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Abstract 
In this paper, we firstly give a counterexample to indicate that the chain rule 

d
dx x

uD u Dα ασ ξ
ξ

=  is lack of accuracy. After that, we put forward the fraction-

al Riccati expansion method. No need to use the chain rule, we apply this 
method to fractional KdV-type and fractional Telegraph equations and obtain 
the tangent and cotangent functions solutions of these fractional equations 
for the first time. 
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1. Introduction 

As we know that the global quasi-operator fractional-order derivative owns the 
properties of depending on history, and posses more advantages than the local 
operator integral-order in describing the memory and hereditary characteristic 
of different substances, the fractional-order derivative is usually used also by 
simulating the dynamic behavior of soft material, which is a kind of material 
between solid and fluid. Recently, the study on properties of fractional 
derivatives and fractional-order equations increasingly causes attention to many 
authors. Tarasov [1] [2] [3] investigated properties of the chain rule and Leibniz 
rule for fractional derivatives. Manuel and Tenreiro [4] analyzed the definitions 
of the Grnwald-Letnikov, Riemann-Liouville and Caputo fractional derivatives. 

Authors [5] [6] studied the exact solution of fractional equations by using 
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Jumarie’s modified Riemann-Liouville derivative 

( ) ( ) ( ) ( ) ( ) ( )
0

1 d 0 d , 0 1
1 d

x
xD u x x u u

x
αα τ τ τ α

α
−= − − < ≤  Γ − ∫

     
(1) 

and the following two basic formulae: 

( ) ( ) ( ) ( ) ( ) ( ) ,x x xD f x g x g x D f x f x D g xα α α= +             
(2) 

( )( ) ( ) ( ) ( )( ) ( ) .x g x gD f g x f g x D g x D f g x g x
αα α α′ ′= =              

(3) 

Liu [7] gave the two counterexamples and stated the opinion that Jumarie’s 
two above formulae (2) and (3) are incorrect. Author’s [8] developed the 
fractional complex transform 

( ) ( ) ( ) ( ) ( ), , , 0 , 1
1 1
kx ctu x t U

α β

ξ ξ α β
α β

= = − < ≤
Γ + Γ +         

(4) 

and the following chain rule for fractional derivative 

1 2
d d, ,
d dx x t t
U UD u D D u Dα α β βσ ξ σ ξ
ξ ξ

= =
              

(5) 

where 1 2,σ σ  are constants. 
The above formulae (4) and (5) have the advantage of converting a fractional 

differential equation with Jumarie’s modified of Riemann-Liouville derivative 
into its ordinary differential equations. Recently, many authors [9] [10] studied 
the exact traveling wave solutions of space-time fractional equations by using of 
formulae (4) and (5)and G’/G-expansion method, improved F-expansion, first 
integral method etc. 

In here, we must point out that the constants 1 2,σ σ  are lack of accuracy, if 
the fractional transformation ( )U ξ  contains only one term, formula (5) is 
correct. But ( )U ξ  contains two terms and above, formula (5) is incorrect. We 
give the counterexample to show that σ  of formula (5) does not exist and 
therefore the corresponding results reported in many literatures are not correct. 
Inspired by this, we present the new fractional Riccati expansion method. By this 
method, we firstly transform fractional partial differential equations into fractional 
ordinary equations with the same order by using traveling wave transformation. 
Then we can give the exact solutions of fractional ordinary equations using the 
solutions of fractional Riccati equation. In this process, the chain rule formulae 
(4) and (5) do not need to be used. 

The content is as follows: in Section 2, one counterexample is given to show 
that the formula (5) is not true. The properties and definition of conformable 
fractional derivative are listed, steps of the fractional Riccati expansion method 
are presented. In Section 3, the proposed method is applied to solve space-time 
fractional differential KdV-type and Telegraph equations, exact solitary wave 
solutions can be obtained. Furthermore, the method can be used to obtain exact 
solutions of many other fractional equations without formulae (4) and (5). The 
brief conclusions are arranged in Section 4. 
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2. Counterexample and the Fractional Riccati Expansion Method 
2.1. Counterexample 

In some literatures, authors [9] [10] reduced the fractional differential equations 
to the ordinary differential equations by using formulae (4) and (5), with the 
help of solving ordinary differential equations, the traveling wave solutions of 
fractional differential equations can be obtained. Inhere we must point out 
formula (5) is incorrect. Certainly, results obtained by using (5) and (4) are lack 
of accuracy. In the following content, we give one counterexample to show that 
formula (5) is not true. 

