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Abstract 
The 5-qubit quantum computer prototypes that IBM has given open access to 
on the cloud allow the implementation of real experiments on a quantum 
processor. We present the results obtained in five experimental tests per-
formed on these computers: dense coding, quantum Fourier transforms, Bell’s 
inequality, Mermin’s inequalities (up to 5n = ) and the construction of the 
prime state 3p . These results serve to assess the functioning of the IBM 5Q 
chips. 
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1. Introduction 

Quantum Computation has become a very exciting, promising and active field of 
research for hundreds of scientists around the world during the last decades (see 
e.g. [1] [2]). After the important theoretical discoveries in the 90s (Shor’s algo-
rithm, quantum error correction, quantum computers as universal quantum si-
mulators...), the advances in Experimental Physics and Engineering have made 
possible to build the first quantum-computer prototypes. Governments, univer-
sities and the big companies of the Information Technology sector are investing 
huge amounts of money, aiming to build a functional quantum computer in the 
coming years that could have a wide range of applications. 

In this respect, IBM released in 2016 a 5-qubit universal quantum computer 
prototype accessible on the cloud, based on superconducting qubits: the IBM 
Quantum Experience [3]. Superconducting qubits exploit the nonlinearity of the 
inductance of Josephson junctions to generate unequally-spaced energy levels 
[4], so that the lowest two levels may be used as 0  and 1 . These qubits 
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must operate at temperatures very close to the absolute zero (around 0.015 K in 
the case of IBM’s), to avoid decoherence due to interaction of the qubits with the 
environment. Of course, there exist other candidate technologies for the imple-
mentation of quantum computing, for instance: quantum dots, trapped ions, ni-
trogen vacancy centres... 

About a year after the release of its first quantum computer, IBM enlarged its 
Quantum Experience with a 16-qubit universal quantum computer (also made 
of superconducting qubits, and accessible under restricted access), and an-
nounced that they had designed a commercial prototype of a 17-qubit quantum 
processor. And in November 2017, IBM announced that they had already built a 
20-qubit and a 50-qubit quantum computer, with decoherence times that double 
those exhibited by the computers of the Quantum Experience. 

The quantum computer prototypes of the IBM Quantum Experience–namely 
ibmqx 2 (5 qubits), ibmqx 4 (5 qubits) and ibmqx 5 (16 qubits)—allow the im-
plementation by the scientific community of real experiments on a quantum 
processor (see [5]-[23]). Recent applications include, for instance, the design of a 
quantum cheque [16], a simulation of the braiding of two non-abelian anyons 
[11] or a demonstration of fault-tolerant quantum computation [14]. 

In order to make proper use of these computers, some technical aspects must 
be taken into account. First of all, the set of gates available includes the Hada-
mard gate H, the , ,X Y Z  gates (these are the usual Pauli matrices), the 

† †, , ,S T S T  rotation gates and a parameter-dependent rotation, which intro-
duces a relative phase eiλ  in the state of the qubit. There are another two pa-
rameter-dependent transformations available as well, but those will not be used 
in the present work. And there is a 2-qubit gate: the controlled-NOT. Any de-
sired unitary transformation must be accomplished with just these gates. 

Another technical detail is that not all the qubits are connected among them-
selves due to experimental constraints. This means that controlled-NOT opera-
tions (cNOTs) are restricted to some particular pairs of qubits, as shown in Fig-
ure 1 (this fact turns out to be relevant in the present implementation of the 
quantum computer, because it increases the number of gates needed for some 
circuits, leading to a decrease in performance). There exists, however, an 
important identity that reverses the control and the target qubits of a cNOT 
using four Hadamard gates (shown in Figure 2). This identity allows to use 
cNOTs in any direction among the qubits connected by arrows in Figure 1.  

Other identities that will be used are shown in Figures 3-5. The 
implementation of a Toffoli gate in terms of 1-qubit gates and cNOTs [1] is 
shown in Figure 6. We shall also use the fact that the square of the Hadamard 
gate is the identity ( 2 1H = ), which often leads to simplifications of the final 
circuits. 

Finally, measurements on the IBM 5Q computers can only be carried out in 
the computational basis { }0 , 1 . However, measurements in other basis can be 
simulated by means of appropriate gates. In this way, a Hadamard gate prior to 
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Figure 1. Diagram of the available cNOTs among qubits on the IBM 5Q computers: 
ibmqx 2 (left) and ibmqx 4 (right). The qubits are represented by circles, while the cNOTs 
are arrows pointing from control qubit to target qubit.  
 

 
Figure 2. The control and target qubits of a cNOT are reversed by four Hadamard gates.  
 

 
Figure 3. A controlled-NOT that acts on the target qubit when the control qubit is in the 
state 0 .  

 

 
Figure 4. A SWAP between two qubits is equivalent to three consecutive cNOTs with the 
one in the middle reversed.  
 

