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Abstract 

In this paper, a gradient method with momentum for sigma-pi-sigma neural 
networks (SPSNN) is considered in order to accelerate the convergence of the 
learning procedure for the network weights. The momentum coefficient is 
chosen in an adaptive manner, and the corresponding weak convergence and 
strong convergence results are proved. 
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1. Introduction 

Pi-sigma network (PSN) is a kind of high order feedforward neural network 
which is characterized by the fast convergence rate of the single-layer network, 
and the unique high order network nonlinear mapping capability [1]. In order to 
further improve the application capacity of the network, Li introduces more 
complex network structures based on PSN called sigma-pi-sigma neural network 
(SPSNN) [2]. SPSNN can be learned to implement static mapping in the similar 
manner to that of multilayer neural networks and the radial basis function net-
works. 

The gradient method is often used for training neural networks, and the main 
disadvantages of this method are the slow convergence and the local minimum 
problem. To speed up and stabilize the training iteration procedure for the gra-
dient method, a momentum term is often added to the increment formula for 
the weights, in which the present weight updating increment is a combination of 
the present gradient of the error function and the previous weight updating in-
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crement [3]. Many researchers have developed the theory about momentum and 
extended its applications. For the back-propagation algorithm, Phansalkar and 
Sastry give a stability analysis with adding the momentum term [4]. Torii and 
Bhaya discuss the convergence of the gradient method with momentum under 
the restriction that the error function is quadratic [5] [6]. Shao et al. study the 
adaptive momentum for both batch gradient method and online gradient me-
thod, and compare the efficiency of momentum with penalty [7] [8] [9] [10] [11]. 
The key for the convergence analysis for momentum algorithms is the monoto-
nicity of the error function during the learning procedure, which is generally 
proved under the uniformly boundedness assumption of the activation function 
and its derivatives. In [8] [10] [12] [13], for the gradient method with momen-
tum, some convergence results are given for both two-layer and multi-layer 
feedforward neural networks. In this paper, we will consider the gradient me-
thod with momentum for sigma-pi-sigma neural networks and discuss its con-
vergence. 

The rest of the paper is organized as follows. In Section 2 we introduce the 
neural network model of SPSNN and the gradient method with momentum. In 
Section 3 we give the convergence analysis of the gradient method with mo-
mentum for training SPSNN. Numerical experiments are given in Section 4. Fi-
nally, in Section 5, we end the paper with some conclusions. 

2. The Neural Network Model of SPSNN and Gradient  
Method with Momentum  

In this section we introduce the sigma-pi-sigma neural network that is com-
posed of multilayer neural network. The output of SPSNN has the form 

( )1 11
vnK N

nij jn ji f x
= ==∑ ∑∏ , where jx  is an input, vN  is the number of inputs, 
( )nijf  is a function to be generated through the network training, and K is the 

number of pi-sigma network(PSN) that is the basic building block for SPSNN. 
The expression of the function ( )nij jf x  is ( )1

1
q eN N

nijk ijk jk w B x+ −

=∑ , where the 
function ( )ijkB  is either 0 or 1, and nijkw  is weight values stored in memory. 

qN  and eN  are information numbers stored in jx . For a K-th order SPSNN, 
the total weight value will be  

( ) ( )1 1 1
2 v q eK K N N N× × + × × + − . 

For a set of training examples ( ){ }, vN
t tS O R R∈ × , where tO  is the ideal out-

put, 1,2, ,t T=  , we have the following actual output: 

( )( )1
1 1 11

v q e tnK N N N S
t nijk ijk jn j kiy w B x+ −

= = ==
= ∑ ∑ ∑∏ , 

where ( )tS
jx  denotes the jth element of a given input vector tS . 