Counterexample Takes ( )( ) ( )
1 1

22 4 1, ,
2

f g x g g g x x α= + = = , the left side of 

the first formula to expression (5) is denoted by 

( ) ( )

( ) ( )

1 1 1 11
2 2 2 22

0

11 1
22 2

0 0

1 d d
1 d
2

1 d 1 dd d
1 1d d
2 2

π2 .
π 2

x
x x

x x

D f x D x x x
x

x x
x x

t

τ τ τ τ

τ τ τ τ τ τ

−

− −

   
= + = − +   

    Γ 
 

= − + −
   Γ   
   

= +

∫

∫ ∫

     

(6) 

But from 
1 3
2 4d 1 1

d 2 4
f g g
g

− −
= +

                       
(7) 

and 

( ) ( )
3

1 1 2
22 2

0

1 d 8d ,
1 d 3 π
2

x
x

tD g x x
x

τ τ τ−= − =
 Γ 
 

∫

            

(8) 

we know that the right side of first formula to expression (5) equals to 

( )
3

1 1 3 2
2 2 4d 1 1 8 4 4 π .

d 2 4 3 3 π 3π 2πx
f t tD g x g g
g

− − 
⋅ = + ⋅ = + 

          
(9) 

Comparing (6) with (9), we find that the “σ “ of formula (5) doesn’t exist. 
That is to say, we can not give a constant “σ “ such that 

( ) ( )
1 1
2 2d

dx x
fD f x D g x
g

σ= ⋅
                   

(10) 

holds. It is obviously that formula (5) is right for the compound functions 

containing one term, such as ( )( ) ( )
1

22 ,f g x g g x x= = . 

2.2. Definition and Properties of Fractional Derivative 

The fractional derivative is described in the sense of the following “conformable 
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fractional derivative” defined by Khalil [11] as 
Definition 2.1. For a given function [ ): 0,f ∞ →ℜ , the “conformable 

fractional derivative” of f with α  order is denoted by 

( )
( ) ( )1

0
lim

f t t f t
T f t

α

α ε

ε

ε

−

→

+ −
=

                
(11) 

for all ( ]0, 0,1t α> ∈ . 
We known that Riemann-Liouville derivative and Caputo derivative have the 

following setbacks: 
(1) they do not satisfy ( )1 0aDα = , 
(2) they do not satisfy formulae (2) and (3). 
However, The conformable fractional derivative makes up these setbacks and it 

satisfies the known formulae (2), (3) and Rolle’s Theorem. For ( ]0,1 , ,b cα ∈ ∈ℜ , 
the conformable fractional derivative of some functions are listed as the 
following: 

(1) ( ) 1e e ;cx cxT cx α
α

−=  

(2) ( ) 2 ;T x
x

α
α α

α−− =  

(3) 

( )( ) ( ) ( )( ) ( )
( )( ) ( ) ( )
( )( ) ( ) ( )( ) ( )

1 1

1

1 2 1 2

sinh cosh , cosh sinh ,

sech sech tanh ,

tanh sech , coth csch .

T bx bx bx T bx bx bx

T bx bx bx bx

T bx bx bx T bx bx bx

α α
α α

α
α

α α
α α

− −

−

− −

= =

= −

= = −

 

The above properties play a very important role in the fractional Riccati 
expansion method. Khalil [11] gave proofs of (1) and (2). After simple calculating, 
We know that (3) are true by (1), (2) and the definitions of hyperbolic functions. 

Proposition 2.2. For ( ]0,1α ∈ , ,f g  be conformable fractional derivative, 
( )f g  is differential at point g, g is continuous at point x, then the chain rule 

( )( ) ( )d
d

fT f g x T g x
gα α= ⋅

                   
(12) 

holds, where “ d
dg

” denote the derivative of integer-order with respect to g. 

Proof By ( )( )f g x  is differential at point x and the definition (2.1) of 
conformable fractional derivative, then 

( )( )
( )( ) ( )( )

( )( ) ( )( )
( ) ( )

( ) ( )

( )( ) ( )( )
( ) ( )

( ) ( )

( ) ( )
( )

1

0

1 1

10

1 1

10 0

1

0 0

lim

lim

lim lim

dlim lim .
d

f g x x f g x
T f g x

f g x x f g x g x x g x

g x x g x

f g x x f g x g x x g x

g x x g x

g x x g xf f T g x
g g

α

α ε

α α

αε

α α

αε ε

α

αε ε

ε

ε
ε ε

εε

ε ε

εε

ε

ε

−

→

− −

−→

− −

−→ →

−

→ →

+ −
=

+ − + −
= ⋅

+ −

+ − + −
= ⋅

+ −

+ −∆
= ⋅ = ⋅

∆

 

In the above process, the fourth equality holds because of continuity of 
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function ( )g x . Then the chain rule (12) holds. 

