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Abstract 
In this paper, a Schistosomiasis japonicum model incorporating time delay is 
proposed which represents the developmental time from cercaria penetration 
through skins of human hosts to egg laying. By linearizing the system at the 
positive equilibrium and analyzing the associated characteristic equations, the 
local stability of the equilibria is investigated. And it proves that Hopf bifur-
cations occur when the time delay passes through a sequence of critical value. 
Furthermore, the explicit formulae for determining the stability and the di-
rection of the Hopf bifurcation periodic solutions are derived by using tech-
niques from the normal form theory and Center Manifold Theorem. Some 
numerical simulations which support our theoretical analysis are also con-
ducted.  
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1. Introduction 

Schistosomiasis is one of the most prevalent parasitic diseases. In 2004, WHO 
suggested that there were 200 million individuals infected worldwide [1]. However, 
today, more than 207 million people, 85% of whom live in Africa, are infected 
with schistosomiasis [2], and the estimated 700 million people are at risk of 
infection in 76 countries where the disease is considered endemic, as their 
agricultural work, domestic chores, and recreational activities expose them to 
infested water [2] [3]. Globally, 200,000 deaths are attributed to schistosomiasis 
annually [4]. Thus, controlling schistosomiasis is a long-term task in the 
developing nations, and mathematical modeling of Schistosoma japonicum 
transmission is beneficial for the development of new strategies for control. 
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After the pioneering work of Macdonald [5], the dynamics properties (including 
stability, persistence, and oscillatory behavior) of the schistosomiasis models that 
have significant biological background have been one of the most active areas of 
research and have attracted great attention of many researchers. Many excellent 
and interesting results have been obtained (see [6]-[18]). Besides, a 
simplification of the two-strain, vector-host model was proposed by Feng and 
Velasco-Hernández [19] for Dengue fever. The model couples a simple XYX 
model for the hosts with an SI model for the vectors. The four compartments 
correspond to infected hosts (Y), infected vectors (I), susceptible hosts (X) and 
susceptible vectors (S). Hosts are infected by contacts with infected vectors, and 
vectors are in turn infected by contacts with infected hosts. These infection rates 
are given by the two terms 1 XIβ  and 2YSβ . The model is written as follows:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

1

2

2

d ,
d
d ,
d
d ,
d
d ,
d

X b X t I t bX t vY t
t
Y X t I t v b Y t
t
S c Y t S t cS t
t
I Y t S t cI t
t

β

β

β

β

 = − − +

 = − +

 = − −


 = −


           (1.1) 

where 1 0β >  and 2 0β >  are the disease transmission coefficients; 0v >  is 
the recovery rate of infected host. The birth and death rates have been scaled to 

0b >  for the host and 0c >  for the vector. 
Note that an infected snail cannot infect susceptible man (or an animal) 

directly and vice versa. Schistosomiasis has a complicated life cycle involving 
two free living stages, the miracidia and the cercariae; and two host populations, 
the human and the snail. The parasite eggs hatch into free-swimming larva 
called miracidia in water; the miracidium then penetrates an appropriate snail at 
suitable temperature. In the infected snail, the miracidium undergoes asexual 
multiplication through a series of stages called sporocyst; then thousands of 
free-swimming cercariae are released. Cercariae are shed from the infected snail 
and penetrate the skin of a definitive host (such as human) within a few minutes 
after exposure and transform into schistosomula, which travel through the 
bloodstream to the liver, where they mature into adults and start producing eggs 
[20]. The eggs infiltrate through the tissues and are passed in the feces. That 
finishes schistosomiasis life cycle. Besides, the model (1.1) can be used to 
describe the transmission of schistosomiasis since schistosomiasis is a snail-vector 
disease. 

It is known that there are prepatent periods of schistosoma. In fact, it is about 
five weeks from the time of cercaria penetration through skins of human hosts to 
the time when eggs are discharged [21]. That is, a susceptible host becomes 
infection for some time and then excretes feces with parasite eggs. It is easy to 
see that the prepatent period of hosts is very important for Schistosome japonicum 
transmission. Hence, it is necessary to study the impact of the prepatent period 
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on schistosomiasis transmission. The aim of this paper is to incorporate the 
prepatent period of infected hosts into (1.1), and estimate the impact of the 
prepatent period on the schistosomiasis transmission. In this paper, we 
incorporate effects of the prepatent period of infected hosts into the model (1.1) 
and propose a schistosomiasis model as follows:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1

1

1 1

1 1 1

2 2

2 2 2

d e ,
d
d e ,
d
d ,
d
d ,
d

d

d

X A X t I t d X t vY t
t
Y X t I t v d Y t
t
S Y t S t d S t
t
I Y t S t d I t
t

τ

τ

β τ

β τ α

β

β α

−

−

 = − − − +

 = − − + +

 = Λ − −



= − +

        (1.2) 

with initial conditions ( ) ( )1X θ φ θ= , ( ) ( )2Y θ φ θ= , ( ) ( )3S θ φ θ= ,  
( ) ( )4I θ φ θ=  and ( ) 0iφ θ ≥ , [ ],0θ τ∈ − , ( ) ( )0 0 1,2,3,4i iφ > = , where 
( ) ( ) ( ) ( )( ) [ ]( )4

1 2 3 3 0, , , ,0 ,Cφ θ φ θ φ θ φ θ τ +∈ −  , the space of continuous functions 
mapping the interval [ ],0τ−  into 4

0+ , where  
( ){ }4

0 1 2 3 4, , , : 0, 1, 2,3, 4ix x x x x i+ = ≥ = . 
In system (1.2), A and Λ  are the recruitment rates of hosts and snails, 

respectively. The constant 1β  is the per capita rate of infection of hosts by 
cercaria released by a infected snail, 2β  is the per capita rate of infection of 
snails by miracidia from the parasite eggs from a infected host. The constant v is 
the recovery rate of infected host. Constants id  and ( )1,2i iα =  represent the 
natural death rate and disease inducing death rate of hosts and snails, 
respectively. τ  is the prepatent period in host. We assume that all parameters 
are positive constants. 

