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Abstract 
In this paper, the dispersive long wave equation is studied by Lie symmetry 
group theory. Firstly, the Lie symmetries of this system are calculated. Se-
condly, one dimensional optimal systems of Lie algebra and all the symmetry 
reductions are obtained. Finally, based on the power series method and the 
extended Tanh function method, some new explicit solutions of this system 
are constructed. 
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1. Introduction 

In mathematical physics, many significant phenomena and dynamic processes 
can be represented by nonlinear partial differential equations (NLPDEs) [1] [2] 
[3] [4]. Therefore, it is very important to find the solution of NLPDEs. A wealth 
of effective methods have been developed to explore the solutions of the 
NLPDEs, such as Adomian decomposition method [5], Darboux and Backlund 
transformations [6], Hirota bilinear method [7] [8] [9], and Lie symmetry me-
thod [10] [11], etc. The Lie symmetry method for constructing explicit solutions 
of the NLPDEs has been regarded as one of the most widely applicable methods 
[12] [13] [14]. Its core idea is the invariance principle of the NLPDEs under the 
action of Lie point transformation group (point symmetry) [10]. In recent years, 
there has been a great deal of research and considerable development in the 
symmetry field of differential equations, in terms of the number of academic 
papers, books and new symbolic programs dedicated to this subject [15]-[20]. 
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At present, there is no general method for solving NLPDEs. Although the 
symmetry method has a wide range of applications in solving methods, it still 
faces many difficulties and challenges to promote its development. However, the 
symmetry method and other methods (e.g. generalized simple equation method 
[21], generalized Tanh function method [22], homotopy perturbation method 
[23] and power series method [24], etc.) are effectively combined to reflect the 
complementarity of each other, which makes it possible to obtain exact solutions 
of some NLPDEs with physical significance, and attracts the attention and re-
search of many scholars [25] [26] [27]. 

In the present paper, based on the Lie group method, we will investigate the 
dispersive long wave equations 
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( )
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0,

t x x

t xx x

u v u

v uv u u

 + + =

 + + + =
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where u represents the amplitude of a surface wave, propagating along the x-axis 
with a horizontal velocity. It plays an important role in nonlinear physics [28] 
[29], considered as a good model for the study of bidirectional solitons in water 
waves. In [30] [31], Eckhaus and Boiti et al. presented the extensions of Equation 
(1) in higher-dimensional spaces. In [32], Zhang J F et al. discussed its some new 
multi-soliton solutions and travelling wave solutions using the extended homo-
geneous balance method, etc.  

The outline of this paper is as follows: in Section 2, the Lie symmetry analysis 
is performed for the dispersive long wave equations; in Section 3, the optimal 
systems and the similarity reductions of Equation (1) are researched employing 
Lie group analysis in the last section; in Section 4, the exact solutions for the re-
duced equation are obtained by using the power series method and the extended 
Tanh method; and in Section 5, a brief summary is done to the full text. 

2. Lie Symmetry Analysis 

We first do some preparatory work on the concept of classical Lie symmetry of 
general NLPDEs. Consider the kth-order scalar NLPDEs of the form 

( ) ( )( )1, , , , 0, 1, 2, , ,kf x u u u mα α= =                   (2) 

where ( )1 2, , , nx x x x=   denotes n independent variables, ( )1 2, , , mu u u u=   
denotes m independent variables, and ( ) ( )

1 2
1, 2, , , 1, 2, ,

ji i i sju u j k i jα= = =


   
denote the partial derivatives of uα  with respect to ( )1,2, ,ix i n= =   up to 
jth-order, i.e.  

( )
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j

j
i i i
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Suppose that the one-parameter Lie group of point transformations 
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where 1,2, ,i n=  , 1, 2, ,q m=  . ε  is an infinitesimal parameter, ,i αξ η  
are some smooth function with variables ,x u .  

