by  
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and J is a curve in the ( ), ,p uτ  space and the projection on the ( ),p u  plane is 
a straight line parallel to the p-axis. Denote J by J

<
 when , l r l rp p τ τ< < , and 

J
>

 when , l r l rp p τ τ> > . 
If [ ] 0q =  in (7), we get the forward or backward shock waves S
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where 2 1
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If [ ] 0q ≠  in (7), we obtain the combustion wave curve in the ( ), pτ  plane  
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Draw two straight lines from ( )0 0, pτ  and they are tangent to the above 
curve. We call the tangent points A with 0τ τ<  and B with 0τ τ>   
Chapman-Jouguet detonation (CJDT) and Chapman-Jouguet deflagration (CJDF), 
respectively. From the RH condition (7), we should disregard the curve between 
the points C and D. We call the curve between C and A weak detonation (WDT) 
and the curve above A strong detonation (SDT), the curve between D and B 
weak deflagration (WDF) and the curve below B strong deflagration (SDF), 
respectively (see Figure 1). 
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Figure 1. The combustion wave curve in the (τ, p). 

 
From the known Jouguet’s rule in [13], there are at most three different kinds 

of wave series that can be linked to the state ( ) ( ), , ,l l l ll p u qτ≡ : 
1) ( )uS l  or ( )uR l  (containing no combustion waves), 
2) ( ) ( )i WDF i+  or ( ) ( ) ( )( )i CJDF i R CJDF i+ +  (containing no DT waves), 
3) ( )SDT l  or ( ) ( )( )CJDT l R CJDT l+  (containing no DF waves), 

where ( ) ( ), , ,i i ii i l u p qτ≡ ≡  is the state at ( )S l  with the ignition temperature 

iT , and the symbol “+” means “followed by”. Notice that we let the temperature 
behind the pre-compressive shock wave which connects the state (l) and the 
ignition point (i) be the ignition point iT , we just need to construct the 
deflagration wave curve which is the successor to the pre-compressive shock 
wave from the point (i). 

In the ( ), pτ -plane we have  
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( )( ) ( ): ,   ,A C AR CJDT l p p p pγ γτ τ= <  

( )( ) ( ) ( ) ( )( ): ,   .B B Bi i iR CJDF l p p p pγγτ τ= <  

Denote ( ) ( ) ( ): S DW l W l W l=  , where ( )SW l  denotes ( )( ), 0S lW l q =  or 
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( )( ), 0S lW l q >  or both of them, and ( )DW l  denotes ( ) ( )DT DFW l W l , here 
( ) ( ) ( ) ( )( ):DTW l SDT l CJDT l R CJDT l=    and  
( ) ( ) ( ) ( )( ):DFW l WDF i CJDF i R CJDT i=   . 

Now we study the combustion wave curves in the ( ),u p  plane and construct 
the backward combustion wave curve ( )W l



 from the state ( ) ( ), , ,l l l ll p u qτ= . 
From (9), for the backward wave ( )0S Qτ τ
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thus we obtain the backward combustion wave curve in the ( ),u p  plane (see 
Figure 2). 
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 (11) 

Now denote the backward DF and DT wave curve by ( )DFW l


 and ( )DTW l


, 
respectively, where 

( ) ( ) ( ) ( )( ): ,DF s s sW l WDF i CJDF i R CJDF i=
  

 

   

( ) ( ) ( ) ( )( ): .DTW l SDT l CJDT l R CJDT l=
  

 

   

 

 
Figure 2. The combustion wave curve in the plane (u, p). 
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Denote the backward wave curve ( )W l


 which can be linked to the state 
( ) ( ), , ,l l l ll p u qτ= , then  

( ) ( ) ( ): ,S DW l W l W l=
  

  

( ) ( )( ) ( )( ): , 0  or , 0 ,S S l S lW l W l q W l q= = >
  

 

( ) ( ) ( ): .D DF DTW l W l W l=
  

  

Similarly, we can construct the forward wave curve ( )W r


 that can be linked 
to the state ( ) ( ), , ,r r r rr p u qτ= . 