In fact, the reciprocal of the death rate, 11 d , is equivalent to the life 
expectancy of human. Assume that 1 day1 s75 3 265 7375 daysd == × , then 

5
1 3.65 10d −= × . This means that the survival rate 1e d τ−  is infinitely close to 1. 

Therefore, we make a simplification common in system (1.2) with the survival 
rate and assume that the survival rate has negligible impact on dynamics. Thus 
system (1.2) can be written in the following form:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

1 1 1

2 2

2 2 2

d ,
d
d ,
d
d ,
d
d .
d

X A X t I t d X t vY t
t
Y X t I t v d Y t
t
S Y t S t d S t
t
I Y t S t d I t
t

β τ

β τ α

β

β α

 = − − − +

 = − − + +

 = Λ − −



= − +

          (1.3) 

The effects of time delays on the dynamical behaviors of schistosomiasis have 
been investigated in the literatures [21] [22] [23] [24]. For example, Liang et al. 
[21] investigated the development period of worms in human hosts, they 
described temperature-dependent and precipitation-dependent effects on snail 
abundance and infection as well as seasonal aspects of local agricultural practice. 
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In [23], a fixed delay was inspired by the life history of schistosomes, they 
investigated the impact of the delay on the invasion and persistence of 
drug-resistant parasite strains as well as on multi-strain coexistence. The main 
purpose of this paper is to study the effects of the time delay on the dynamical 
behaviors of (1.3), and discuss the direction of the bifurcation and stability of the 
bifurcating periodic solutions. 

The remainder of the paper is organized as follows. In Section 2, we obtain the 
stability of disease-free equilibrium and the existence of the endemic equilibrium. 
In Section 3, by analyzing the characteristic equation of the linearized system of 
system (1.3) at the endemic equilibrium, we discuss the stability of the endemic 
equilibrium and the existence of the Hopf bifurcations occurring at the endemic 
equilibrium. In Section 4, by using the normal form theory and the Center 
Manifold Theorem, the formulae determining the direction of the Hopf 
bifurcations and the stability of bifurcating periodic solutions are obtained. 
Some numerical simulations are presented to illustrate our theoretical results in 
Section 5. This paper ends with a brief conclusion. 

2. Equilibrium Analysis 

In this section, we discuss the existence of equilibria and the stability of the 
disease free equilibrium. 

When the infective hosts and the infective snails do not exist, i.e., 0Y I= = , 

then 
1

AX
d

=  and 
2

=S
d
Λ

. This is the infection free equilibrium  

0
1 2

,0, ,0AE
d d

 Λ
=  
 

 for schistosomiasis. The following theorem determines  

stability of 0E  and existence of endemic equilibrium in terms of a threshold 
parameter  

( )( )
1 2

0
1 2 1 1 2 2

.
AR

d d v d d
β β
α α

Λ
=

+ + +
 

Theorem 2.1. If 0 1R < , then system (1.3) has a unique equilibrium 

0
1 2

,0, ,0AE
d d

 Λ
=  
 

 and 0E  is stable if 0 1R < . If 0 1R > , then system (1.3)  

has an endemic equilibrium ( )* * * * *, , ,E X Y S I=  except the disease free 
equilibrium 0E , where  

( )( )
( ) ( )( )

( )( )
( ) ( )( )

( )( )
( ) ( )

1 2 1 2 1 1 2 2* 1 1

1 1 1 2 1 1 1 2 1 1 2 2

1 2 1 2 1 1 2 2*

1 2 1 1 2 1 1 2 2

1 2 1 2 1 1 2 2* 2 2

2 2 1 2 2 2 2 1 1

1 2 1 2 1*

,

,

,

A d d v d ddAX
d d d d v d d

A d d v d d
Y

d d v d d
A d d v d ddS

d d d A d d
A d d v d

I

β β α αα
β β α β α α

β β α α
β β α β α α

β β α αα
β α β α

β β α

Λ − + + ++
= − ⋅

Λ + + + + +
Λ − + + +

=
Λ + + + + +

Λ − + + ++Λ
= − ⋅

+ + +  
Λ − + +

=
( )( )

( ) ( )
1 2 2

1 2 2 2 2 1 1

.
d

d A d d
α

β α β α
+

+ + +  

  (2.1) 

https://doi.org/10.4236/jamp.2019.74064


F. M. Zhang et al. 
 

 

DOI: 10.4236/jamp.2019.74064 952 Journal of Applied Mathematics and Physics 
 

Proof Computing the nonnegative solutions of the following equations:  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

1 1

1 1 1

2 2

2 2 2

0,

0,

0,

0,

A X t I t d X t vY t

X t I t v d Y t

Y t S t d S t

Y t S t d I t

β τ

β τ α

β

β α

− − − + =

− − + + =

Λ − − =

− + =

             (2.2) 

we can easily obtain the existence of two equilibria 0E  and *E . 
Next, we show the stability behavior of equilibrium 0E  by finding the 

eigenvalues of the corresponding Jacobian matrix obtained for system (1.3). 
The Jacobian matrix for system (1.3) is as follows: 

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

1 1 1

1 1 1 1

2 2 2

2 2 2 2

e 0
e 0

0 0
0

d I t v X t
I t v d X t

J
S t Y t d

S t Y t d

λτ

λτ

β β τ
β α β τ

β β
β β α

−

−

 − − − −
 

− + + − =  − − −
  − + 

 (2.3) 

Let ( )0J E  be the Jacobian matrix J evaluated at the equilibrium 0E . From 
( )0J E , it is easy to calculate the associated characteristic equation of system 

(1.3) at 0E  and obtain  

( )( ) ( )( )1 2 1 1 2 2 1 2
1 2

0.Ad d v d d
d d

λ λ λ α λ α β β
 Λ

+ + + + + + + − = 
 

   (2.4) 

It is obvious that ( )1,2i id iλ = − =  are negative characteristic roots of (2.4). 
Hence, we only need to discuss the roots of the following equation:  

( )( )1 1 2 2 1 2
1 2

0.Av d d
d d

λ α λ α β β Λ
+ + + + + − =            (2.5) 

Note that all characteristic roots of (2.5) are negative if 0 1R < . This yields 
that all roots of (2.4) are negative if 0 1R < . We complete the proof. 