 
Figure 5. A controlled-Z gate in terms of a cNOT and two Hadamard gates.  

 

 
Figure 6. A Toffoli gate implemented as the product of 1-qubit gates and cNOTs.  
 
measurement in the computational basis is equivalent to a measurement in the X 
basis  
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0 1 0 1
,

2 2
 + −  + = − = 
  

, 

and a †HS  gate is equivalent to a measurement in the Y basis  

0 1 0 1
,

2 2y y

i i + −  + = − = 
  

. 

With these basic notions in mind, we have carried out several experiments 
and protocols: dense coding, quantum Fourier transforms, Bell’s inequality, 
Mermin’s inequalities (up to n = 5) and the construction of the prime state 

3p . The IBM Quantum Experience enables the simulation of the circuits prior 
to its actual implementation on the real quantum computer; this is helpful to 
ensure that the circuits are well designed. Each circuit has been run 5 times, each 
run comprising 8192 repetitions or shots. Mean results and standard deviations 
among the five runs have been calculated in all cases. 

2. Implemented Experiments 
2.1. Dense Coding 

Dense coding is a protocol introduced by Bennett and Wiesner [24] that allows 
two bits of classical information to be transmitted between two partners (Alice 
and Bob) that share an EPR pair by performing local operations on just a single 
qubit (Alice’s) of the entangled pair, which is then eventually sent to Bob. 

Dense coding can be implemented on the IBM 5Q using the circuit shown in 
Figure 7, designed by Mermin [25]. The two uppermost horizontal wires in the 
circuit in Figure 7 represent the two classical bits that are to be sent by Alice (i.e. 

{ }0 , 1ix = ); this two bit string is generated using X gates (i.e. 
01

1 0 00xxx x X X= ⊗ ). The two lowermost horizontal wires represent the 
qubits shared by Alice and Bob. The initial Hadamard gate and cNOT generate 
the entangled pair in the state  

( )1 00 11
2

φ+ = + .  

Then, the second cNOT and the controlled-Z implement the transformations of 
the protocol. Finally, the third cNOT and the last Hadamard gate transform the 
resulting Bell state into one of the four computational basis states before a joint 
measurement in this basis is carried out by Bob in order to obtain the 
information sent over by Alice. 

The results obtained using the ibmqx 4 are shown in Table 1. The protocol is 
successfully completed around 83%, 74%, 78% and 75% of the times for the 
sequences 00, 01, 10 and 11, respectively. 

Certainly, the complete protocol should be carried out in different locations 
and include the physical transmission of one of the entangled qubits in order to 
be of practical use, but a proof of principle as the one shown here seems to be a 
necessary previous step before the experimentally much more complicated full 
protocol can take place (a previous step that, as the results show, it is not 
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Figure 7. Circuit for the implementation of dense coding.  

 
Table 1. Mean probability outcomes (± standard deviation) of the dense-coding circuit 
from Figure 7 after 5 runs of 8192 shots on the IBM 5Q computer (ibmqx 4), using qubits 
3, 2, 1, 0. The column on the leftmost edge shows the 2-bit string transmitted by Alice 
and the uppermost row shows the possible outcomes after a joint measurement per-
formed by Bob.  

A\B 00 01 10 11 

00 0.826 ± 0.003 0.041 ± 0.002 0.111 ± 0.004 0.023 ± 0.003 

01 0.114 ± 0.007 0.744 ± 0.005 0.039 ± 0.003 0.101 ± 0.006 

10 0.159 ± 0.025 0.025 ± 0.001 0.778 ± 0.025 0.038 ± 0.002 

11 0.044 ± 0.005 0.097 ± 0.010 0.114 ± 0.003 0.746 ± 0.013 

 
completed successfully with sufficiently high accuracy yet). It can be argued that 
superconducting qubits are not the ideal system to be sent over large distances, 
but then it should be considered how dense coding is going to be incorporated 
into a quantum computer that functions with superconducting qubits (if it is 
going to be so at all). 

2.2. Quantum Fourier Transform 

The quantum Fourier transform (QFT) is a basic unitary transformation in the 
field of Quantum Computation. For a given state of the computational basis 

1 1 0nj j j j−≡ ⋅ ⋅ ⋅ , with { }0,1ij = , it is defined (in its product representation) 
as: 

( )( ) ( )0 1 0 1 2 02π 0. 2π 0. 2π 0.
1 1 0

1 0 e 1 0 e 1 0 e 1 ,
2

n ni j i j j i j j j
n n

j j j − −
− ⋅ ⋅ ⋅ → + + ⋅⋅ ⋅ +  (1) 

where 2
1 2 0 1 2 00. 2 2 2n

n n n nj j j j j j− − − −= + + +   represents a binary fraction. 
An efficient way of implementing the QFT for states of three qubits is shown in 
Figure 8. To implement the circuit shown in Figure 8 on the IBM 5Q, we use 
the identity in Figure 9, where ( )zR λ  is a rotation of λ  radians around the Z 
axis on the Bloch sphere: 

( )
1 0

.
0 ez iR λλ
 

≡  
 

                        (2) 

The performance of the QFT of different computational-basis states can be 
assessed using a simple procedure that takes into account the fact that the state 
of each qubit in the product state (1) lies on the equator of the Bloch sphere. 
Hence, applying ( )zR λ  gates to all qubits (with an appropriate value of λ  for 
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Figure 8. Circuit implementing the quantum Fourier transform of a state of three qubits.  
 