In order to train the SPSNN, we choose a quadratic error function ( )E W : 

( ) ( ) ( ) ( ) ( )2 2
1 1

1 1,
2 2

T T
t t t t t tt tE W O y g W g W O y

= =
= − ≡ = −∑ ∑  

https://doi.org/10.4236/jamp.2018.64075


X. Zhang, N. M. Zhang 
 

 

DOI: 10.4236/jamp.2018.64075 882 Journal of Applied Mathematics and Physics 

 

where ( )T

1111 1112 , , , 1, , ,
v q eK K N N NW w w w + −= 

. For convenience we denote  

, , , 1v q eK K N N Nw wα + −= . 

The gradient method with momentum is used to train weights. The gradients 
of ( )E W  and ( )tg W  are denoted by 

( ) ( ) ( ) ( ) ( )
T

1111 1112

, , , , ,
nijk

E W E W E W E W
E W

w w w wα

 ∂ ∂ ∂ ∂
∇ =   ∂ ∂ ∂ ∂ 

  , 

( ) ( ) ( ) ( ) ( )
T

1111 1112

, , , , ,t t t t
t

nijk

g W g W g W g W
g W

w w w wα

 ∂ ∂ ∂ ∂
∇ =   ∂ ∂ ∂ ∂ 

  , 

and the Hessian matrices of ( )m
tg W  and ( )mE W  at mW  are denoted by 

( )

( ) ( )

( ) ( )

2 2

1111 1111 1111
2

2 2

1111

m m
t t

m m m m

m
t

m m
t t

m m m m

g W g W

w w w w
g W

g W g W

w w w w

α

α α α

 ∂ ∂
 
∂ ∂ ∂ ∂ 

 ∇ =  
 ∂ ∂ 
 ∂ ∂ ∂ ∂ 



  



, 

( )

( ) ( )

( ) ( )

2 2

1111 1111 1111
2

2 2

1111

m m

m m m m

m

m m

m m m m

E W E W

w w w w
E W

E W E W

w w w w

α

α α α

 ∂ ∂
 
∂ ∂ ∂ ∂ 

 ∇ =  
 ∂ ∂ 
 ∂ ∂ ∂ ∂ 



  



. 

Given any arbitrarily initial weight vectors 0W , 1W , the gradient method 
with momentum updates the weight vector W by 

( ) ( )1 1 , 1, 2,m m m m m mW W E W W W mη τ+ −= − ∇ + − =  ,      (1) 

where 0η >  is the learning rate, 1m mW W −−  is called the momentum term, 
mτ  is the momentum coefficient. 
Similar to [12] [14], in this paper, we choose mτ  as follows: 

( )
,    if 0

0,                          else

m

m m

E W
W

W

µ

τ

 ∇
 ∆ ≠=  ∆



 

where µ is a positive number and 1m m mW W W −∆ = − , and ⋅  is 2-norm in this 
paper. 

Notice the component form of (1) is 

( ) ( )1 1
m

m m m m m
nijk nijk nijk nijkm

nijk

E W
w w w w

w
η τ+ −
∂

= − + −
∂

. 

In fact, 
1 2t Ky PSN PSN PSN= + + + , 

where 
1

n
n niiPSN U

=
=∏ . Recalling ( ) ( )1

1
q eN N

nij j nijk ijk jkf x w B x+ −

=
= ∑ , then 
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( ) ( )

( )

( ) ( )

1

1

1

T t
t tt

nijk nijk

T nijn ni
t tt

ni nij nijk

T
t t np ijk jt

p i

E W yy O
w w

fPSN Uy O
U f w

y O U B x

=

=

=
≠

∂ ∂
= −

∂ ∂

∂∂ ∂
= −

∂ ∂ ∂

 
= −  

 

∑

∑

∑ ∏

 

3. Convergence Results 

Similar to [12] [14], we need the following assumptions. 
(A1): The elements of the Hessian matrix ( )2 mE W∇  be uniformly bounded 

for any mW . 
(A2): The number of the elements of ( ){ }0W E WΩ = ∇ =  be finite. 
From (A1), it is easy to see that there exists a constant 0M >  such that 

( )2 , 0,1, 2,mE W M m∇ ≤ =  . 