3. Endemic Equilibrium and Hopf Bifurcation 

In this section, We investigate the stability of the endemic equilibrium *E  and 
existence of the Hopf bifurcation occurring at *E . 

Similar to Section 2, let ( )*J E  be the Jacobian matrix (2.3) evaluated at the 
equilibrium *E . Then we calculate the characteristic equation of system (1.3) at 

*E  and obtain  

( ) ( )e 0,P Q λτλ λ −+ =                       (3.1) 

where ( ) 4 3 2
1 2 3 4P A A A Aλ λ λ λ λ= + + + +  and  

( ) 3 2
1 2 3 4Q B B B Bλ λ λ λ= + + + . 

In the above expression of ( )P λ  and ( )Q λ , ( )1,2,3,4iA i =  and  
( )1,2,3, 4jB j =  are given as follows:  

*
1 2 1 2 1 22 2 ,A Y d d vβ α α= + + + + +  

( )( ) ( )( )
( )

* *
2 2 2 2 2 2 2 2 1 1

* *
1 1 1 1 2

2 2

,

A Y d d Y d v d

d v d X S

β α β α α

α β β

= + + + + + + +

+ + + −
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( )( )( )

( )( ) ( )

*
3 2 2 2 2 1 1

* * *
1 2 2 2 1 1 1 2 1 2

2

2 ,

A Y d d v d

d Y d v d d d X S

β α α

β α α β β

= + + + +

+ + + + + − +
 

( )( )( )* * *
4 1 2 2 2 2 1 1 1 2 1 2 ,A d Y d d v d d d X Sβ α α β β= + + + + −  

*
1 1 ,B Iβ=  

( )* *
2 1 2 2 1 1 22 ,B I Y d dβ β α α= + + + +  

( )( ) ( )( )* * *
3 1 2 2 2 2 2 2 2 1 12 ,B I Y d d Y d dβ β α β α α = + + + + + +   

( )( )( )* *
4 1 2 2 1 1 2 2 .B I Y d d dβ β α α= + + +  

Taking 0τ = , we can rewrite (3.1) as  
4 3 2

1 2 3 4 0,a a a aλ λ λ λ+ + + + =                  (3.2) 

where  
* *

1 2 1 2 1 2 12 2 ,a Y d d v Iβ α α β= + + + + + +  

( )( ) ( )( )
( )( )

* * *
2 2 2 2 2 2 2 2 1 1 1

* * * *
1 1 1 1 1 2 1

2 2

,

a Y d d Y d v d I

d I v d X S v I

β α β α α β

β α β β β

= + + + + + + + +

+ + + + − −
 

( )( )( )
( ) ( )( )
( )

* *
3 2 2 2 2 1 1 1

* * *
2 2 2 1 1 1 1 1

* *
1 2 1 2

2

2

,

a Y d d v d I

Y d d I v d v I

d d X S

β α α β

β α β α β

β β

= + + + + +

 + + + + + + − 
− +

 

( )( ) ( )( )* * * * *
4 2 2 2 2 1 1 1 1 1 1 2 1 2 .a Y d d d I v d v I d d X Sβ α β α β β β = + + + + + − −   

Now it is easy to see that 1 0a > . Thus for the local stability of the endemic 
equilibrium ( )* * * * *, , ,E X Y S I  of system (1.3) without delay, we have the 
following result. 

Theorem 3.1. When 0 1R > , the endemic equilibrium ( )* * * * *, , ,E X Y S I  is 
locally asymptotically stable for 0τ =  if the following conditions are satisfied:  

( ) 2
4 1 2 3 3 1 2 3 1 40, 0, 0,a a a a a a a a a a> − > − − >  

where 1 2 3, ,a a a  and 4a  are defined as above. 
Then we turn to an investigation of local stability of the endemic equilibrium 
*E . 
We know all roots of characteristic Equation (3.1) have negative real parts at 

0τ =  when the conditions in Theorem 3.1 are satisfied. Next we will show that 
there is a unique pair of purely imaginary roots ( )0 0 0iω ω± >  for characteristic 
Equation (3.1). 

Assume that for some 0τ > , ( )0iω ω >  is a root of (3.1), which implies  

( )4 3 2 3 2
1 2 3 4 1 2 3 4 e 0.iA i A A i A B i B B i B ωτω ω ω ω ω ω ω −− − + + + − − + + =  (3.3) 

Separating real and imaginary parts, we get the following equations:  

( ) ( )
( ) ( )

4 2 3 2
2 4 1 3 2 4

3 3 2
1 3 1 3 2 4

sin cos ,

cos sin .

A A B B B B

A A B B B B

ω ω ω ω ωτ ω ωτ

ω ω ω ω ωτ ω ωτ

 − + = − + −

− + = − − −

     (3.4) 
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Now squaring and adding Equations (3.4), we get  
8 6 4 2

1 2 3 4 0,D D D Dω ω ω ω+ + + + =               (3.5) 

where 
2 2

1 1 2 12 ,D A A B= − −  

2 2
2 2 4 1 3 1 3 22 2 2 ,D A A A A B B B= + − + −  

2 2
3 3 2 4 3 2 42 2 ,D A A A B B B= − − +  

2 2
4 4 4 .D A B= −  

Substituting 2ω η=  in above Equation (3.5), we have  

( ) 4 3 2
1 2 3 4 0.f D D D Dη η η η η= + + + + =             (3.6) 

Now if the coefficients in ( )f η  satisfy the conditions of the Routh-Hurwitz 
criterion, then Equation (3.6) will not have any positive real root, thus we may 
not get any positive value of ω  which satisfies the Equation (3.5). In this case 
the result may be written in the form of following theorem. 