Since the image of J in ( ), ,p uτ  is a straight line which parallels to the τ-axis 
and the projection on the plane ( ),u p  is a point, J is a plane curve in ( ), ,p uτ  
and the projection on the plane ( ),u p  is a straight line which parallels to the 
p-axis. Thus the Riemann prblem for (1) is much more complicated than that of 
the conventional gas dynamics. 

When 0l rq q= = , the gas on both sides are burnt, no combustion wave will 
occur. 

When lq  and rq  are not both zero, there may exist more than one 
intersection points of ( )W l



 and ( )W r


. Each intersection point corresponds 
to a unique Riemann solution. When the intersection point is unique, the 
solution is also unique, otherwise, in order to obtain the unique solution we 
select it under the following modified global entropy conditions (MGEC) ([11]): 

We select the unique solution from the nine intersection points (at most) of 
the forward wave curves connecting (r) and the backward wave curves 
connecting (l) in the following order: 

1) the solution with the propagating speed of combustion wave as low as 
possible; 

2) the solution with the parameter β  as small as possible, where β  is 
defined as oscillation frequency of ( )T ξ  between the set ( ){ }1 : iR T Tξ ξ∈ ≤  
and the set ( ){ }1 : iR T Tξ ξ∈ > ; 

3) the solution containing as many combustion wave as possible. 
Case 1. 0, 0l rq q> = . In this case, the gas is unburnt on the left side, the gas 

is burnt on the right side, i.e. ( ) ( ) ( ) ( )S DF DTW l W l W l W l=
   

  , ( ) ( )SW r W r=
 

. 
When there exists only one intersection point of ( )W l



 and ( )W r


, we obtain 
the unique solution is a detonation wave solution DT R+




 or S


 if 

l l r rp pγ γτ τ= , or DT J R+ +




 or S


 if l l r rp pγ γτ τ≠ . 
When there are three intersection points of ( )W l



 and ( )SW r


 (see Figure 
3), from the modified global entropy condition A, we discard the intersection 
point of ( )SW r



 and ( )DTW l


. Denote the intersection point of ( )SW r


 and 
( )SW l



 by S∗  and the intersection point of ( )SW r


 and ( )DFW l


 by DF∗ . 
Denote the temperature at the point S∗ , DF∗  on ( )SW r



 by ST , DFT , 
respectively. The temperature at DF∗  on ( )DFW l



 is greater than iT  since the 
combustion process is exothermic. 

Subcase 1.1. l l r rp pγ γτ τ= . 
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Figure 3. ql > 0, qr = 0 and there are there interactions. 

 
When r iT T≤ , then ( ) 0Sβ ∗ = , ( ) 2DFβ ∗ = , from the condition B, we select 

S∗  and obtain a non-combustion wave solution R


 or S R+
 

 or S


 (Figure 
4(a)). 

When r iT T> , then ( ) 1Sβ ∗ = , ( ) 1DFβ ∗ = , from the condition C, we select 

DF∗  and obtain a combustion wave solution DT R+




 or S


 (Figure 4(b)). 
Subcase 1.2. l l r rp pγ γτ τ≠ . 
From the condition A, we discard the possible detonation DT wave solution 

and find that the possible Riemann solution is R


 or S J R+ +
 

 or S


 or 
DT J R+ +




 or S


. According to the modified global entropy conditions we 
obtain the unique Riemann solution as follows (see Figure 5). 

1) When r iT T> , DF iT T> , then ( ) 1Sβ ∗ = , ( ) 1DFβ ∗ = , from the condition 
C, we select DF∗  and obtain a combustion wave solution containing a DF 
(Figure 5(b)). 

2) When r iT T> , DF iT T≤  ( S iT T⇒ ≤ ), then ( ) 1Sβ ∗ = , ( ) 3DFβ ∗ = , from 
the condition B, we select S∗  and obtain a non-combustion wave solution 
(Figure 5(a)). 

3) When r iT T≤ , S iT T≤ , then ( ) 0Sβ ∗ = , ( ) 2DFβ ∗ = , from the condition 
B, we select S∗  and obtain a non-combustion wave solution (Figure 5(a)). 

4) When r iT T≤ , S iT T>  ( >DF iT T⇒ ), then ( ) 2Sβ ∗ = , ( ) 2DFβ ∗ = , 
from the condition C, we select DF∗  and obtain a combustion wave solution 
containing a DF (Figure 5(b)). 