 
Figure 9. Implementation of a controlled- ( )zR λ  gate with 1-qubit gates and cNOTs.  

 
each qubit), the state of every qubit can be taken to the closest of { },+ −  on 
the sphere. In this way, finally measuring in the X basis should result in a single 
three-bit string with probability equal to 1 in the ideal case. 

For the 3-qubit case, the initial states chosen to be Fourier transformed are 
000  and 011 . For the state 000 , the QFT—Equation (1)—gives the state: 

( )( )( )1 0 1 0 1 0 1 ,
2 2

+ + +                 (3) 

while the QFT of the state 011  gives: 

( )( )( )3π 2 3π 41 0 1 0 e 1 0 e 1
2 2

i i− + +            (4) 

The results obtained for the two states (3) and (4) on the ibmqx 4 are shown 
in Table 2. Since, as explained above, the expected results are 000 and 101 with 
probability equal to 1 for the QFT of the states 000  and 011  respectively, 
it can be said that these states have been Fourier transformed with reliabilities of 
around 74.8 1.1%±  and 61.5 1.0%±  (the errors are the standard deviations 
among the 5 runs). QFTs of states of more than three qubits were not tried out 
because the limited connectivity among qubits (shown in Figure 1) would result 
in low-performance circuits. 
 
Table 2. Mean probability outcomes of the Fourier transform of the states on the leftmost 
column after 5 runs of 8192 shots on the IBM 5Q computer (ibmqx 4), using qubits 2, 1, 0 
(standard deviations are not shown for the sake of clarity). Measurements were carried 
out in an appropriate basis so that the expected result is 000 for the state 000  and 101 

for the state 011 , as explained in the text. 

 000 001 010 011 100 101 110 111 

000  0.748 0.076 0.053 0.020 0.055 0.025 0.016 0.008 

011  0.042 0.104 0.026 0.043 0.078 0.615 0.020 0.071 
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2.3. Bell’s Inequality 
Bell’s theorem states that no deterministic local hidden-variable theory can 
reproduce all predictions of Quantum Mechanics [26]. Bell derived an inequality 

for the singlet-spin state (equivalent to ( )1= 01 10
2

ψ − − ), known as Bell’s  

inequality, which must be fulfilled for any local realistic (hidden-variable) theory: 

( ) ( ) ( ), , , 1,P a b P a c P b c− − ≤
 

                    (5) 

where ( ),P a b


  is the mean value of the product of the outcomes of measuring 
the spin components of two entangled spin 1/2 particles in the state ψ −  in 
the directions a  and b



 respectively (being the possible outcomes 1± ), and 
analogously for ( ),P a c   and ( ),P b c



 . The quantum-mechanical expectation 
value for ( ),P a b



  is: 

( ) ,, cos ,a bQM
P a b a bψ σ σ ψ θ− −= ⋅ ⊗ ⋅ = − 



 

             (6) 

where ,a bθ 


 is the angle between a  and b



. This means that the angles that 
produce maximal violation of inequality (5) are 

, , π 3a b b cθ θ= = 

 
; that is, angles 

of 60˚ between ,a b


  and ,b c


 , and 120˚ between ,a c   (see Figure 10). 
According to Quantum Mechanics, the inequality should then be violated as 
1.5 1 . 

Bell’s inequality (5) can be tested on the IBM 5Q computers using the circuits 
shown in Figure 11. The Hadamard gate and cNOT in the circuits from Figure 
11 generate the state ψ −  from 11 . Then, the first circuit performs 
measurements in the X basis ( a ) and in a basis whose vectors form a π 3  
angle with those of the X basis ( b



), so it can be used to measure ( ),P a b


 . The 
second and third circuits measure ( ),P a c   and ( ),P b c



 , respectively. The 
results obtained using the ibmqx4 are shown in Figure 12. 