Theorem 3.2. Assume that the coefficients in ( )f η  defined in (3.6) satisfy 
the conditions of the Routh-Hurwitz criterion, then the endemic equilibrium 

*E  of system (1.3) is asymptotically stable for all delay 0τ >  if it is stable in 
the absence of delay. 

Assuming contrary that the values of ( )1,2,3,4iD i =  in (3.6) do not satisfy 
the Routh-Hurwitz criterion. In this case a simple assumption for the existence 
of a positive root of Equation (3.6) is 4 0D < , which implies  

2 2
4 4 0.A B− <                         (3.7) 

Now if condition (3.7) holds, then Equation (3.6) has a positive root 0η  and 
thus Equation (3.5) has a pair of purely imaginary roots 0iω± . It follows from 
Equations (3.4) that  

( )( ) ( )( )
( ) ( )

4 2 2 3 2
0 2 0 4 2 0 4 3 0 1 0 1 0 3 0

2 22 3
2 0 4 1 0 3 0

cos .
A A B B A A B B

B B B B

ω ω ω ω ω ω ω
ωτ

ω ω ω

− + − + − −
=

− + −
 

Then kτ  corresponding to this positive value of 0ω  is given as follows: 

( )( )
( ) ( )

( )( )
( ) ( )

( )

4 2 2
0 2 0 4 2 0 4

2 22 30 2 0 4 1 0 3 0

3 2
3 0 1 0 1 0 3 0

2 22 3 02 0 4 1 0 3 0

1 arccos

2 π , 0,1,2,3, .

k

A A B B

B B B B

A A B B k k
B B B B

ω ω ω
τ

ω ω ω ω

ω ω ω ω

ωω ω ω

 − + −=
 − + −

− − + + =
− + − 



 

By using Butler’s Lemma, we can say that the endemic equilibrium *E  
remains stable for 0τ τ< . 

Next we investigate whether there is a phenomenon of Hopf bifurcation as τ  
increases through 0τ . For this the following lemma is needed. 
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Lemma 3.1. The following transversality condition is satisfied:  

( )( )
0

d Re
sign 0,

d
τ τ

λ
τ

=

>                    (3.8) 

provided that condition (3.7) holds. 
Proof Differentiating Equation (3.1) with respect to τ , we get  

1
1 2 1 2

33 3

ed ,
d e e

P P P P
PP P

λτ

λτ λτ

λ τ τ
τ λ λ λλ λ

− −

− −

+  = − = + − 
 

         (3.9) 

where 
3 2

1 1 2 34 3 2 ,P A A Aλ λ λ= + + +  

2
2 1 2 33 2 ,P B B Bλ λ= + +  

3 2
3 1 2 3 4 .P B B B Bλ λ λ= + + +  

Therefore, 

( )

( )( )
( ) ( )

( )( )

0

00

1

1 2

33

2 4 2
3 1 0 1 0 3 0

2 24 2 3
1 0 2 0 4 0 2 0

3 5 3
2 0 0 0 2 0 4 0

4
1 0

d Re dsign sign Re
d d

sign Re Re
e

3
sign

2 4

k i

ii

P P
PP

A A A A

B B B B

A A A

B

τ τ λ ω

λτ
λ ωλ ω

λ λ
τ τ

λλ

ω ω ω

ω ω ω ω

ω ω ω ω ω

ω

−

= =

−
==

      =    
       

     = +    
    

 − − += 
− + −

− − +
−

−( ) ( )
( ) ( )( )
( ) ( )

2 22 3
2 0 4 0 2 0

3 2 4 2
2 0 4 0 2 0 3 1 0 1 0 3 0

2 24 2 3
1 0 2 0 4 0 2 0

2 3

B B B

B B B B B B B

B B B B

ω ω ω

ω ω ω ω ω ω

ω ω ω ω

+ −

− + − − + 
− + − 

 

( )
( ) ( )

( )
( ) ( )

( ) ( )

( ) ( )

6 2 2 4
0 1 2 1 0

2 23 2
1 0 2 0 4 2 0

2 2 2
1 3 2 4 2 1 3 0

2 23 2
1 0 2 0 4 2 0

2 2
3 2 4 2 4 3

2 23 2
1 0 2 0 4 2 0

6 4 2
0 1 0 2 0 3

2 23 2
1 0 2 0 4 2 0

4 3 6 3
sign

4 2 4 2 4

2 2

4 3 2
sign

A A B

B B B B

A A A A B B B

B B B B

A A A B B B

B B B B

D D D

B B B B

ω ω

ω ω ω

ω

ω ω ω

ω ω ω

ω ω ω

ω ω ω

 + − −= 
− + −

− + + − +
+

− + −

− + − + 
− + − 

 + + += 
− + −

.




 

 

From the above argument, we know 2
0 0η ω= , then  
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( )

( ) ( )
( )

( ) ( )

0

1

3 2
0 1 0 2 0 3

2 23 2
1 0 2 0 4 2 0

0
2 23 2

1 0 2 0 4 2 0

d Re dsign sign Re
d d

4 3 2

.

k i

D D D

B B B B
f

B B B B

τ τ λ ω

λ λ
τ τ

η η η

ω ω ω
η

ω ω ω

−

= =

      =    
       

+ + +
=

− + −
′

=
− + −

          (3.10) 

Here it may be noted that ( )0 0f η′ >  if the condition (3.7) is satisfied. This 
proves the Lemma 3.1. Thus we have the following result:  

Theorem 3.3. If 0 1R >  and the condition (3.7) hold, then the endemic 
equilibrium *E  of system (1.3) remains stable for all [ )00,τ τ∈  and becomes 
unstable for 0τ τ> . System (1.3) with 0τ τ=  undergoes a Hopf bifurcation. 