Case 2. 0, 0l rq q> =  and there are two intersection points of ( )W l


 and 
( )SW r



 (see Figure 6). 
Subcase 2.1. l l r rp pγ γτ τ= . 
In this case, we select the point S∗  or DT∗  and obtain the possible solutions 

S R+
 

 or S


 or DT R+




 or S


. Now we select the unique Riemann solution 
as follows. 

When r iT T> , then ( ) 1Sβ ∗ = , ( ) 1DTβ ∗ = , from the condition C, we select 

DT∗  and obtain a combustion wave solution DT R+




 or S


 (Figure 7(a)). 
When r iT T≤ , then ( ) 0Sβ ∗ = , ( ) 2DTβ ∗ = , from the condition B, we select 

S∗  and obtain a non-combustion wave solution S R+
 

 or S


 (Figure 7(b)). 
Subcase 2.2. l l r rp pγ γτ τ≠ . 
There are two possibilities: one is that there exists only one intersection point 

of ( )W l


 and ( )W r


 and we obtain the unique Riemann solution is DT J R
>

+ +
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Figure 4. Solutions in Subcase 1.1. (a) non-combustion wave; (b) combustion wave DF. 
 

 
Figure 5. Solutions in Subcase 1.2. (a) non-combustion wave; (b) combustion wave DF. 
 

 
Figure 6. ql > 0, qr = 0 and there are two interactions. 

 

 
Figure 7. Solutions in Subcase 2.1. (a) combustion wave DT; (b) non-combustion wave. 
 
or S



, the other one is that there are three possible solutions which are the 
noncombution wave solution S



 or R J R+ +
 

 or S


, or the DF combustion 
wave solution DT J R+ +




 or S


, or the DT combustion wave solution 
DT J R

<
+ +




 or S


. Similarly, according to the modified global entropy 
conditions we obtain the unique solution as follows (see Figure 8). From the 
global entropy condition A, we discard the DT combustion wave solution. 

1) When r iT T> , DF iT T> , then ( ) 1Sβ ∗ = , ( ) 1DFβ ∗ = , from the condition 
C, we select DF∗  and obtain a combustion wave solution containing a DF 
(Figure 8(b)). 

2) When r iT T> , DF iT T≤  ( S iT T⇒ ≤ ), then ( ) 1Sβ ∗ = , ( ) 3DFβ ∗ = , from 
the condition B, we select S∗  and obtain a non-combustion wave solution 
(Figure 8(a)). 
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Figure 8. Solutions in Subcase 2.2. (a) non-combustion wave; (b) combustion wave DF. 
 

3) When r iT T≤ , S iT T≤ , then ( ) 0Sβ ∗ = , ( ) 2DFβ ∗ = , from the condition 
B, we select S∗  and obtain a non-combustion wave solution (Figure 8(a)). 

4) When r iT T≤ , S iT T>  ( DF iT T⇒ > ), then ( ) 2Sβ ∗ = , ( ) 2DFβ ∗ = , 
from the condition C, we select DF∗  and obtain a combustion wave solution 
containing a DF (Figure 8(b)). 

Case 3. 0, 0l rq q> >  and the gas on the both sides are unburnt. In this 
case ,we know that ( ) ( ) ( ) ( )S DF DTW l W l W l W l=

   

  ,  
( ) ( ) ( ) ( )S DF DTW r W r W r W r=
   

  . 
If the intersection point of ( )W l



 and ( )W r


 is unique, the solution is 
DT DT+
 

 if l l r rp pγ γτ τ= , or DT J DT+ +
 

 if l l r rp pγ γτ τ≠ . Otherwise, there 
are two possible subcases: one is that there is an intersection point of ( )SW l



 
and ( )SW r



, the other is that there is no intersection point of ( )SW l


 and 
( )SW r



. 
Case 3.1. In the former subcase (see Figure 9), we discuss it in the following 

two subcases. 
Subcase 3.1.1. l l r rp pγ γτ τ= . 
From the condition A, we just need to consider the intersection points 1, 2, 3, 

4. We should select the unique solution from the four possible solutions (see 
Figure 10). 

It is obvious that 0β =  for (a), and it holds that 2β =  for (b), (c) and (d). 
From the condition B, we select the intersection point 1 and obtain the unique 
non-combustion wave solution R



 or S R+
 

 or S


. 
Subcase 3.1.2. l l r rp pγ γτ τ≠ . In a similar way as the above discussions in 

Subcase 3.1.1., we obtain that the unique Riemann solution is still the 
non-combustion wave solution R



 or S J R+ +
 

 or S


. The only difference is 
that here the contact discontinuity appears. 