Lemma 3.1 ([15]) Let : nf R R→  be continuously differentiable, the num-
ber of the elements of the set ( ){ }0x f xΩ = ∇ =  be finite, and the sequence 

{ }kx  satisfy 
1lim 0k k

k
x x −

→∞
− = , 

( )lim 0k

k
f x

→∞
∇ = . 

Then there exists a nx R∗ ∈  such than 

( )lim , 0k

k
x x f x∗ ∗

→∞
= ∇ = . 

Theorem 3.2 If Assumption (A1) is satisfied. Then there exists 0E∗ ≥  such 

that for 20,
M

η  ∈ 
 

 and 1 1 4
0,

M M
M

η η
µ

 − − + +
∈  
 

, it holds the following 

weak convergence result for the iteration (1): 

( ) ( )1m mE W E W+ ≤ , 

( )lim m

m
E W E∗

→∞
= , 

( )lim 0m

m
E W

→∞
∇ = . 

Furthermore, if Assumption (A2) is also valid, then it holds the strong con-
vergence result, that is there exists W ∗  such that 

( )lim , 0m

m
W W E W∗ ∗

→∞
= ∇ = . 

Proof. 
Using Taylor’s formula, we expand ( )1m

tg W +  at mW : 

( ) ( ) ( )( ) ( )

( ) ( )( )

T1 1

T1 2 11
2

m m m m m
t t t

m m m m m
t

g W g W g W W W

W W g W Wξ

+ +

+ +

= + ∇ −

+ − ∇ −
           (2) 
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where mξ  lies in between mW  and 1mW + . 
From (2) we have 

( ) ( ) ( )( ) ( )

( ) ( )( )

T1 1
1 1 1

T1 2 1
1

1
2

T T Tm m m m m
t t tt t t

T m m m m m
tt

g W g W g W W W

W W g W Wξ

+ +
= = =

+ +
=

= + ∇ −

+ − ∇ −

∑ ∑ ∑

∑
 

The above equation is equivalent to 

( ) ( )1
1 2

m mE W E W δ δ+ = + +                       (3) 

where 

( )( ) ( )T 1
1 1

T m m m
tt g W W Wδ +

=
= ∇ −∑ ,  

( ) ( )( )T1 2 1
2 1

1
2

T m m m m m
tt W W g W Wδ ξ+ +

=
= − ∇ −∑ . 

It is easy to see that 

( )( )
( )( ) ( )( )

( )( ) ( ) ( )( )

( ) ( )( ) ( )

( ) ( )

T 1
1

T

T T

T2

2

m m

m m m m

m m m m m

m
m m m

m

m

E W W

E W E W W

E W E W E W W

E W
E W E W W

W

E W

δ

η τ

η τ

η µ

η µ

+= ∇ ∆

= ∇ − ∇ + ∆

= − ∇ ∇ + ∇ ∆

∇
≤ − ∇ + ∇ ∆

∆

= − + ∇

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

T1 2 1
2 1

T1 2 1

T1 2 1

T1 2 1

21

1
2
1
2
1
2
1
2
1
2

Tm m m
tt

m m m

m m m

m m m

m

W g W

W E W

W E W

W E W

M W

δ ξ

ξ

ξ

ξ

+ +
=

+ +

+ +

+ +

+

= ∆ ∇ ∆

= ∆ ∇ ∆

≤ ∆ ∇ ∆

≤ ∆ ∇ ∆

≤ ∆

∑

 

( )

( )( )
( ) ( )

( ) ( ) ( )

( ) ( )

2

2

2 2

2 2 22 2

22

1
2
1
2
1 2
2
1 2
2
1
2

m m m

m m m

m m m m m m

m m m

m

M E W W

M E W W

M E W W E W W

M E W E W E W

M E W

η τ

η τ

η τ η τ

η µ ηµ

η µ

= − ∇ + ∆

≤ − ∇ + ∆

 = − ∇ + ∆ + − ∇ ∆ 
 

 ≤ ∇ + ∇ + ∇ 
 

= + ∇

 

Together with (3), we have 

https://doi.org/10.4236/jamp.2018.64075


X. Zhang, N. M. Zhang 
 

 