Theorem 1. [10] (The Infinitesimal Invariant Formula for NLPDEs) If 

i

i

X
x u

α
αξ η∂ ∂

= +
∂ ∂

                        (4) 

is the infinitesimal generator of the one-parameter Lie group of transformations 
for (3), and the k-th prolongation of the infinitesimal generator is 

( ) ( ) ( )
1 2
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1
,

,
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kk
i i i i

i i i i

X X
u u
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α αη η∂ ∂

= + + +
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

               (5) 

where the prolongation of the infinitesimals satisfy the following recurrence re-
lation 

( ) ( )1 , 1, 2, , ,j
i i i jD D u i nα α αη η ξ= − =   

( ) ( ) ( ) ( )
1 2 11 2 1 2 1

1
,, , , 1, 2, , 2

k k kk k

k k j
i i i i i j li i i i i iD D u i k kα α αη η ξ

−−

−= − = ≥
 

   

where iD  denotes the total derivative operator defined as 
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1 2

, 1, 2, , .
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That one-parameter Lie group of transformations (3) is the Lie symmetry of 
Equation (2), if and only if 
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Next, we calculate the Lie symmetry of Equation (1). With regard to the infi-
nitesimal generator of Equation (1), it can be expressed from (4) as the following 
form 

.X
x t u v

ξ τ η φ∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂
                  (6) 

Applying the Theorem 1 to Equation (1), we have 
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       (7) 

By simplifying (7), we can get the following overdetermined equations about 
, , ,ξ τ η φ   

0, 0, 0,
0,2 2 0,

2 2 0, 0,
2 2 2 2 0, 0.

u v x u v x t v

x t u u u

x x t t

t t v v

v
v v

v v u v

ξ ξ τ τ τ η η η
φ φ φ η η φ
ξ ξ φ τ τ φ
η η ξ ξ φ φ φ φ

= = = = = = = =
 = = = + − =
 + + = + + =
 + − − − = − − =

           (8) 

From (8) it is easy to caculate that the only solution of this system is  

4 3 1 4 2 4 3 4 4, 2 , , 2 2 ,k x k t k k t k k u k k v kξ τ η φ= + + = + = − + = − −      (9) 

https://doi.org/10.4236/jamp.2018.612222


X. M. Xue, Y. S. Bai 
 

 

DOI: 10.4236/jamp.2018.612222 2684 Journal of Applied Mathematics and Physics 
 

where 1 2,k k  and 3k  are arbitrary constants. Accordingly, the symmetry groups 
of Equation (1) can be written as 

( )1 2 3 4, , , 2 2 1 .X X X t X x t u v
x t x u x t u v
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= = = + = + − − +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

(10) 

The infinitesimal generators (10) correspond to a four-parameter Lie group of 
nontrivial point transformations acting on ( ), , ,x t u v -space. 

3. Optimal System and Symmetry Reductions 
3.1. Optimal System 

In this section, we study how to construct the one-dimensional optimal system 
of Equation (1) in order to obtain more abundant group invariant solutions. The 
basic method of constructing it is to simplify the expression of Lie algebra by 
using a variety of adjoint transformations on the most general expression of Lie 
algebra. The adjoint transformation is expressed as the following series form 

( )( )
2 3

exp

, , , , , , ,
2 3!

i j

j i j i i j i i i j

Ad X X

X X X X X X X X X X

ε

ε εε          = − + − +          

 

where ε  is a parameter, and ,i jX X    is the usual commutator, given by 

, .i j i j j iX X X X X X  = −    

Hence we can get the following commutator Table 1 and the adjoint repre-
sentation Table 2. 

According to the method of constructing one dimensional optimal system in 
[11], we set up the following non-zero vector field with arbitrary coefficients 

1 2 3, ,a a a  and 4a , which is a Lie algebras made up of (10) 

1 1 2 2 3 3 4 4 ,X a X a X a X a X= + + +  

and simplify the coefficients of the vector as much as possible. Without loss of 
generality, suppose first that 4 0a ≠  and set up 4 1a = , then the vector X be-
comes 1 1 2 2 3 3 4X a X a X a X X= + + +  To eliminate the coefficient of 1X , we use 

1X  to act on X by means of the adjoint operation, i.e.  