Remark. It must be pointed out that Theorem 3.3 cannot determine the 
stability and direction of bifurcation periodic solutions. That is to say, the 
periodic solutions may exist for 0τ τ>  near 0τ . Next, in Section 5 the stability 
of bifurcating periodic solutions is investigated by analyzing higher order terms 
according to Hassard et al. [25]. 

4. Stability and Direction of Hopf Bifurcation 

In this section, in term of the center manifold and normal form theory due to 
Hassard et al. [25], the direction of hopf bifurcation and the stability of periodic 
bifurcation solution are discussed. 

Without loss of generality, and kτ µ τ= + . So, 0µ =  is the Hopf value of 
system (1.3). 

Let *
1u X X= − , *

2u Y Y= − , *
3u S S= − , *

4u I I= − , ( ) ( )i iu t u tτ= , and 
dropping the bars for simplification of notations, system (1.3) becomes a 
functional differential equation in [ ]( )41,0 ,C C= −   as  

( ) ( ) ( ), ,t tu t L u f uµ µ= +                    (4.1) 

where ( ) ( ) ( ) ( ) ( )( )T 4
1 2 3 4, , ,u t u t u t u t u t= ∈ , and 4:L Cµ →  ,  

4:f C× →   are given, respectively, by 

( ) ( ) ( )

( )

( )
( )
( )
( )

( )

( )
( )
( )
( )

*
11 1

*
1 1 1 2

* *
32 2 2

* *
42 2 2 2

*
11

*
21

3

4

00
0 0 0

00 0
00

10 0 0
10 0 0 ,
10 0 0 0

0 0 0 0 1

k

k

d v X
v d X

L
S Y d

S Y d

I
I

µ

φβ
α β φ

φ τ µ
φβ β
φβ β α

φβ
φβτ µ
φ
φ

  − −
  − + +  = +
  − − −
  − − +   

−  −
   −  + +

−  
  −  

 (4.2) 

and 

( ) ( )

( ) ( )
( ) ( )

1 4 1

1 4 1

0 1
0 1, .
0
0

kf

β φ φ
β φ φµ φ τ µ

− − 
 − = +
 
 
 

              (4.3) 
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By the Riesz representation theorem, there exists a function ( ),η θ µ  of 
bounded variation for [ ]1,0θ ∈ −  such that  

( ) ( ) ( )0

1
d , for .L Cµ φ η θ µ φ θ φ

−
= ∈∫              (4.4) 

In fact, we can choose  

( ) ( ) ( )

( )

( )

( ) ( )

*
1 1

*
1 1 1

* *
2 2 2

* *
2 2 2 2

*
1

*
1

0
0 0

,
0 0
0

0 0 0
0 0 0

1 ,
0 0 0 0
0 0 0 0

k

k

d v X
v d X

S Y d
S Y d

I
I

β
α β

η θ µ τ µ δ θ
β β
β β α

β
β

τ µ δ θ

 − −
 

− + + = +  − − −
  − − + 
 −
 
 + + + 
  
 

 (4.5) 

where δ  denote the Dirac delta function: 

( )
0, 0,
1, 0.
θ

δ θ
θ
≠

=  =
 

For [ ]( )41,0 ,Cφ ∈ −  , define  

( )( )
( ) [ )

( ) ( )0

1

d
, 1,0 ,

d

d , , 0,
A

s s

φ θ
θ

θµ φ
η µ φ θ

−


∈ −

= 
 =∫

 

and 

( )( )
[ )

( )
0, 1,0 ,

, , 0.
R

f

θ
µ φ

µ φ θ

 ∈ −= 
=

 

Then system (1.3) is equivalent to  

( ) ( ) ( ) ,t tu t A u R uµ µ= +                    (4.6) 

where ( ) ( )tu u tθ θ= +  for [ ]1,0θ ∈ − . 

For [ ] ( )( )*1 40,1 ,Cψ ∈  , define  

( )
( ) [ )

( ) ( )

*

0

1

d
, 1,0 ,

d

d ,0 , = 0,

s
s

sA s
t t s

ψ

ψ
ψ η

−


− ∈ −

= 
 −∫

 

and a bilinear inner product  

( ) ( ) ( ) ( ) ( ) ( ) ( )0

1 0
, 0 0 d d ,s

θ

ξ
ψ φ θ ψ φ ψ ξ θ η θ φ ξ ξ

− =
= − −∫ ∫      (4.7) 

where ( ) ( ),0η θ η θ= . Then ( )0A  and *A  are adjoint operators. By the 
above discussion, we know that kiωτ±  are eigenvalues of ( )0A . Hence, they 
are also eigenvalues of *A . We first need to compute the eigenvectors of ( )0A  
and *A  corresponding to kiωτ  and kiωτ− , respectively. 

Supposed ( ) ( )T
1 2 31, , , e kiq q q q ωτ θθ =  is the eigenvectors of ( )0A   
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corresponding to kiωτ , then ( ) ( ) ( )0 kA q i qθ ωτ θ= . Then from the definition 
of ( )0A  and (4.2), (4.4) and (4.5), we have  

( )

( )

( )

( ) ( )

*
1 1

*
1 1 1

* *
2 2 2

* *
2 2 2 2

*
1

*
1

0

0
0 0

0
0 0
0

0 0 0
0 0 0

1 0 .
0 0 0 0
0 0 0 0

d v X
v d X

q
S Y d

S Y d

I
I

q i q

β
α β
β β
β β α

β
β

ω

 − −
 

− + + 
 − − −
  − − + 
 −
 
 + − = 
  
 

 

For ( ) ( ) ( )0 0T
1 2 31 1, , , e 0 ek ki iq q q q qω τ ω τ− −− = = , then we obtain  

( )
( )( )

( )( )
( )( )( )

0 1
1

1 1 0
*

2 0 1
2 *

1 1 0 2 2 0

*
2 0 1 0 2

3 *
1 1 0 2 2 0 2 2 0

,

,

.