Case 3.2. In the latter subcase, there are only two possibilities: ( )W l


 
intersects ( )DTW r



 only or ( )W +


 intersects ( )DTW l


 only. We just need to 
consider the former. If the intersection point is unique, the solution is 
DT DT+
 

 if p pγ γτ τ− − + += , or DT J DT+ +
 

 if p pγ γτ τ− − + +≠ , otherwise, there 
are at most three intersection points (see Figure 11). 

Subcase 3.2.1. l l r rp pγ γτ τ≠ . 
From the condition A, the intersection point of ( )DTW l



 and ( )DTW r


 
should be discarded. We denote the intersection point of ( )DTW r



 and ( )SW l


 
by S∗  and denote the intersection point of ( )DTW +



 and ( )DFW l


 by DF∗ ,  
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Figure 9. There is an intersection point of ( )SW l


 and ( )SW r


. 

 

 
Figure 10. The possible solutions in Subcase 3.1.1. (a) solution corresponds to point 1; 
(b) solution corresponds to point 2; (c) solution corresponds to point 3; (d) solution cor-
responds to point 4. 
 

 

Figure 11. ( )W −


 intersects ( )DTW r


 only. 

 
respectively. We denote the temperature at the point S∗ , DF∗  on ( )DTW r



 by 

ST , DFT , respectively (see Figure 12). 
Since S iT T>  we have DF iT T> , then ( ) 2Sβ ∗ = , ( ) 2DFβ ∗ = . From the 

condition C, we select DF∗  and obtain a combustion wave solution DF DT+
 

. 
Subcase 3.2.2. l l r rp pγ γτ τ= . In a similar way as the above discussions in 

Subcase 3.2.1., we obtain that the unique Riemann solution is still the 
combustion wave solution DF DT+

 

. The only difference is that there exists the 
contact discontinuity in Subcase 3.2.1. 

Based on the above analysis, we have the following result. 
Theorem 2.1. There exists a unique piecewise smooth solution to the 

Riemann problem (1) and (3) with the initial data (4) under the modified global 
entropy conditions (MGEC). 
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Figure 12. Solutions in Subcase 3.2.1. 

3. Wave Interactions for the Combustion Model (1) and (3) 

In this section, we discuss the wave interactions of the elementary waves for our 
combustion model (1) and (3). Consider the equations (1) and (3) with the 
following initial data  

( )( )
( )
( )
( )

1

1 2

2

, , , ,
, , ,0 , , , ,

, , , ,

l l l

m m m

r r r

B u x x
B u x B u x x x

B u x x

ρ
ρ ρ

ρ

 −∞ < ≤
= < ≤
 < < ∞

            (12) 

for arbitrary 1 2,x x R∈ . 
In order to capture the interesting combustion phenomena, in the present 

paper we investigate the following kinds of interactions: 
The interaction of a combustion wave SDT



 or WDF


 and a contact 
discontinuity: J SDT

> 
, J SDT

< 
, J WDF

> 
, J WDF

< 
; 

The interaction of a combustion wave SDT


 or WDF


 and a shock wave: 
SDT S


, WDF S


. 
In what follows, we construct the solutions of the wave interactions case by 

case. 
Case 1. J SDT

> 
 

In the ( ),x t  plane, J
>

 and SDT


 will encounter each other at a finite time 
and a new Riemann problem is formed with (l) and (r) as its left-hand side state 
and right-hand side state, respectively (Figure 13). We solve this new Riemann 
problem in the ( ),u p  plane. It is obvious that l m ru u u= > , l mp p>  and 

l mτ τ> . 
From the analysis of the wave curves in the ( ),u p  plane, we know that 
( ) ( ) ( ) ( )S DF DTW l W l W l W l=
   

  , and ( ) ( )SW r W r=
 

. 
There are two possible cases: there is only one intersection point of ( )DTW l



 
and ( )SW r



, or there are three intersection points of ( )W l


 and ( )SW r


. From 
the arguments in the former section, we know the result is as follows: 

When l l r rp pγ γτ τ= , from the modified global entropy conditions we obtain 
that  

or ,

or or ,

or ,

SDT R S

J SDT S R R S

DF R S

>
 +
→ +
 +





  




                    (13) 

where “→ ” means the result of the wave interaction. 
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Figure 13. The interaction of J
>

 and SDT


. 
 