( )( )1 1 2 2 3 3 4exp ,X Ad X X a X a X Xε′ = = + +   

where the group parameter 1 1aε = . Then continue to eliminate 2 3,X X  by us-
ing one after another 2 3,X X  to act on X ′ , the vector becomes 

( )( ) ( )( )3 3 2 2 4exp exp ,X Ad X Ad X X Xε ε′′ ′= =  

where the group parameters 2 2 3 32,a aε ε= = − . It can be seen easily that the 
vector form can not be simplified much more. Secondly, suppose that 

4 30, 0a a= ≠  and set up 3 1a = , the vector X becomes 1 1 2 2 3X a X a X X= + + . 
To eliminate the coefficient of the vector 1X  we use 2X  to act on X by means 
of the adjoint operation, i.e. 

( )( )4 2 2 2 3exp ,X Ad X X a X Xε′′′ = = +  
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Table 1. Commutator table. 

,i jX X    1X  2X  3X  4X  

1X  0 0 0 1X  

2X  0 0 1X  22X  

3X  0 1X−  0 3X−  

4X  1X−  22X−  3X  0 

 
Table 2. Adjoint representation table. 

Ad  1X  2X  3X  4X  

1X  1X  2X  3X  4 1X Xε−  

2X  1X  2X  3 1X Xε−  4 22X Xε−  

3X  1X  2 1X Xε+  3X  4 3X Xε+  

4X  1eX ε  2
2eX ε  3eX ε−  4X  

 
where the group parameter 4 1aε = . Obviously, it can not continue to simplify by 
using adjoint operators. Thirdly, suppose that 4 3 20, 0, 0a a a= = ≠  and set up 

2 1a = , the vector is already the simplest form as 1 1 2X a X X= + . Last suppose 
that 4 3 2 10, 0, 0, 0a a a a= = ≠ ≠  and set up 1 1a = , that can only be 1X X= .  

To summarize, we state the result that the one-dimensional optimal system of 
symmetry groups (10) is 

{ }1 2 3 4 1 2 2 3, , , , ,X X X X aX X aX X+ +   

where a is arbitrary constant. 

3.2. Symmetry Reductions 

In the present section, we present all possible similarity reduction forms of Equa-
tion (1), which is an indispensable step to solve the NLPDEs by the symmetry 
method. 

For the symmetry 4X , the corresponding characteristic equation is 

( )
d d d d ,

2 2 1
x t u v
x t u v
= = =

− − +
                   (11) 

hence we can get a similarity independent variable from (11) defined as 1 2xtς −=  
and group invariant solutions defined as  

( ) ( ) ( ) ( )1 2 1, , , 1u x t t F v x t t Hς ς− −= = − + ,  

which satisfy the following reduced equation 

( )3

2 2 0,

2 2 2 2 0,

F F FF H

H HF H FH F

ς

ς

′ ′ ′+ − − =


′ ′ ′− + − − =
  

where 
d d,
d d
F HF H
ς ς

′ ′= = . 

For other symmetries in the optimal system, the reduction method is the same 
as 4X . The results are shown in Table 3. 
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4. Explicit Solution of the Dispersive Long Wave Equation 

In the third section, we obtain the one-dimensional optimal system of Equation 
(1), and give the reduction equation corresponding to each symmetry in the op-
timal system in Table 3. The reduction equations corresponding to 1X  and 

3X  can be easily solved by Mathematica, where the process is omitted. For oth-
er symmetries in the optimal system, it is very difficult to get directly through 
the calculation software. In this connection, we will use two methods to solve the 
rest of reduction equations, namely, the power series method and the extended 
Tanh function method. 

4.1. Explicit Power Series Solutions of the Reduction Equation (A) 

The power series method is a useful approach to solve higher order ordinary 
differential equations. A large number of solutions for ordinary differential equ-
ations can be constructed by utilizing the method. 