i d
q

d i

S i d
q

d i d Y i

S i d i d
q

d i d i d Y i

ω
α ω

β ω

α ω β ω

β ω ω

α ω α ω β ω


− − = + +


 + =

+ + + +


− + + = + + + + + +

 

Similarly, we can obtain the eigenvector ( ) ( ) 0* * * *
1 2 31, , , e ki sq s D q q q ω τ=  of *A  

corresponding to 0 kiω τ− , where  

( )
( )( )
( )
( )

0

0

0

0

*
* 1 1 0
1 *

1
* *

1 2 1 0*
2 * *

1 2 2 0 2 2 0

*
1 1 0*

3 *
1 2 2 0

e
,

e

,
e

.
e

k

k

k

k

i

i

i

i

d I i
q

I

X Y d i
q

I d i d Y i

X d i
q

I d i

ω τ

ω τ

ω τ

ω τ

β ω
β

β β ω

β α ω β ω

β ω
β α ω

−

−

−

−

 + − =



− =
+ − + −


− = + −

 

In order to assure ( ) ( )* , 1q s q θ = , we need to determine the value of D. By 
(4.7), we have  

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( )( ){ }
( ){ }

0 0

0

0

T* * * *
1 2 3 1 2 3

0 T* * *
1 2 3 1 2 31 0

0 T* * * * * *
1 1 2 2 3 3 1 2 3 1 2 31

* * * * *
1 1 2 2 3 3 1 1

, 1, , , 1, , ,

1, , , e d 1, , , e d

1 1, , , e d 1, , ,

1 e 1 .

k k

k

k

i i

i

i
k

q s q D q q q q q q

D q q q q q q

D q q q q q q q q q q q q

D q q q q q q I q

θ ω τ ξ θ ω τ ξ
ξ

ω τ θ

ω τ

θ

η θ ξ

θ η θ

τ β

− −

− =

−

−

=

−

= + + + −

= + + + + − +

∫ ∫

∫
 

Therefore, we can choose D as  

( )0* * * * *
1 1 2 2 3 3 1 1

1 .
1 e 1ki

k

D
q q q q q q I qω ττ β

=
+ + + + − +

 

Next we will compute the coordinate to describe the center manifold 0C  at 
0µ = . Let tu  be the solution of (4.6) when 0µ = . Define  
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( ) ( ) ( ) ( ) ( ) ( ) ( ){ }* , , , 2Re .t tz t q s u W t u z t qθ θ θ θ= = −      (4.8) 

On the center manifold 0C , we have  

( ) ( ) ( )( ) ( ) ( ) ( )
2 2

20 11 02, , , ,
2 2
z zW t W z t z t W W zz Wθ θ θ θ θ= = + + +  (4.9) 

where z and z  are local coordinates for center manifold 0C  in the direction 
of *q  and *q . Note that W is real if tu  is real. We only consider real 
solutions. For solution 0tu C∈  of (4.6), since 0µ = , we obtain  

( ) ( ) ( ) ( ){ }( )
( ) ( ) ( )

* *
0

*
0 0 0

, 0 0, , ,0 2Re 0

0 , , ,

t k

k k

z t q u i z q f W z z zq

i z q f z z i z g z z

ω τ

ω τ ω τ

′ ′= = + +

+ = +

   (4.10) 

where  

( ) ( ) ( ) ( ) ( ) ( )
2 2 2

*
0 20 11 02 21, 0 , .

2 2 2
z z z zg z z q f z z g g zz g gθ θ θ= = + + + + (4.11) 

It follows from (4.8) and (4.9) that  
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )1 2 3 4, , , ,t t t t tu u u u u W t zq zqθ θ θ θ θ θ θ θ= = + +  and 
( ) ( ) 0 0T

1 2 31, , , eiq q q q ω τ θθ = , then  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
2 2

34 4 4
4 20 11 02 3 30 0 0 0 , ,

2 2t
z zu W W zz W q z q z o z z= + + + + +  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( )0 0

2 2
1 1 1

1 20 11 02

3

1 1 1 1
2 2

e e , .k k

t

i i

z zu W W zz W

z z o z zω τ ω τ−

− = − + − + −

+ + +
 

Then from the definition of ( ), tf uµ , we obtain  

( ) ( ) ( ) ( ) ( )

( )
( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )0 0 0 0

* *
0

1 4 1

* * * 1 4 1
1 2 3

2 2
4 4 4*

1 1 20 11 02 3

2
3 1 1

3 20 11

2
31

02

, 0 , 0 0,

0 1
0 1

1, , ,
0
0

1 0 0 0
2 2

, 1 1
2

1 e e ,
2

t

t t

t t
k

k

i i

g z z q f z z q f u

u u
u u

D q q q

z zD q W W zz W q z

zq z o z z W W zz

zW z z o z zω τ ω τ

β
β

τ

τ β

−

= =

− − 
 − =  
  
 


= − + + + +



+ + − + −




+ − + + + 


  (4.12) 

Comparing the coefficients with (4.11), we have  

( ) 0*
20 0 1 1 32 1 e ,kig D q q ω ττ β −= − +  

( ) { }0*
11 0 1 1 32 1 Re e ,kig D q q ω ττ β= − +  

( ) 0*
02 0 1 1 32 1 e ,kig D q q ω ττ β= − +  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 04 1 1 4*
21 0 1 1 20 20 3 3 11 112 1 e 1 2 1 2 0 e .k ki ig D q W W q q W Wω τ ω ττ β − = − + + − + − +   
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In order to assure 21g , ( )20W θ  and ( )11W θ  are needed to compute. 
From (4.6), (4.8) and (4.10), we have  

( ) ( ) ( ) ( ){ } [ )
( ) ( ) ( ) ( ){ } ( )
( ) ( )