When l l r rp pγ γτ τ≠ , the results are given by  

or ,

or or ,

or .

SDT J R S

J SDT S R J R S

DF J R S

>
 + +
→ + +
 + +





  




                 (14) 

Case 2. J SDT
< 

 
In this case (Figure 14), we know l m ru u u= > , and for the contact 

discontinuity it holds that l mp p<  and l mτ τ< . Similar with the discussions as 
the above case, we know that when l l r rp pγ γτ τ= ,  

or  or ,

or ,

or ,

S R R S

J SDT SDT R S

DF R S

<
 +
→ +
 +

  

 





                   (15) 

when l l r rp pγ γτ τ≠ , the results are the same as the above except that J appears 
here. 

Theorem 3.1. For Case 1 and Case 2, when a strong detonation combustion 
wave interacts with a contact discontinuity which is of a jump decrease (or 
increase) in density in the propagating direction of the strong detonation wave, 
the strong detonation combustion wave may be extinguished or cross the 
contact discontinuity at once, or be transformed into a deflagration wave. And 
the contact discontinuity may disappear or not.  

Remark 3.2. The result of the interaction of the strong detonation wave and 
the contact discontinuity is very different from that of the corresponding case in 
the conventional gas dynamics combustion model (4) where there is no 
transition from the detonation wave to the deflagration wave and the 
combustion wave can not be extinguished by the contact discontinuity. 

Case 3. J WDF
> 

 
For this case, we know that J

>
 and WDF



 will encounter each other at a 
finite time in the ( ),x t  plane, and a new Riemann problem is formed with (l) 
and (r) as its left-hand side state and right-hand side state, respectively. Similarly, 
we solve the new Riemann problem in the ( ),u p  plane. 
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Figure 14. The interaction of J
<

 and SDT


. 
 

It is easily shown that l mu u=  and l mp p> , l mτ τ> . We proceed as follows 
(Figure 15). Based on the analysis in the ( ),u p  plane, we notice specially that 
the temperature is just the ignition point on the wave front of the WDF



, i.e. the 
state ( ) ( )mm i=  where the symbol “ ( )mi ” means the ignition point corresponding 
to the state (m). Since there are three intersection points of ( )W l



 and ( )SW r


, 
from the global entropy conditions we know that when l l r rp pγ γτ τ= ,  

or or ,

or ,

S R R S
J WDF

DF R S

>  +→ 
+

  






            (16) 

when l l r rp pγ γτ τ≠ , 

or  or ,

or .

S R J R S
J WDF

DF J R S

>  + +→ 
+ +

  






            (17) 

Theorem 3.3. For this case, when a weak deflagration combustion wave 
interacts with a contact discontinuity which is of a jump decrease in density in 
the propagating direction of the weak deflagration wave, the weak deflagration 
combustion wave may be extinguished, or cross the contact discontinuity at 
once. And the contact discontinuity may disappear or not. 

Case 4. J WDF
< 

 
In this case (Figure 16), we know l mu u= , and for the contact discontinuity 

we know l mp p<  and l mτ τ< . There are two possibilities: one is that there is 
only one intersection point of ( )DTW l



 and ( )SW r


, the other one is that there 
are three intersection points of ( )W l



 and ( )SW r


. Therefore we know the 
results are as follows: 

When l l r rp pγ γτ τ= , the results are as follows 

or ,

or or ,

or ,

DT R S

J DF S R R S

DF R S

<
 +
→ +
 +





  




                 (18) 

when l l r rp pγ γτ τ≠ , the results are the same as the above except that J appears 
here. 
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Figure 15. The interaction of J
>

 and WDF


. 
 

 

Figure 16. The interaction of J
<

 and WDF


. 
 