Suppose that the power series solution is the following form 

( ) ( )
0 0

, ,n n
n n

n n
F c H sς ς ς ς

∞ ∞

= =

= =∑ ∑                   (12) 

where ,n nc s  is undetermined coefficient. Substituting (12) into (A), we get 

( )

( )

( )

( )

( )( )( )
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1
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1 1 0
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n
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n
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n
n

n

c c nc n k c c

c c n s s

s s n k s c s c

ns n k c s c s
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ς ς ς

ς

ς ς

ς ς

ς

∞ ∞ ∞

+ −
= = = =

∞

+
=
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+ −
= = =

∞ ∞

+ −
= = =

∞

+
=

+ + − + −

− − + − =

+ − + − −

+ − + − −

− + + + − =

∑ ∑ ∑∑

∑

∑ ∑∑

∑ ∑∑

∑

















 

Through comparing the coefficients of ς, we can easily get the following results 
when 0n = , 

0 0 1 0 0 1 0 1
1 3

2
, ,

2 6
c c c s s c c s

s c
− − −

= =                  (13) 

when 1n ≥ , 

( ) ( ) ( )

( )( )( ) ( ) ( )

( )

1 1
0

3 1
0

1
0

1 1 2 1 ,
2 1

1 2 2 1
2 1 2 3

2 1 .

n

n n k n k
k

n

n n k n k
k

n

k n k
k

s n c n k c c
n

c n s n k s c
n n n

n k c s

+ + −
=

+ + −
=

+ −
=

 = + − + − +  

= + − + −+ + + 

− + − 

∑

∑

∑

  (14) 

The sequence { } { }1 3
,n ns c∞ ∞  can be uniquely determined by (13) and (14) and 

depend on the other undetermined coefficients ( )0 , 0,1, 2is c i = . It is easy to  
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Table 3. Reduction of the nonlinear long wave equation. 

Infinitesimal 
generator 

Similarity variables Reduction equation 

1X  
,tς =  

( ) ( ) ( ) ( ), , , .u x t F v x t Hς ς= =  
0,F ′′ =  
0.H ′′ =  

2X  
,xς =  

( ) ( ) ( ) ( ), , , .u x t F v x t Hς ς= =  
0,FF H′ ′+ =  
( )3 0.F HF FH F′ ′ ′+ + + =  (D) 

3X  
,tς =  

( ) ( ) ( ) ( ), , , .u x t x t F v x t Hς ς= + =  
0,F Fς ′+ =  

1 0.H Hς ′+ + =  

4X  
1 2 ,xtς −=  

( ) ( ) ( ) ( )1 2 1, , , 1 .u x t t F v x t t Hς ς− −= = − +  

2 2 0,F F FF Hς ′ ′ ′+ − − =  
( )32 2 2 2 0.H HF H FH Fς′ ′ ′− + − − =  (A) 

1 2X X+  
,x tς = −  

( ) ( ) ( ) ( ), , , .u x t F v x t Hς ς= =  
0,F FF H′ ′ ′− + + =  

( )3 0.F HF H FH F′ ′ ′ ′+ − + + =  (B) 

2 3X X+  
2 2 2,t xς = − +  

( ) ( ) ( ) ( ), , , .u x t t F v x t Hς ς= + =  

1 0,FF H′ ′+ + =  
( )3 0.F HF FH F′ ′ ′+ + + =  (C) 

 
prove that the power series solution is convergent by references [13], so the re-
duction Equation (A) has the following power series solution 

( )

( )( )( ) ( )

( )

2 3 3
0 1 2 3 3

1

2 30 0 1 0 1
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1
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n
n
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k
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n k c s

ς ς ς ς ς

ς ς ς

ς

∞
+

+
=

∞

+ −
= =

+
+ −

=

= + + + +

− −
= + + +

+ + − + −+ + + 

− + − 


∑

∑ ∑

∑

 

( )

( ) ( )