2.3. Method of Fractional Riccati Expansion 

For a given fractional differential equation, we write in two variables x and t as 

( ) ( ) ( ) ( )( )2 2, , , , , 0,P u T u x T u t T u x T u tβ β β β =

           
(13) 

Inhere, ( ) ( ),T u x T u tβ β  are comfortable derivatives of ( ),u u x t=  with 
respect to x and t respectively, u is an unknown function, P is a polynomial. 

Step 1: By using the traveling wave transformation 

( ) ( ), , ,u x t u x ctξ ξ= = +                   (14) 

where c is constants to be determined. Fractional differential Equation (13) is 
reduced to the following nonlinear fractional ordinary differential equation of u 
with the same order: 

( ) ( ) ( ) ( )( )2
1 2 2, , , , , 0,P u T u c T u T u c T uβ β

β β β βξ ξ ξ ξ =

        
(15) 

Step 2: Suppose that ( )u ξ  solution of Equation (15) can be expressed by the 
following form: 

( ) ( )
0

, 0,
n

i
i n

i
u a F aξ ξ

=

= ≠∑
                  

(16) 

Inhere, ( )0,1, ,ia i n=   are undetermined constants, n is a positive integer 
to be determined by balancing the nonlinear term and the linear term of the 
highest order in Equation (15), ( )F ξ  satisfys the following fractional Riccati 
equation 

( ) ( )2 , 0,0 1 ,T F x m F mα α= + < < ≤               (17) 

where m is parameter. By using the definition (2.1), proposition (2.2) of 
comfortable fractional derivative and the derivatives (3) of some functions, we 
can obtain the following solutions of Equation (17). 

Theorem 2.3. For given 0,0 1m α< < ≤ , Equation (17) exist the solutions 

( )
22tanh ,F x m mx
α
αα

α

− −
= − − −  

                
(18) 

and 

( )
22coth ,F x m mx
α
αα

α

− −
= − − −  

                
(19) 

Proof: By using the proposition (2.2) of comfortable fractional derivative and 
the derivative (3) of tanh function,the left side of expression (17) 

( )
1

22 2 2

2 2

2 2sech
2

2sech .

T F x m m x mx x

m mx

αα α α α
α α α

α

α
α

α α α
α α α

α
α

−
−

− − −

−

   − −
= − − − −       −   

 −
= −  

   

(20) 

After simple calculation, we know that the right side of expression (17) 
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( )2 2 2

2 2

2tanh

2sech .

m F m m mx

m mx

α
α

α
α

α
α

α
α

−

−

 −
+ = + − −  

 
 −

= −  
              

(21) 

By (20) and (21), then (18) is the solutions of Equation (17). Similarly, we can 
obtain that the proof of (19). 

Step 3: Determining integer n by the principle of homogeneous balance, and 
Substituting (16) and (17) into Equation (15) and collecting the terms with same 
order of ( )F ξ , then setting each coefficient of ( )F ξ  to zero. So we get a 
system of algebraic equations of 0 1, , , na a a  and c. By solving this algebraic 
equations, yields 0 1, , , na a a  and c can be expressed by parameters , ,a b m  
and δ . With the help of the solutions of Equation (17) and expression (18), 
the solutions of Equation (16) can be arrived. So we have the traveling wave 
solutions of Equation (13). 