*
0

*
0 0

0 2Re 0 , , 1,0 ,

0 2Re 0 , , , 0,

0 , , ,

tW u z q zq

A W q f z z q

A W q f z z q f z z

A W H z z

θ θ

θ θ

θ

′= − −

 − ∈ −= 
− + =

= +






   (4.13) 

where 

( ) ( ) ( ) ( )
2 2

20 11 02, , .
2 2
z zH z z H H zz Hθ θ θ θ= + + +       (4.14) 

It follows from (4.13) and (4.14) that  

( ) ( ) ( ) ( ) ( )
2 2

20 11 020 , , .
2 2
z zA W W H z z H H zz Hθ θ θ θ− = − = − − − −

  (4.15) 

From (4.9) and (4.10), we have  

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

20 11 020 0 0 0
2 2
z zA W A W A W zz A Wθ θ θ= + + +  (4.16) 

and  

( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

2 2

20 11 0 20 11 02

2 2

11 02 0 20 11 02

2 2

.
2 2

z z

k

k

W W z W z

z zW z W z i z g g zz g

z zW z W z i z g g zz g

θ θ ω τ θ θ θ

θ θ ω τ θ θ θ

= +

 
= + + + + + 

 
 

+ + − + + + + + 
 








 

(4.17) 

Substituting (4.16) and (4.17) into (4.15) and comparing the coefficients of 
2z  and zz , we have  

( )( ) ( ) ( ) ( ) ( ) ( )0 20 20 11 110 2 , 0 .kA i I W H A W Hω τ θ θ θ θ− = − = −   (4.18) 

From (4.11) and (4.13), we know that for [ )1,0θ ∈ −   

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

*
0

2
20 20 11 11

, , 2Re 0 , ,
1 .
2

H z z q f q g z z q g z z q

g q g q z g q g q zz

θ θ θ θ

θ θ θ θ

= − = − −

= − + − + −
 (4.19) 

Comparing the coefficients with (4.19) gives that  

( ) ( ) ( )20 20 02 ,H g q g qθ θ θ= − −                  (4.20) 

and  

( ) ( ) ( )11 11 11 .H g q g qθ θ θ= − −                  (4.21) 

From the definition of ( )0A  and (4.18) and (4.21), we obtain  

( ) ( ) ( ) ( ) ( )20 0 20 20202 .kW i W g q g qθ ω τ θ θ θ= + +  

For ( ) ( ) 00 e kiq q ω τ θθ = , we have  

( ) ( ) ( )0 0 0220 02
20 1

0 0

0 e 0 e e ,
3

k k ki i i

k k

ig ig
W q q Eω τ θ ω τ θ ω τ θθ

ω τ ω τ
−= + +    (4.22) 
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where ( ) ( ) ( ) ( )( )T1 2 3 4
1 1 1 1 1, , ,E E E E E=  is a constant vector. Similarly, from (4.18) 

and (4.22), we know  

( ) ( ) ( )0 011 11
11 2

0 0

0 e 0 e ,k ki i

k k

ig igW q q Eω τ θ ω τ θθ
ω τ ω τ

−= − + +       (4.23) 

where ( ) ( ) ( ) ( )( )T1 2 3 4
2 2 2 2 2, , ,E E E E E=  is a constant vector. 

Finally, we will seek the values of 1E  and 2E . From the definition of ( )0A  
and (4.18), we have  

( ) ( ) ( ) ( )0
20 0 20 201

d 2 0 0kW i W Hη θ θ ω τ
−

= −∫           (4.24) 

and  

( ) ( ) ( )0
11 111

d 0 ,W Hη θ θ
−

= −∫                  (4.25) 

where ( ) ( )0,η θ η θ= . By (4.13), we know when 0θ =  
( ) ( ) ( ) ( ) ( )0, ,0 , 0 , 0 .H z z f g z z q g z z q= − −  

That is  

( ) ( ) ( )

( )

( )

2 2

20 11 02

2 2

20 11 02

2 2

20 11 02 0

2 2

0
2 2

0 .
2 2

z zH H zz H

z zq g g zz g

z zq g g zz g f

θ θ θ+ + +

 
= − + + + 

 
 

− + + + + 
 







          (4.26) 

By (4.3), we have 

( ) ( )
( ) ( )

1 4 1

1 4 1
0

0 1
0 1
0
0

t t

t t
k

u u
u u

f

β
β

τ

− − 
 − =  
  
 

 

By (4.8), we obtain 

( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
2

20 11

, 2Re ,

.
2

tu W t z t q W t z t q z t q

zW W zz z t q z t q

θ θ θ θ θ θ

θ θ θ θ

= + = + +

= + + + +
 

Then, we have 

{ }

0

0
0

11 3

121 3
0 3

e
e 2 Re e .

00
00

k

k
k

i

i
i

k k

q
qf z q zz

ω τ

ω τ
ω τ

ββ
ββ

τ τ

−

−

  −−  
   
   = + +   
       

     (4.27) 

By (4.26) and (4.27), we have  

( ) ( ) ( ) 0

1

1
20 20 02 30 0 0 2 e

0
0

ki
kH g q g q q ω τ

β
β

τ −

− 
 
 = − − +
 
 
 

        (4.28) 
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and 

( ) ( ) { }0

1

1
11 11 11 30 (0) 0 2 Re e .