The experimental values found for ( ),P a b


 , ( ),P a c   and ( ),P b c


  are [27]: 

( )
( )

( )

, 0.392 0.014,

, 0.401 0.009,

, 0.389 0.012,

exp

exp

exp

P a b

P a c

P b c

= − ±

= ±

= − ±





 





                 (7) 

where ( ),P a b


  is the sum of the probabilities of finding the results 00 or 11  
 

 
Figure 10. Directions that produce maximal violation of Bell’s inequality.  
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Figure 11. Circuits for measuring (1) ( ),P a b


  (2) ( ),P a c   and (3) ( ),P b c


 .  

 

 
Figure 12. Mean probability outcomes (±standard deviation) of circuits 1, 2, 3 from 
Figure 11 after 5 runs of 8192 shots on the 5-qubit IBM computer (ibmqx 4), using qubits 
2 and 1.  
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minus the probabilities of finding 01 or 10, and similarly for ( ),P a c   and 

( ),P b c


  (note that the results according to Quantum Mechanics should be 
±0.5). Hence, Bell’s inequality is violated: 

1.182 0.020 1.±                        (8) 

Other Bell-type inequalities can be tested on the IBM 5Q as well; for instance, 
the CHSH inequality [28] [29]. 

2.4. Mermin’s Inequalities 

Mermin’s inequalities are a generalization of Bell-type inequalities for systems of 
more than two spin 1/2 particles (or qubits), derived in 1990 by Mermin [30]. 
The basic idea is that there exists an operator Mn (called a Mermin polynomial) 
whose quantum-mechanical expectation value exceeds the limits imposed by 
Local Realism for certain states. In this way, the incompatible predictions of the 
two theories can be experimentally tested and confronted: the inequalities must 
be fulfilled if Local Realism holds and violated in case Quantum Mechanics is 
correct. 

The quantum-mechanical expectation value for Mn for some highly entangled 
states (GHZ-type states) exceeds the bounds imposed by Local Realism by an 
amount that grows exponentially with n (where n is the number of qubits). This 
fact implies that there is (in principle) no apparent limit to the amount by which 
Bell-type inequalities can be violated by certain entangled states. However, 
because the joint efficiency of n measurement apparatuses necessarily declines 
exponentially in n, and the n-qubit GHZ states are increasingly difficult to 
prepare as n grows, an exponentially greater violation of the inequalities for 
higher values of n will hardly be observed [30]. Mermin’s inequalities have been 
proposed as a figure of merit to assess the fidelity of a quantum computer [5]; in 
fact, they can be tested on the IBM 5Q computers for 3,4,5n = . 

For 3n = , a GHZ-type state and associated Mermin polynomial that give 
maximal violation of the corresponding inequality are: 

( )
2 1 0 2 1 0 2 1 0 2 1 0

3

3

1 000 111 ,
2

,

2.
y x x x y x x x y y y y

i

M

M

ψ

σ σ σ σ σ σ σ σ σ σ σ σ

= +

= + + −

≤

          (9) 

For n = 4, those are [5]: 

( )
( )
(

)

π 4

3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0
4

3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

3 2 1 0 3 2 1

1 0000 e 1111 ,
2

i

y x x x x y x x x x y x x x x y

y y x x y x y x y x x y x y y x

x y x y x x y y y y y y x x x x

y y y x y y x

M

ψ

σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ

= +

= + + +

+ + + +

+ + − −

− +( )0 3 2 1 0 3 2 1 0

4

,

4.
y x y y y x y y y

M

σ σ σ σ σ σ σ σ+ +

≤

    (10) 
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And for n = 5: 

( )

(
) (

4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0
5

4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0

4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4

1 00000 11111 ,
2

y x x x x x y x x x x x y x x x x x y x

x x x x y y y y x x y y x y x y y x x y

y x y y x y x y x y y x x y y x

i

M

ψ

σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ

= +

= + + +

+ − + +

+ + + +

)
3 2 1 0

4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0

5

,

4.

y y y x

x y y x y x y x y y x x y y y y y y y y

M

σ σ σ

σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ+ + + +

≤

 (11) 

The circuits required for testing Mermin’s inequality for n = 3 and the choice 
of settings (9) are shown in Figure 13 (circuits for n = 4 and n = 5 are 
analogous). The Hadamard gate, cNOTs and S gate in Figure 13 generate the 
state  

( )1 000 111
2

iψ = + . 

Changing the position of the †S  gates in Circuit 1 from Figure 13 allows to 
measure 2 1 0

x y xσ σ σ  and 2 1 0
x x yσ σ σ . However, from our own results and those 

obtained in [5], it seems safe to assume symmetry under qubit exchange. That is:  
2 1 0 2 1 0 2 1 0
y x x x y x x x yexp exp exp

σ σ σ σ σ σ σ σ σ  , and only one circuit is needed to  

measure the three terms in the polynomial. The same is true for n = 4 and n = 5, 
which makes it possible to use a single circuit to measure all the terms with a 
same number of σys. 