3. Application 
In this section, we apply the fractional Riccati expansion method to KdV-type 
equations and Telegrph equations. The fractional derivative is comforable 

fractional derivative with order α  with respect to t, marked by notation .D
Dt

α

α  

3.1. Solutions of Space-Time Fractional KdV-Type Equation 

The KdV equation is a very important shallow water wave equation derived by 
Korteweg and de Vries in 1895. The modified KdV equation arises in many 
fields, such as fluid physics, solid-state physics, phasma physics, and have been 
studied by many authors [12] [13] [14]. The space-time fractional modified KdV 
equation is 

3
2

3 0,D u D u D u D uau bu
Dt Dx Dx Dx

α α α α

α α α αδ+ + + =
              

(22) 

inhere ,a b  and δ  are constants. 
Burgers equation is a nonlinear partial differential equation simulating the 

propagation and reflection of shock waves and can be applied in many fields, 
such as fluid mechanics, nonlinear acoustics, and gas dynamics. The space-time 
fractional modified KdV-Burgers equation is 

2 3
2

2 3 0,D u D u D u D u D uau bu r
Dt Dx Dx Dx Dx

α α α α α

α α α α αδ+ + + + =
          

(23) 

Many authors [15] [16] [17] have investigated the existence and stability of 
KdV-Burgers equation. Jose [18] discussed numerically the stability of the shock 
solution of KdV-Burgers equation,when diffusion dominates dispersion,the 
steady-state solution is a monotonic shock, when dispersion dominates diffusion, 
the steady-state solution is a shock which is oscillatory upstream and monotonic 
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downstream. Pego [19] studied the stability of traveling wave solutions of a 
generalization of the Kdv-Burgers. 

To solve the Equation (23), substituting the traveling wave transformation (14) 
to Equation (23), then it can written as the following fractional ordinary 
equation 

2 3
2

2 3 0,D u D u D u D u D uc au bu r
D D D D D

α α α α α

α α α α αδ
ξ ξ ξ ξ ξ

+ + + + =
         

(24) 

Suppose that ( )u ξ  can be expressed by the following form 

( )
0

.
n

i
i

i
u a Fξ

=

= ∑
                       

(25) 

By using the homogeneous balance principle and balancing 
3

3

D u
D

α

αξ
 with 

2 D uu
D

α

αξ
, we known that 1n = . Therefore, expression (25) can be expressed as 

( ) ( )0 1 ,u a a Fξ ξ= +                      (26) 

where ( )F ξ  are solutions of fractional Riccati Equation (17), coefficients 

0 1,a a  will be determined. Substituting (26) and (17) into (24), we obtain that 
2 2 2 3 2 2

1 0 1 1 0 1 1 1 0 1 1 12 2 2 6 0.ca aa a ba a m a aa F ba a F ra F ba F a Fδ δ+ + + + + + + + = (27) 

In Equation (27), setting the coefficients of ( )0,1,2iF i =  to zero, yields 
algebraic equations of parameters 0 1,a a  and c 

2
1 0 1 1 0 1
2 2
1 1 0 1
3
1 1

2 0

2 2 0

6 0

ca aa a ba a m a

aa ba a ra

ba a

δ

δ

 + + + =
 + + =
 + =                 

(28) 

By solving algebraic system (28), solutions are denoted by: 
2 2

0 1
6, , 2 ,

2 4 66
a r a ra a c m
b b bb

δ
δ

δδ
= − = ± − = − +

−


      
(29) 

where 0bδ < . By (14), (18), (19), (26) and (29), we have the following theorem. 
Theorem 3.1. For 0, 0,0 1b mδ α< < < ≤ , the following solitary wave 

solutions of Equation (23) are 

( ) ( )21
6 2, tanh

2 6
a r mu x t m x ct
b bb

α
α

δ α
αδ

−
− = − − + −  

 

    
(30) 

and 

( ) ( )22
6 2, coth .

2 6
a r mu x t m x ct
b bb

α
α

δ α
αδ

−
− = − − + −  

 

    
(31) 

Remark 3.2. When 1α = , solution (30) become the following form 

( ) ( )3
6 6, tanh .

2 6
a r m mu x t m x ct
b b bb

δ δ
δ

 = − − + −
  

    
(32) 
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Expression (32) is the result (4.7) given in [15] in case 1p = . 
Setting 0r =  in the expression (30) and (31), yields that: 
Theorem 3.3. Suppose that 0, 0,0 1b mδ α< < < ≤ , Equation (22) have the 

following solitary wave solutions 

( ) ( )24
6 2, tanh

2
a mu x t m x ct
b b

α
α

δ α
α

−
− = − − +  



        
(33) 

and 

( ) ( )25
6 2, coth .

2
a mu x t m x ct
b b

α
α

δ α
α

−
− = − − +  



        
(34) 

Remark 3.4. (1) When 1α = , solution (33) become the following form 

( ) ( ) ( )6 1
6, tanh .