1
0 1 1

1

10 0 1
0 1

1 0

2 1 2 1 .
2 2 1

n
n

n

n
n

n n k n k
n k

H s s s

c c c
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n

ς ς ς

ς ς

∞
+

+
=

∞
+

+ −
= =

= + +

−  = + + + − + − +  

∑

∑ ∑
 

And then we get the following power series solution of Equation (1) 

( ) ( ) ( ) ( )

( )( )( ) ( )

( ) ( )

2 31 2 1 2 1 2 1 20 0 1 0 1
0 1 2

1
1 0

31 2
1

0

,
6

1 2 2 1
2 1 2 3

2 1 ,

n

n n k n k
n k

n n

k n k
k

s s c c s
u x t t c c xt c xt xt

s ns n k s c
n n n

n k c s xt

− − − −

∞

+ −
= =

+−
+ −

=

− −= + + +
+ + − + −+ + + 

− + − 
 

∑ ∑

∑

 

( ) ( )1 1 20 0 1
0

2
, 1

2
c c c

v x t t s xt− −−= − + +
 

( ) ( ) ( ) ( ) 11 2
1

1 0

1 1 2 1 ,
2 1

n n

n k n k
n k

n c n k c c xt
n

∞ +−
+ −

= =

 + + − + −  +   
∑ ∑  

where ( )0 , 0,1, 2ns c n =  are arbitrary constant. 
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4.2. Explicit Solutions of the Reduction Equation (B) Using  
Extended Tanh Function Method 

The extended Tanh function method is a very effective method for solving some 
nonlinear evolution equations proposed in recent years [33]. The method is 
based on the Tanh function expansion method and using the general Riccati eq-
uation as an auxiliary equation. It can transform the solution of complex equa-
tions into the solution of nonlinear algebraic equations by traveling wave trans-
formation. Next we use this method to find the traveling wave solutions of the 
reduction Equation (B) in Table 3. 

Suppose that the solution of the reduction Equation (B) can be expressed as 
the form 

( ) ( ) ( )( )

( ) ( ) ( )( )

0
1

0
1

,

,

m
i i

i i
i

n
j j

j j
j

F a a A

H b b B

ς φ ς φ ς

ς φ ς φ ς

−

=

−

=

 = + +

 = + +


∑

∑
             (15) 

where ( ) ( )0 0, , , 1, , , , 0,1, ,i i j ja b a A i m b B j n= =   are undetermined con-
stants, and function ( )φ φ ς=  satisfies 

2 ,φ λ ρφ ωφ′ = + +                       (16) 

where , ,λ ρ ω  are arbitrary constant. By solving Equation (16), we can know 
that the solution of function φ  can be divided into 4 categories, and amount to 
27 solutions [22]. 

1) when 2 4 0ρ λω− >  and 0ρω ≠  (or 0λω ≠ ), 

1
1 tanh ,

2 2
θφ ρ θ ς

ω

  
= − +     

 

( )( )2
1 tanh sech ,

2
iφ ρ θ θς θς

ω
   = − + ±     

3
1 coth ,

2 2
θφ ρ θ ς

ω

  
= − +     

 

( )( )4
1 coth csch ,

2
iφ ρ θ θς θς

ω
   = − + ±     

5
1 2 tanh coth ,

4 4 4
θ θφ ρ θ ς ς

ω

     
= − + +            

 

( )( )2 2

6

cosh1 ,
2 sinh

B A A

A B

θ θ θς
φ ρ

ω θς

  − −   = − +   +   

 

( )( )2 2

7

sinh1 ,
2 cosh

B A A

A B

θ θ θς
φ ρ

ω θς

  − +   = − +   +   

 

where ,A B  are two nonzero constants, and satisfy 2 2 0B A− > . 
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8

2 cosh 2
,

sinh 2 cosh 2

λ θς
φ

θ θς ρ θς

 
 =

   −   
  

9

2 sinh 2
,

sinh 2 cosh 2

λ θς
φ

ρ θς θ θς

 −  =
   −   

 

10

2 cosh
,

sinh cosh i

λ θς
φ

θ θς ρ θς θ

 
 =

   − ±   
 

11

2 sinh
,

sinh cosh

λ θς
φ

ρ θς θ θς θ

 
 =

   − + ±   
 

12 2

4 sinh 4 cosh 4
.