The experimental results obtained for the states and polynomials (9), (10) and 
(11) on the ibmqx 2 are collected in Table 3. These results show a clear violation 
of Mermin’s inequalities for n = 3, 4, 5. They can be compared to those found by 
Alsina and Latorre [5], also shown in Table 3 (the choice of state and 
polynomial for n = 5 is slightly different in [5], but completely equivalent to (11), 
 

 
Figure 13. Circuits for testing Mermin’s inequality for n = 3: Circuit 1 measures 

2 1 0
y x xσ σ σ  (YXX) and Circuit 2 measures 2 1 0

y y yσ σ σ  (YYY).  
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Table 3. Comparison with the results obtained in [5] for Mermin’s inequalities. LR stands 
for Local Realism bound, QM for Quantum Mechanics bound, A-L for experimental re-
sults obtained by Alsina and Latorre and GM-S for experimental results obtained in the 
present work.  

 LR QM A-L GM-S 

3 qubits 2 4 2.85 ± 0.02 2.84 ± 0.07 

4 qubits 4 8 2  4.81 ± 0.06 5.42 ± 0.04 

5 qubits 4 16 4.05 ± 0.06 7.06 ± 0.03 

 
since it has the same quantum-mechanical expectation value and Local Realism 
bound). We interpret the better results presented here to reflect the improvements 
of the IBM chips during the months in between both publications [31]. 

2.5. Prime State 

The prime state np  is the superposition of all the computational-basis states 
that correspond to prime numbers (written in binary format) up to a certain 
value 2 1nN = −  [32]: 

( )
2 1

prime

1 ,
2

n

n
n x

p x
π

−

∈

= ∑                      (12) 

where ( )xπ , known as the prime counting function, is the number of primes 
less or equal than x. This state bears a large amount of entanglement [33]. The 
prime state for n = 3, i.e.  

( ) ( )3
1 12 3 5 7 010 011 101 111
2 2

p = + + + = + + + , 

can be created with the circuit shown in Figure 14. 
The X gate acting on the first qubit ensures that all number states in the 

superposition created with the two Hadamard gates are odd: after these three 
gates have acted, the system is in the state  

( )1 001 011 101 111
2

ψ = + + + .  

Thus, all that remains is converting the term 001  (1 is not a prime number) 
into 010 . This is achieved with the help of a Toffoli gate and a cNOT. 

After implementing the circuit of Figure 14 for creating the prime state 3p  
on the ibmqx4, a joint measurement of the three qubits in the computational 
basis was carried out in order to assess the overall performance of the circuit. 
The results are shown in Figure 15. 

The results show that, upon measurement of the purported prime state 3p , 
a prime number is obtained with probability 72.5 0.7%±  [34]. In this sense it 
can be said that the prime state 3p  has been constructed with an 
approximated accuracy of 73%. 

The interest in constructing prime states (something that can in principle be 
done efficiently using Grover’s algorithm with a primality test as oracle) is that  
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Figure 14. Circuit that creates the prime state 3p  on the three uppermost qubits using 

an ancilla.  
 

 
Figure 15. Mean probability outcomes of joint measurements in the computational basis 
of the three qubits of the purported prime state 3p  after 5 runs of 8192 shots on the 

5-qubit IBM quantum computer (ibmqx4), using qubits 2, 1, 0 (standard deviations are 
not shown for the sake of clarity).  
 
they would allow to experimentally test, for instance, Riemann hypothesis–one 
of the mathematical problems of the millennium [33]. But in order to falsify 
Riemann hypothesis (or extend the limits of its validity) it is necessary to build 
superposition states of billions of prime numbers. Constructing the state 3p , 
even if this is not done by a general method for creating prime states, thus seems 
a modest first step. 

Moreover, there exist a number of quantities in Number Theory that can 
surprisingly be measured experimentally on prime states [32]. The mean value of 

1
zσ  is: 

( ) ( )
( )

4,1 4,31 1
,z

N N
N

π π
σ

π
− −

=                 (13) 

where ( )4,1 Nπ  is the number of primes less or equal than N that can be 
written as 4 m + 1 with m a positive integer (i.e. that are equal to 1 (mod 4)) and 

( )4,1 Nπ  is the number of primes less or equal than N that can be written as 4m 
+ 3 with m a non-negative integer (i.e. that are equal to 3 (mod 4)). Thus 
( ) ( ) ( )4,1 4,3 1N N Nπ π π= + + . The difference between these two quantities 
( ) ( ) ( )4,3 4,1N N Nπ π∆ ≡ −  is known as the Chebyshev bias, and it is curiously 

positive for most values of N for which it has been calculated so far [35] (the 
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name is due to Pafnuty Chebyshev, who first noticed that the remainder upon 
dividing the primes by 4 gives 3 more often than 1). 