0
0

ki
kH g q g q q ω τ

β
β

τ

− 
 
 = − − +
 
 
 

      (4.29) 

For 0 0iω τ  is the eigenvalue of ( )0A  and ( )0q  is the corresponding 
eigenvector, we obtain  

( )( ) ( )0
0

0 1
e d 0 0ki

ki I qω τ θω τ η θ
−

− =∫  

and 

( )( ) ( )0
0

0 1
e d 0 0.ki

ki I qω τ θω τ η θ−

−
− − =∫  

So, substituting (4.22) and (4.28) into (4.24), we obtain  

( )( )0 0

1

0 12
0 1 31

2 e d 2 e .
0
0

k ki i
k ki I E qω τ θ ω τ

β
β

ω τ η θ τ −

−

− 
 
 − =
 
 
 

∫  

That is 

( )
0

0

0

2* *
0 1 1 1

2* *
1 0 1 1 1

1* *
2 0 2 2

* *
2 2 0 2 2

1

1
3

2 e 0
e 2 0
0 2 0
0 2

2 e .
0
0

k

k

k

i

i

i

i d I v X
I i v d X

E
S i Y d
S Y i d

q

ω τ

ω τ

ω τ

ω β β
β ω α β

β ω β
β β ω α

β
β

−

−

−

 + + −
 

− + + + − 
 + +
  − − + + 

− 
 
 =
 
 
 

 

It follows that  

( )
0

0
0

12* *
10 1 1 1

2* *
11 0 1 1 1

1 3 * *
2 0 2 2

* *
2 2 0 2 2

2 e 0
e 2 0

2 e .
00 2 0
00 2

k

k
k

i

i
i

i d I v X
I i v d X

E q
S i Y d
S Y i d

ω τ

ω τ
ω τ

βω β β
ββ ω α β

β ω β
β β ω α

−−

−
−

  −+ + −  
   − + + + −   =    + +
    − − + +     

Similarly, substituting (4.23) and (4.29) into (4.25), we also get 

( ) { }0

1

0 1
2 31

d 2 Re e ,
0
0

ki
kE q ω τ

β
β

η θ τ
−

− 
 
 − =
 
 
 

∫  

and  

{ }0

1*
11 1

*
11 1 1

2 3 * *
2 2 2

* *
2 2 2 2

0
0 0

2Re e .
00 0
00

ki

d v X
v d X

E q
S Y d
S Y d

ω τ

ββ
βα β

β β
β β α

−
  −−  
   + + −   =    +
    − +   

 

https://doi.org/10.4236/jamp.2019.74064


F. M. Zhang et al. 
 

 

DOI: 10.4236/jamp.2019.74064 963 Journal of Applied Mathematics and Physics 
 

Thus, we can determine ( )20W θ  and ( )11W θ  from (4.22) and (4.23). 
Further, we can compute 21g . Thus we can compute the following values:  

( )
2

2 02 21
1 20 11 11

0

0 2 ,
2 3 2k

g gic g g g
ω τ

 
 = − − +
 
 

 

( )
( )

1
2

Re 0
,

d
Re

d
k

c
µ

λ τ
τ

= −
  
 
  

 

( )( )2 12 Re 0 ,cβ =  

( ){ } ( )
1 2

2
0

d
Im 0 Im

d
, 0,1,2, .

k

k

c
T k

λ τ
µ

τ
ω τ

  +  
  = − =   

which determine the qualities of bifurcation periodic solution in the center 
manifold at the critical values kτ . 

According to [25], we can obtain the following result. 
Theorem 4.1. Assume that 0 1R >  and the condition (3.7) hold, we have: 
1) if 2 0µ >  ( 2 0µ < ), then the Hopf bifurcation is supercritical (subcritical) 

and the bifurcating periodic solutions exist for 0τ . 
2) if 2 0β <  ( 2 0β > ), then the bifurcating periodic solutions are stable 

(unstable). 
3) if 2 0T >  (<0), then the period of the bifurcating periodic solutions 

increases (decreases). 
From Theorem 4.1, we know that the value of 2µ  determines the directions 

of the Hopf bifurcation, the values of 2β  and 2T  determine the stability and 
the period of the bifurcating periodic solutions, respectively. 

5. A Numerical Example 

In this section, we implement numerical simulations to testify the above 
theoretical results. Let 1 0.7α = , 2 0.30476509α = , 1 0.040395636β = , 

2 0.0082258094β = , 37.557699A = , 0.5v = , 49.721841Λ = , 1 0.5d = , 

2 0.5d = . For 0k = , using the software Matlab, we derive 0 5.476τ ≈ . Thus the 
endemic equilibrium *E  is stable when 0 5.476τ τ< ≈ . Figures 1(a)-(f) show 
that the endemic equilibrium *E  is asymptotically stable when  

05.2 5.476τ τ= < ≈ . When τ  passes through the critical value 0 5.476τ ≈ , the 
endemic equilibrium *E  loses its stability and a Hopf bifurcation occurs, that 
is, a family of periodic solutions bifurcate from the endemic equilibrium *E . 
Figures 2(a)-(f) suggest that Hopf bifurcation occurs from the endemic 
equilibrium *E  when 06 5.476τ τ= > ≈ . 

6. Conclusion 

In this paper, we have investigated a delayed schistomiasis model, and studied  
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(a)                                       (b) 

  
(c)                                       (d) 

  
(e)                                       (f) 

Figure 1. (a)-(f) The dynamical behavior of system (1.3) with 05.2 5.476τ τ= < ≈ . The 

endemic equilibrium *E  is asymptotically stable. 
 
the local stability of the equilibria and Hopf bifurcation. We have shown that if 

0 1R < , the disease-free equilibrium is locally asymptotically stable. Further, the 
sufficient conditions for the stability of the endemic equilibrium are obtained. 
That is, if 0 1R >  and the condition (3.7) hold, the endemic equilibrium *E  is 
asymptotically stable for all [ )00,τ τ∈ . As τ  increases, the endemic equilibrium 
loses its stability and a sequence of Hopf bifurcations occurs at the endemic 
equilibrium; that is, urcates from the equilibrium. This shows that the density of 
thea family of periodic orbits bif susceptible human, snails and the infected 
human, snails may keep in an oscillatory mode near the endemic equilibrium. By 
the normal form theory and the Center Manifold Theorem, the direction of 
Hopf bifurcation and the stability of the bifurcating periodic orbits have been 
discussed. 
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Figure 2. (a)-(f) The dynamical behavior of system (1.3) with 06 5.476τ τ= > ≈ . Hopf 

bifurcation occurs from the endemic equilibrium *E . 
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