2 sinh 4 cosh 4 2 cosh 4

λ θς θς
φ

ρ θς θς θ θς θ

   
   =

     − + −     
  

2) when 2 4 0ρ λω− <  and 0ρω ≠  (or 0λω ≠ ), 

13
1 tan ,

2 2
θφ ρ θ ς

ω

  −
= − + −     

 

( )14
1 tan sec ,

2
φ ρ θ θς θς

ω
    = − + − − ± −     

 

15
1 cot ,

2 2
θφ ρ θ ς

ω

  −
= − + −     

 

( )( )16
1 cot csc ,

2
φ ρ θ θς θς

ω
   = − + − − ± −     

17
1 2 tan cot ,

4 4 4
θ θφ ρ θ ς ς

ω

     − −
= − + − −            

 

( )( )2 2

18

cos1 ,
2 sinh

A B A

A B

θ θ θς
φ ρ

ω θς

  ± − − − − −  = − +  − +   

 

( )( )2 2

19

sinh1 ,
2 cosh

A B A

A B

θ θ θς
φ ρ

ω θς

  − − + − −  = − +  − +   

  

where ,A B  are two nonzero constants, and satisfy 2 2 0A B− > . 

20

2 cos 2
,

sin 2 cos 2

λ θς
φ

θ θς ρ θς

 − =
   − − + −   

 

21

2 sin 2
,

sin 2 cos 2

λ θς
φ

ρ θς θ θς

 − − =
   − − − − −   

 

22

2 cos
,

sin cos

λ θς
φ

θ θς ρ θς θ

 − =
   − − + − ± −   
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23

2 sin
,

sin cosh

λ θς
φ

ρ θς θ θς θ

 − =
   − − + − − ± −   

 

24 2

4 sin 4 cos 4
.

2 sin 4 cos 4 2 cos 4

λ θς θς
φ

ρ θς θς θ θς θ

   − −   =
     − − − + − − − −     

 

Above formula 1 24φ φ , the symbol θ  is expressed as 2 4θ ρ λω= − .  
3) when 0λ =  and 0ρω ≠ , 

[ ] [ ]( )25 ,
cosh sinh

b
b

ρφ
ω ρς ρς

−
=

+ −
 

[ ] [ ]( )
[ ] [ ]( )26

cosh sinh
,

cosh sinhb
ρ ρς ρς

φ
ω ρς ρς

+
= −

+ −
  

where b is a arbitrary constant. 
4) when 0ω ≠  and 0λ ρ= = ,  

27
1 ,

c
φ

ως
=

+
  

where c is a arbitrary constant, and x tς = − . 
Considering the homogeneous equilibrium between the highest order linear 

term and the nonlinear term in the reduction Equation (B), we can obtain 
1, 2m n= = . As a result, the trial Equations (16) reduces to 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1
0 1

2 1 2
0 1 2 2

,

.

AF a a

B BH b b b

ς φ ς
φ ς

ς φ ς φ ς
φ ς φ ς

 = + +


 = + + + +


          (17) 

In order to determine the values of undetermined coefficients 0 1 0 1 2, , , ,a a b b b , 
substituting (16) and (17) into the reduction Equation (B) and merging the po-
lynomial of the same power of φ , and setting up each polynomial coefficient to 
zero, we can get the following nonlinear algebraic equations 