Therefore, measuring the second qubit in the computational basis, and taking 
an outcome 0 as a 1 and an outcome 1 as a −1 when computing the mean value, 
give the Chebyshev bias, provided that ( )Nπ  is known. For the state 3p  
created on the ibmqx 4, the experimental result for 1

zσ  obtained is: 
1 0.301 0.007,z exp

σ = − ±                    (14) 

while the theoretical expected value for 1
zσ  is: 

1 0.500,z th
σ = −                       (15) 

which gives a relative error of around 40% in the measurement. Other quantities 
that can be measured experimentally on the prime state are: 

( ) ( )
( )

( ) ( )
( )

1 3
2 21 1 2 1 22 4

, ,x x x y y
N N

N N
π π

σ σ σ σ σ
π π

= + =          (16) 

where ( ) ( )1
2 Nπ  is the number of twin prime pairs ( ), 2p p +  less or equal than 

N with p = 1 (mod 4) and ( ) ( )3
2 Nπ  is the number of twin prime pairs 

( ), 2p p +  less or equal than N with p = 3 (mod 4). The sum ( ) ( ) ( ) ( )1 3
2 2N Nπ π+  

is equal to the number of twin prime pairs ( )2 Nπ . In analogy with the 
Chebyshev bias the twin prime bias is defined as ( ) ( ) ( ) ( ) ( )3 1

2 2 2N N Nπ π∆ = − . 
The experimental results of the measurements of operators (16) on 3p  on 

the ibmqx 4 are: 
1

1 2 1 2

0.435 0.006,

0.641 0.022,

x exp

x x y y exp

σ

σ σ σ σ

= ±

+ = ±
               (17) 

while the theoretical expected values are: 
1 1 2 1 20.500, 1.000,x x x y yth th

σ σ σ σ σ= + =            (18) 

which give relative errors of approximately 13% and 36% respectively. 

3. Conclusions 

The time of Quantum Computation has come. Quantum-computer prototypes 
have already been constructed and some of them are even available on the cloud, 
thanks to the IBM Quantum Experience. This allows performing experiments 
and assessing the functioning of these first quantum computers. In the present 
work, the protocol of dense coding was completed using superconducting qubits 
for the first time, with efficiencies around 74% in the worst case. Quantum 
Fourier transforms have also been implemented; although QFTs were used in [6] 
[15] [20], they were not performed on states of more than two qubits due to pre-
vious limitations of the IBM Quantum Experience. Moreover, the performance 
of QFTs on the IBM 5Q has never been assessed explicitly before. The original 
Bell’s inequality and Mermin’s inequalities up to n = 5 were checked and shown 
to violate Local Realism, with an improvement with respect to the results found 
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in [5] that we interpret as a reflection of the improvements of the IBM quantum 
computers during the last months. Finally, the construction of the prime state 

3p  has been carried out, which constitutes the first experimental realization 
of a prime state. Overall, the results obtained in these experiments, although 
moderately good in most cases, are still far from optimum. 

Therefore, in light of these results, it is clear that there is still a lot of work to 
be done before a quantum computer can actually be useful for solving mathe-
matical problems, simulating efficiently quantum systems, breaking classical en-
cryption systems, etc. (in other words, fully achieve so-called quantum supre-
macy [36]). But given the astounding pace at which technological developments 
are being push forward, it seems that the dream of building a functional univer-
sal quantum computer within the next twenty years is close. Even more when 
one takes into account that it is likely (or at least plausible) that the full power of 
IBM quantum computers has not been shown yet for commercial reasons and 
thus it is not exhibited by the chips of the IBM Quantum Experience. 

With no known fundamental obstacles on the way, quantum computers will 
surely end up being a reality in research centres all around the world. And, as it 
happens every time a new regime of Nature becomes experimentally available, a 
plethora of new discoveries will certainly accompany this “Second Quantum 
Revolution”. Meanwhile, proofs of principle like the ones presented here for 
several quantum circuits will be useful to help improving the systems. 

Acknowledgements 

We thank J.I. Latorre and D. Alsina for useful conversations. We also thank the 
IBM Quantum Experience for the use of the ibmqx2 and ibmqx4. G.S. acknowl-
edges the grants FIS2015-69167-C2-1-P from the Spanish government, 
QUITEMAD+S2013/ICE-2801 from the Madrid regional government and 
SEV-2016-0597 of the Centro de Excelencia Severo Ochoa Programme. 