DOI: 10.4236/jamp.2018.64075 885 Journal of Applied Mathematics and Physics 

 

( ) ( )
( ) ( ) ( )

1
1 2

221
2

m m

m m

E W E W

E W M E W

δ δ

η µ η µ

+ = + +

 ≤ − − − + ∇ 
 

 

Set ( )21
2

Mβ η µ η µ= − − + . Then 

( ) ( ) ( ) 21m m mE W E W E Wβ+ ≤ − ∇ .                  (4) 

It is easy to see that 0β >  when 

20,

1 1 4
0,

M

M M
M

η

η η
µ

  ∈   
  − − + + ∈    

.                   (5) 

If η and μ satisfy (5), then the sequence ( ){ }mE W  is monotonically de-
creasing. Since ( )mE W  is nonnegative, it must converge to some 0E∗ ≥ , 
that is 

( )lim m

m
E W E∗

→∞
= . 

By (4) it is easy to see for any positive integer N, it holds 

( ) ( ) ( )21 0
0

N m N
m E W E W E Wβ −

=
∇ ≤ −∑ . 

Let N →∞ , then we have ( ) 2

0
m

m E W∞

=
∇ ≤ ∞∑ , so ( )lim 0m

m
E W

→∞
∇ = , 

which finishes the proof for the weak convergence. 
By (1), we have 

( ) ( ) ( )1m m m m m mW W E W W E Wη τ η µ+ − ≤ ∇ + ∆ ≤ + ∇ , 

which indicates 
1lim 0m m

m
W W+

→∞
− = . 

From Lemma 3.1, it holds 

( )lim , 0m

m
W W E W∗ ∗

→∞
= ∇ = , 

which finishes the proof for the strong convergence. 

4. Numerical Results 

In this section, we propose an example to illustrate the convergence behavior of 
the iteration (1) by comparing the iteration steps (IT), elapsed CPU time in 
seconds (CPU) and relative residual error (RES). The experiment is terminated 
when the current iteration satisfies 8RES 10−≤  or the number of the max itera-
tion steps k = 1000 are exceeded. The computations are implemented in 
MATLAB on a PC computer with Intel (R) Core (R) CPU 1000 M @ 1.80 GHz, 
and 2.00 GB memory. 

Example 4.1 ([16]) Four-dimensional parity problem (Table 1) 
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Table 1. The data samples. 

input output input output input output input output 

1 1 1 1 0 −1 1 −1 −1 1 −1 −1 −1 1 1 1 −1 −1 1 0 

−1 1 1 1 1 1 1 −1 −1 0 1 −1 1 −1 0 −1 −1 1 −1 1 

1 1 1 −1 0 1 −1 1 1 1 −1 −1 −1 −1 0 1 1 −1 1 1 

−1 1 1−1 0 −1 −1 1 1 0 1 −1 −1 −1 1 −1 1 −1 1 0 

 
Table 2. Optimal parameters, CPU times, iteration numbers, and residuals. 

Algorithm OPT CPU(s) IT RES 

no momentum 510η −=  0.3984 223 91.3178 10−×  

momentum 5 510 , 5 10η µ− −= = ×  0.2106 28 99.3907 10−×  

 
In this simulation experiment, the initial weights 0W  is a zero vector of 24 

dimensional and 1W  is a 24 dimensional vector whose elements are all 1. The 
learning rate 0.00001η =  and momentum factor 0.00005µ = . The number of 
training samples is 16T = . In the above Table 2, we compare the convergence 
behavior of the gradient method with momentum and the gradient method with 
no momentum. It can be seen that the network training is improved significantly 
after added the momentum item. 

5. Conclusion 

In this paper, we study the gradient method with momentum for training sig-
ma-pi-sigma neural networks. We take the momentum coefficient in an adaptive 
manner, and the corresponding weak convergence and strong convergence re-
sults are proved. The Assumptions A1 and A2 in this paper seem to be a little 
severe, so how to weaken the one or two assumptions will be our future work. 
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