0 2 3
1 2 1 1 2

1 2
1 0 1 1 1 2

2
1 1 1 2 0 2 1 2

2 2
1 0 1 1 1 2

2 2
1 1 1 1 0 1 0 1

1 1 2 0 2 1 2 1

: 2 0, 6 3 0

: 2 0,

12 2 2 2 3 0
: 2 0,

     7 8
     2 2 2 3

A B A A B
A a A A B B

A A B B a B A B
A a A A B B

A A A A b B a B
A B B a B a B A

φ λ λ λ λ

φ λ λ ρ λ ρ

λ ρ λ λ λ ρ
φ ρ ρ ω ρ ω

λ λρ λ ω λ λ λ
ρ ρ ρ λ ω

− − = − − =

− − − − − =

− − + − − =

− − − − =

− − − − + −

− + − − − 2

6 2
1 2

2 2
1 1 1 1 0 1 0 1 1 1

2 0 2 1 2 1 2
7 2

1 1 1 2 0 2 1 2
8 3

1

0 
                                             

: 2 0,

      7 8 2
      2 2 3 0

: 0 0,12 2 2 2 3 0
: 0 0,6

B

a b
a a a a b b a b a b

b a b a b A b
a a b b a b a b

a

φ ω ω

ω ρ ω λω ω ω ω ρ
ρ ρ λ ω

φ ρω ω ω ω ρ
φ ω

=

+ =

+ + + − + +

− + + + =

= + − + + =
= +



1 23 0a bω




















=
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By solving the above system with the help of Mathematic, we can get the fol-
lowing results 

0 1 1
2 2

0 1 2 1 2

1 , 2 , 2 ,

1, 2 , 2 , 2 , 2 .

a a A

b b b B B

ρ ω λ

ρω ω λρ λ

= ± = ± = ±

= − = − = − = − = −
         (18) 

Now, substituting (18) into (19), we obtain explicit solutions of Equation (1) 
as follow. 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
2

2 2
2

2, 1 2 ,

2 2, 1 2 2 ,

k k
k

k k k
k k

u x t

v x t

λρ ωφ ς
φ ς

λρ λρωφ ς ω φ ς
φ ς φ ς

 = ± ± ±


 = − − − − −

       (19) 

where 1,2, , 27,k x tς= = − , and selecting any hyperbolic function in 1 27φ φ , 
for example, 

( ) 1 tan .
2 2

θφ ς ρ θ ς
ω

  −
= − + −     

  

The explicit solutions (19) become as 

( )

( )
2 2 2

2
2

4, 1 tan ,
2

tan
2

1 8, 1 tan
2 2 2

tan
2

4 ,
tan

2

u x t

v x t

θς λωθ
θςρ θ

ρ θς λ ωθ
θςρ θ

λρω
θςρ θ

  −
= ± −  

 −   − −  
 

  − = − + + − 
     −

− + −       

 −
  −

− + −  
  



 

where 2, 4 0x tς θ ρ λω= − = − <  (see Figure 1). 

4.3. Explicit Power Series Solutions of the Reduction Equation (C) 

In this section, we study the power series solution of the reduction Equation (C)  
 

 
Figure 1. Plot of explicit solution above with 4, 0.2, 0.3λ ρ ω= = − = . 
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in the form of (12). Substituting (12) into the reduction Equation (C), we get 

( ) ( )

( ) ( )

( )

( )( )( )

1 0 1 1 1
1 0 1

1 1 1
1 1 0

0 1 1 0 1
1 0

3 3
1

1 1 1 0,

1 1

1

1 2 3 6 0.

n
n n

k n k n
n k n

n
n n

n k n k
n n k

n
n

k n k
n k

n
n

n

n k c c c c n s s

n c c n k s c

s c n k c s c s

n n n c c

ς ς

ς ς

ς

ς

∞ ∞

+ − +
= = =

∞ ∞

+ + −
= = =

∞

+ −
= =

∞

+
=

 + + − + + + + =



+ + + + −

 + + + − +


 + + + + + =

∑∑ ∑

∑ ∑∑

∑∑

∑

 

Through comparing the coefficients of ς , we can easily get the following re-
sults. 
where 0n = , 

1 0 1 0 1
1 0 1 31 , ,

6
c s c c s

s c c c
+ +

= − − = −   

where 1n ≥ ,  

( ) ( )

( )( )( ) ( ) ( )

( )

1 1
0

3 1 1
0

1
0

1 1 ,
1

1 1 1
1 2 3

1 .