References 
[1] Nielsen, M.A. and Chuang, I.L. (2010) Quantum Computation and Quantum In-

formation, Cambridge University Press, Cambridge.  
https://doi.org/10.1017/CBO9780511976667 

[2] Mermin, N.D. (2007) Quantum Computer Science. Cambridge University Press, 
Cambridge. https://doi.org/10.1017/CBO9780511813870 

[3] The IBM Quantum Experience.  
http://www.research.ibm.com/quantumhttp://www.research.ibm.com/quantum  

[4] Steffen, M., DiVincenzo, D.P., Chow, J.M., Theis, T.N. and Ketchen, M.B. (2011) 
Quantum Computing: An IBM Perspective. Ibm Journal of Research and Develop-
ment, 55, Paper 13. https://doi.org/10.1147/JRD.2011.2165678 

[5] Alsina, D. and Latorre, J.I. (2016) Experimental Test of Mermin Inequalities on a 
Five Qubit Quantum Computer. Physical Review A, 94, Article ID: 012314.  
https://doi.org/10.1103/PhysRevA.94.012314 

[6] Devitt, S.J. (2016) Performing Quantum Computing Experiments in the Cloud. 

https://doi.org/10.4236/jamp.2018.67123
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511813870
http://www.research.ibm.com/quantumhttp:/www.research.ibm.com/quantum
https://doi.org/10.1147/JRD.2011.2165678
https://doi.org/10.1103/PhysRevA.94.012314


D. García-Martín, G. Sierra 
 

 

DOI: 10.4236/jamp.2018.67123 1474 Journal of Applied Mathematics and Physics 
 

Physical Review A, 94, arXiv:1605.05709v4. 

[7] Berta, M., Wehner, S. and Wilde, M.M. (2016) Entropic Uncertainty and Measure-
ment Reversibility. New Journal of Physics, 18, Article ID: 073004.  
https://doi.org/10.1088/1367-2630/18/7/073004 

[8] Rundle, R.P., Mills, P.W., Tilma, T., Samson, J.H. and Everitt, M.J. (2017) Quantum 
Phase Space Measurement and Entanglement Validation Made Easy. Physical Re-
view A, 96, Article ID: 022117. https://doi.org/10.1103/PhysRevA.96.022117 

[9] Hebenstreit, M., Alsina, D., Latorre, J.I. and Kraus, B. (2017) Compressed Quantum 
Computation Using a Remote Five-Qubit Quantum Computer. Physical Review A, 
95, Article ID: 052339. https://doi.org/10.1103/PhysRevA.95.052339 

[10] Deffner, S. (2017) Demonstration of Entanglement Assisted Invariance on IBM’s 
Quantum Experience. Heliyon, 3, Article ID: e00444.  
https://doi.org/10.1016/j.heliyon.2017.e00444 

[11] Wootton, J.R. (2017) Demonstrating Non-Abelian Braiding of Surface Code Defects 
in a Five Qubit Experiment. Quantum Science and Technology, 2, No. 1. 

[12] Sisodia, M., Shukla, A., Thapliyal, K. and Pathak, A. (2017) Design and Experimen-
tal Realization of an Optimal Scheme for Teleportation of an n-Qubit Quantum 
State. Quantum Information Processing, 16, 292.  
https://doi.org/10.1007/s11128-017-1744-2 

[13] Sisodia, M., Shukla, A. and Pathak, A. (2017) Experimental Realization of Nonde-
structive Discrimination of Bell States Using a Five-Qubit Quantum Computer. 
Physics Letters A, 381, 3860-3874. https://doi.org/10.1016/j.physleta.2017.09.050 

[14] Vuillot, C. (2017) Error Detection Is Already Helpful on the IBM 5Q Chip. ar-
Xiv:1705.08957. 

[15] Michielsen, K., Nocon, M., Willsch, D., Jin, F., Lippert, T. and De Raedt, H. (2017) 
Benchmarking Gate-Based Quantum Computers. Computer Physics Communica-
tions, 220, 44-55. https://doi.org/10.1016/j.cpc.2017.06.011 

[16] Behera, B.K., Banerjee, A. and Panigrahi, P.K. (2017) Experimental Realization of 
Quantum Cheque Using a Five-Qubit Quantum Computer. arXiv:1707.00182.  
https://doi.org/10.1007/s11128-017-1762-0 

[17] Kalra, A.R., Prakash, S., Behera, B.K. and Panigrahi, P.K. (2017) Experimental 
Demonstration of the No Hiding Theorem Using a 5 Qubit Quantum Computer. 
arXiv:1707.09462. 

[18] Ghosh, D., Agarwal, P., Pandey, P., Behera, B.K. and Panigrahi, P.K. (2017) Auto-
mated Error Correction in IBM Quantum Computer and Explicit Generalization. 
arXiv:1708.02297. 

[19] Manabputra, G.S., Behera, B.K. and Panigrahi, P.K. (2017) Generalization and Par-
tial Demonstration of an Entanglement Based Deutsch-Jozsa Like Algorithm Using 
a 5-Qubit Quantum Computer. arXiv:1708.06375. 

[20] Yalçınkaya, İ. and Gedik, Z. (2017) Optimization and Experimental Realization of 
Quantum Permutation Algorithm. arXiv:1708.07900.  
https://doi.org/10.1103/PhysRevA.96.062339 

[21] Wootton, J.R. and Loss, D. (2017) A Repetition Code of 15 Qubits. ar-
Xiv:1709.00990. 