Theorem 3.4. For this case, when a weak deflagration combustion wave 
interacts with a contact discontinuity which is of a jump increase in density in 
the propagating direction of the weak deflagration wave, the weak deflagration 
combustion wave may be transformed into a detonation wave, or be 
extinguished, or cross the contact discontinuity at once. And the contact 
discontinuity may disappear or not.  

Remark 3.5. The result of the interaction of the weak deflagration wave and 
the contact discontinuity is very different from that of the corresponding case in 
the conventional gas dynamics combustion model (2), where there is no transition 
from the deflagration wave to the detonation wave and the combustion wave can 
not be extinguished by the contact discontinuity.  

Case 5. SDT S


 
In this case (Figure 17), we know for SDT



 it holds that 1m lλ σ λ< < , and 
for S



 it holds that 2r mλ σ λ< < , where 1σ  and 2σ  are respectively the 
velocity of SDT



 and S


. Therefore, S


 will overtake SDT


 at a finite time 
and a new Riemann problem is formed. We still solve this problem in the ( ),u p  
plane. ( ) ( )DTm W l∈



, ( ) ( )r S m∈


 and the curves ( ) ( )S DFW l W l
 

  are located 
below the curve ( )SW m



 according to the condition A. From Lemma 2.6., we 
know ( ) ( )S DFW l W l

 

  are located below ( )( )mR m u u≤


 and the half straight 
line ( )m mp p u u= > . Considering that ( )R m



 and ( )R r


 from Lemma 2.6., 
we know that ( )SW r



 is located above the curve ( )( )mR m u u≤


 and the half  
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Figure 17. The interaction of SDT


 and S


. 
 
straight line ( )m mp p u u= > . Therefore, ( )SW r



 does not intersect with 
( ) ( )S DFW l W l

 

  and the result of the interaction is expressed by  

or ,          ,

or ,    .
l l r r

l l r r

SDT R S p p
SDT S

SDT J R S p p

γ γ

γ γ

τ τ

τ τ

 + =→ 
+ + ≠









            (19) 

Theorem 3.6. For this case, when a shock wave overtakes a strong detonation 
combustion wave, it speeds up the strong detonation combustion wave and the 
contact discontinuity may appear or not.  

Case 6. WDF S


 
In this case (Figure 18), similar with the discussions as the just above case, we 

know that S


 will overtake SDT


 at a finite time and a new Riemann problem 
is formed with (l) and (r) as its left-hand side state and right-hand side state, 
respectively. Notice that ( ) ( )DFm W l∈



, ( ) ( )r S m∈


 and (r) is located above 
the curve ( )DFW l



, we know the temperature at this point is higher than the 
ignition temperature, therefore when l l r rp pγ γτ τ= , the results is described by 

or ,

or ,

or ,

WDF R S

WDF S R S

DT R S

 +
→ 
 +










                  (20) 

when l l r rp pγ γτ τ≠ , the result is the same expect that the contact discontinuity 
appears here. 

Theorem 3.7. For this case, when a shock wave overtakes a weak deflagration 
combustion wave, the weak deflagration combustion wave may be extinguished 
or be transformed into a detonation wave. And the contact discontinuity may 
appear or not.  

After the discussions of the elementary wave interactions, we summarize the 
results as follows. 

By investigating the kinds of wave interactions of the elementary waves, we 
can capture some interesting combustion phenomena. For example, the 
combustion wave may be extinguished by the contact discontinuity or by the 
shock wave. Especially, a detonation wave may be transformed into a weak 
deflagration wave coalescing with pre-compression shock wave by the contact  
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Figure 18. The interaction of WDF


 and S


. 
 
discontinuity, and a deflagration wave may be transformed into a detonation 
wave by the contact discontinuity or by the shock wave, which describe the 
transition between the detonation wave and the deflagration wave. Notice 
specially that the contact discontinuity play a very important role in 
magnetogasdynamic combustion model (1) and (3), which is very different from 
the conventional gas dynamic combustion model (2) and (3). 

Since the reaction rate in our model is infinite which is an idealized hypothesis, 
while our model is still very important in application, we will investigate the initial 
value problem for the self-similar Zeldovich-von Neumann-Döring (ZND) model 
in magnetogasdynamic combustion with finite reaction rate in our coming 
works. 
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