n

n k n k
k

n

n n k n k
k

n

k n k
k

s n k c c
n

c n c n k s c
n n n

n k c s

+ + −
=

+ + + −
=

+ −
=

= − + −
+

= − + + + −+ + + 

+ + − 

∑

∑

∑

 

Accordingly, the power series solution of the reduction Equation (C) is as fol-
lows 

( )

( )( )( ) ( ) ( )

( )

( ) ( ) ( ) ( )

2 31 0 1 0 1
0 1 2

1 1
1 0

3
1

0

1
0 0 1 1

1 0

6
1 1 1

1 2 3

1 ,

11 1 .
1

n

n k n k
n k

n
n

k n k
k

n
n

k n k
n k

c s c c s
F c c c

n c n k s c
n n n

n k c s

H s c c n k c c
n

ς ς ς ς

ς

ς ς ς

∞

+ + −
= =

+
+ −

=

∞
+

+ −
= =

+ +
= + + −

− + + + −+ + + 

+ + − 

= − + − + −
+

∑ ∑

∑

∑∑

 

And then we get the following power series solution of Equation (1) 

( )

( )( )( ) ( ) ( )

( )

22 2

0 1 2

32
1 0 1 0 1

1 1
1 0

32

1
0

2 2,
2 2

2
6 2

1 1 1
1 2 3

21 , 
2

n

n k n k
n k

nn

k n k
k

t x t xu x t t c c c

c s c c s t x

n c n k s c
n n n

t xn k c s

∞

+ + −
= =

+

+ −
=

   − + − +
= + + +   

   

 + + − +
−  

 
− + + + −+ + + 

 − ++ + −    

∑ ∑

∑
 

https://doi.org/10.4236/jamp.2018.612222


X. M. Xue, Y. S. Bai 
 

 

DOI: 10.4236/jamp.2018.612222 2693 Journal of Applied Mathematics and Physics 
 

( ) ( )

( ) ( )

2

0 0 1

12

1
1 0

2, 1
2

1 21 .
1 2

nn

k n k
n k

t xv x t s c c

t xn k c c
n

+
∞

+ −
= =

 − +
= − +  

 

 − +
− + −  +  

∑∑
 

4.4. Explicit Solutions of the Reduction Equation (D) Using  
Extended Tanh Function Method 

Using extended tanh function method, similar to the solving of the reduction 
Equation (B), we obtain the following results: 

0 1 1 0 1
2 2

2 1 2

, 2 , 2 , 1, 2 ,

2 , 2 , 2 .

a a A b b

b B B

ρ ω λ ρω

ω λρ λ

= ± = ± = ± = − = −

= − = − = −
 

and selecting the following hyperbolic function 

1 coth
2 2

θφ ρ θ ς
ω

  
= − +     

 

We obtain explicit solutions of the Equation (1.1) as follow 

( )

( )
2 2 2

2
2

4, coth ,
2

coth
2

1 8, 1 coth
2 2 2

coth
2

4 ,
coth

2

u x t

v x t

θς λωθ
θςρ θ

ρ θς λ ωθ
θςρ θ

λρω
θςρ θ

  
=  

    −  
 

  
 = − + − − 
    

− +       

 +
  

+  
  

 

 

where 2, 4 0x tς θ ρ λω= − = − <  (see Figure 2). 
 

 
Figure 2. Plot of explicit solution above with 4, 2, 0.2λ ρ ω= = = . 
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5. Conclusion 

In the field of physics and engineering mechanics, it is particularly important to 
solve nonlinear differential equations. In the work, the Lie group analysis me-
thod has been employed to investigate the dispersive long wave equations. Based 
on this method, the vector fields and symmetry reductions have been obtained 
for the system. Since it is difficult to solve the reduction equations directly, the 
power series method and the extended Tanh function method have been used to 
construct more explicit solutions, which can enrich the exact solutions of the 
dispersive long wave equations. The basic idea is efficient and powerful in solv-
ing wide classes of nonlinear differential equations. 
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