[22] Zhukov, A.A., Pogosov, W.V. and Lozovik, Y.E. (2017) Modeling Dynamics of En-
tangled Physical Systems with Superconducting Quantum Computer. ar-
Xiv:1710.09659. 

[23] Roy, S., Behera, B.K. and Panigrahi, P.K. (2017) Demonstration of Entropic Non-

https://doi.org/10.4236/jamp.2018.67123
https://doi.org/10.1088/1367-2630/18/7/073004
https://doi.org/10.1103/PhysRevA.96.022117
https://doi.org/10.1103/PhysRevA.95.052339
https://doi.org/10.1016/j.heliyon.2017.e00444
https://doi.org/10.1007/s11128-017-1744-2
https://doi.org/10.1016/j.physleta.2017.09.050
https://doi.org/10.1016/j.cpc.2017.06.011
https://doi.org/10.1007/s11128-017-1762-0
https://doi.org/10.1103/PhysRevA.96.062339


D. García-Martín, G. Sierra 
 

 

DOI: 10.4236/jamp.2018.67123 1475 Journal of Applied Mathematics and Physics 
 

contextual Inequality Using IBM Quantum Computer. arXiv:1710.10717. 

[24] Bennett, C.H. and Wiesner, S.J. (1992) Communication via One- and Two-Particle 
Operators on Einstein-Podolsky-Rosen States. Physical Review Letters, 69, 
2881-2884. https://doi.org/10.1103/PhysRevLett.69.2881 

[25] Mermin, N.D. (2002) Deconstructing Dense Coding. Physical Review A, 66, Article 
ID: 032308. https://doi.org/10.1103/PhysRevA.66.032308 

[26] Bell, J.S. (1964) On the Einstein, Podolsky, Rosen Paradox. Physics, 1, 195-200.  
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 

[27] The errors have been calculated assuming the statistical independence of the va-
riables summed: therefore, the variances have been added and then the square root 
was taken to obtain the standard deviation of the sum. 

[28] Clauser, J.F., Horne, M.A., Shimony, A. and Holt, R.A. (1969) Proposed Experiment 
to Test Loal Hidden-Variable Theories. Physical Review Letters, 23, 880-884.  
https://doi.org/10.1103/PhysRevLett.23.880 

[29] The IBM Quantum Experience.  
https://quantumexperience.ng.bluemix.net/qx/tutorial?sectionId=full-user-guide&p
age=003-Multiple_Qubits_Gates_and_Entangled_States2F050-Entanglement_and_
Bell_TestsFull User’s Guide/Entanglement and Bell Tests 

[30] Mermin, N.D. (1990) Extreme Quantum Entanglement in a Superposition of Ma-
croscopically Distinct States. Physical Review Letters, 65, 1838-1840.  
https://doi.org/10.1103/PhysRevLett.65.1838 

[31] In particular, we believe that the improvements in the violation of Mermin’s in-
equalities are due to the availability of cNOTs among qubits 1,0 and 3,4, which were 
not present at the time Alsina and Latorre obtained their results. This interpretation 
is consistent with the fact that gate errors, readout errors, and decoherence and re-
laxation times were similar in the present work and in [5], and with the fact that no 
improvement has been obtained for the 3-qubit case. 

[32] Latorre, J.I. and Sierra, G. (2014) Quantum Computation of Prime Number Func-
tions. Quantum Information and Computation, 14, Article ID: 0577. 

[33] Latorre, J.I. and Sierra, G. (2015) There Is Entanglement in the Primes. Quantum 
Information and Computation, 15, 622-676. 

[34] The error has been calculated as in Bell’s inequality. 

[35] Rubinstein, M. and Sarnak, P. (1994) Chebyshev’s Bias. Exp. Math., 3, 173-197.  
https://doi.org/10.1080/10586458.1994.10504289 

[36] Preskill, J. (2013) Quantum Computing and the Entanglement Frontier. Bull. Am. 
Phys. Soc., 58, arXiv:1203.5813. 

 
 

https://doi.org/10.4236/jamp.2018.67123
https://doi.org/10.1103/PhysRevLett.69.2881
https://doi.org/10.1103/PhysRevA.66.032308
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevLett.65.1838
https://doi.org/10.1080/10586458.1994.10504289

	Five Experimental Tests on the 5-Qubit IBM Quantum Computer
	Abstract
	Keywords
	1. Introduction
	2. Implemented Experiments
	2.1. Dense Coding
	2.2. Quantum Fourier Transform
	2.3. Bell’s Inequality
	2.4. Mermin’s Inequalities
	2.5. Prime State

	3. Conclusions
	Acknowledgements
	References