2
a mu x t u m x ct
b b

δ
ξ  = = − − + 

        
(35) 

Expression (35) is the result (4.9) given in [15] in case 1p = . 
(2) Setting a to zero in the expressions (33) and (34), we can obtain that the 

results (14) and (15) derived by Abdel-Salam [20]. 

3.2. Solutions of Space-Time Fractional Telegraph Equation 

The space-time fractional Telegraph equation 
2 2

3
2 2 0,D u D u D u u u

Dt Dx Dt

α α α

α α α γ β− + + + =
               

(36) 

where ,γ β  are constants. Telegraph equation is the important model in the 
description of the transmission of energetic particle distributions [21] [22] and it 
has been applied in a wide range, such as astrophysical and plasma physics [23]. 
Tawfik [24] obtained analytical solutions of the space-time fractional Telegraph 
equation in the case of 0γ β= = . The traveling wave solution of Telegraph 
Equation (36) with 1α =  was derived by Wang and Li [25]. In virtue of 
exp-function method, many traveling wave solutions of Equation (36) was 
studied by Guner and Bekir [10]. 

Substituting (14) into (36), Telegraph Equation (36) can be deduced by the 
following form 

2 2
2 3

2 2 0D u D u D uc c u u
D D D

α α α

α α α γ β
ξ ξ ξ

− + + + =
             

(37) 

By using the principle of homogeneous balance and (16), supposing that the 
solutions of Equation (37) is 

( ) ( )0 1 ,u a a Fξ ξ= +                      (38) 

where ( )F ξ  are solutions of fractional Riccati Equation (18), 0 1,a a  are 
undetermined coefficients. Substituting (38) and (17) into (37), after simply 
calculating and setting the coefficients of 0 2 3, , ,F F F F  into zero. The algebraic 
equations with respect to 0 1,a a  and c can be described in the following form 
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( )

( )

3
1 0 0

2 2
0

0 1

2 2
1

0

2 1 3 0

3 0

2 1 0

cma a a

m c a

c a a

c a

γ β

γ β

β

β

 + + =


− + + =


+ =
 − + =                    

(39) 

From the second and fourth equation of (39), we can obtain respectively, 

( ) ( )2 2
2 2
0 1

2 1 2 1
, ,

3

m c c
a a

γ

β β

− − − − −
= =

             
(40) 

By the third equation of (39), we have 

0 13 .c a aβ= −                          (41) 

Substituting (41) into the first equation of (39), we yields that 
2 2
1 03 0.m a aβ γ β− + + =                     (42) 

By means of (40) and (42), for 0, 0, 8m mβ γ< > ≤ , if ,mγ  satisfying 
29 2 16 0mγ γ− + = , the solutions can be given in the following form 

2 2 2
0 1, , 1 .

4 4 8
a a c

m m
γ γ γ
β β

= − = = −
              

(43) 

By mean of (14), (18), (19), (38) and (43), we can obtain the following solutions 
of Equation (36): 

Theorem 3.5. For 0, 0, 8m mβ γ< > ≤ , if ,mγ  satisfying  
29 2 16 0mγ γ− + = , then we have the following solitary wave solutions of 

Equation (36), that is 

( )
2

7
2, tanh 1

4 4 8
u x t m x t

m m

α
αγ γ α γ

β β α

−
 

 − = ± − ± − ± −   
        

(44) 

and 

( )
2

8
2, coth 1 .

4 4 8
u x t m x t

m m

α
αγ γ α γ

β β α

−
 

 − = ± − ± − ± −   
        

(45) 

Remark 3.6. (1) Solutions (44) and (45) are the new solitary wave solutions 
not be found by Guner and Bekir [10]. 

(2) when 1α = , (44) and (45) are the new solitary wave solutions of Telegraph 
equation not be obtained by wang [25]. 

4. Conclusion 

In this paper, we point out firstly that the chain rule of fractional derivative is 
incorrect by giving a counterexample. Especially, the results reported in 
literatures by using chain rule for fractional derivative are lack of accuracy. After 
that, we put forward the Riccati expansion method and solve fractional KdV-type 
equation and Telegraph equation by applying this method. Some solitary wave 

https://doi.org/10.4236/jamp.2018.610167


X. H. Liu 
 

 

DOI: 10.4236/jamp.2018.610167 1966 Journal of Applied Mathematics and Physics 
 

solutions can be obtained for the first time. In this process, the chain rule is not 
required, method raised in here is simple and can be used to get solitary wave 
solutions of more fractional differential equations. 
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