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Abstract 
An iterative method is developed for solving the solution of the general re-
stricted linear equation. The convergence, stability, and error estimate are 
given. Numerical experiments are presented to demonstrate the efficiency and 
accuracy. 
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1. Introduction 

Let m n
r
×  be the set of all m n×  complex matrices with rank r. For any 

m n
rA ×∈ , let ( )2 ,A A , and ( )A  be matrix spectral norm, range space 

and null space, respectively. Let ( )Aρ  be the spectral radius of the matrix A. 
For any m n

rA C ×∈ , if there exists a matrix X such that XAX X= , then X is 
called a {2}-inverse (or an outer inverse) of A [1]. 

The restricted linear equation is widely applied in many practical problems [2] 
[3] [4]. In this paper, we consider the general restricted linear equations as 

, ,Ax b x T= ∈                            (1) 

where m n
rA ×∈  and T is a subspace of n . As the conclusion given in [2], (1) 

has a unique solution if and only if 
( ) { }, 0 .b AT T A∈ =∩                      (2) 

In recent years, some numerical methods have been developed to solve such 
as problems (1). The Cramer rule method is given in [2] and then this method 
is developed for computing the unique solution of restricted matrix equations 
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over the quaternion skew field in [5]. An iterative method is investigated for 
finding some solution of (1) in [6]. In [7], a subproper and regular splittings 
iterative method is constructed. The PCR algorithm is applied for parallel 
computing the solution of (1) in [8]. In [4], a new iterative method is 
developed and its convergence analysis is also considered. The result on con- 
densed Cramer’s rule is given for solving the general solution to the restricted 
quaternion matrix equation in [9]. In [10] [11], authors develop the deter- 
minantal representation of the generalized inverse ( )1

,T SA  for the unique 
solution of (1). The non-stationary Richardson iterative method is given for 
solving the general restricted linear equation (1) in [4]. An iterative method is 
applied to computing the generalized inverse in [13]. In this paper, we develop 
a high order iterative method to solve the problem (1). The proposed method 
can be implemented with any initial 0x T∈  and it has higher-order accuracy. 
The necessary and sufficient condition of convergence analysis also is given, 
which is different the condition given in [14]. The stability of our scheme is 
also considered. 

The paper is organized as follows. In Section 2, an iterative method for the 
general restricted linear equation is developed. The convergence analysis of our 
method is considered, an error estimate is also given in Section 3. In Section 4, 
some numerical examples are presented to test the effectiveness of our method. 

2. Preliminaries and Iterative Scheme 

In this section, we develop an iterative method for computing the solution of the 
general restricted linear Equation (1). 

Lemma 1 ([1]) Let m nA ×∈  and T and S be subspaces of n  and m , 
respectively, with dim dimT S t r⊥= = ≤ . Then A has a {2}-inverse (or an outer 
inverse) X such that ( )X T=  and ( ) =X S  if and only if 

,mAT S⊕ =  

in which case X is unique ( denoted by ( )2
,T SA ). 

Proposition 2 ([2]) Let m nA ×∈  and T and S be subspaces of n  and m , 
respectively. Assume that the condition (2) is satisfied, then the unique solution 
of (1) can be expressed by 

( )2
, .T Sx A b=                           (3) 

Let L and M be complementary subspaces of m , i.e., mL M⊕ = , the 
projection LP  be a linear transformation such that ,LP x x x L= ∈  and  

0,LP y y M= ∈ . 
Lemma 3 ([12]) Assume that m nA ×∈  and m nB ×∈  with m n≤ . Then 

the n eigenvalues BA are the m eigenvalues of AB together with n m−  zeros. 
In this paper, we construct our iterative scheme as follows: 

( ) ( )
( )

112
1 1 1

1 1

1 ,

,

tt
k t k k k

k k k k

Z tI C Z A Z A Z

x x Z b Ax

−−
− − −

− −

  = − + + −  
 = + −

�
            (4) 
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where 1,2,3,k = � , t∈ , and 2t ≥ . Here, we take the initial value 0Z Yβ=  
in our scheme (4), where β  is a relaxation factor. Thus, if 2t = , then (4) de- 
generates to the non-stationary Richardson iterative method given in [4]. 

Lemma 4 Let m nA ×∈ , T and S be subspaces of n  and m , respectively. 
Assume that 0Z Yβ=  and ( )Y T⊆ , where β  is a nonzero constant and 

n mY ×∈ . For any initial 0x T∈ , the iterative scheme (4) converges to some 
solution of (1) if and only if 

( )0 1,TP Z Aρ − <  

where a projection TP  from m  onto T. 
Proof. The proof can be given as following the line of in [4].              □ 

3. Convergence Analysis 

Now, we consider the convergence analysis of our iterative method (4). 
Theorem 5 Let m nA ×∈ , T and S be subspaces of n  and m , respec- 

tively. Assume that mAT S⊕ =  and nmY ∈  satisfies ( )Y T⊆  and  
( )Y S⊆ , where dim dimT S⊥= . If b AT∈ , for the given initial value  

0 , 0Z Yβ β= ≠  and 0x T∈ , then the sequence { }kx  generated by iteration (4) 
converges to the unique solution of (1) if and only if ( )0 1TP Z Aρ − < , where 

TP  is a projection. In this case, we have 

( ) 1
0 0lim .k Tk

x I P Z A Z b−

→∞
= − +                     (5) 

Further, we have 

( )1

1 0 0 0 .
1

kt t

tk

q
x x q x Z b Z b

q

−

−
∞

 
− ≤ − +  − 

             (6) 

where 0Tq P AZ= − . 
Proof. For any ( )x T N A∈ ∩ , we have 0Ax = . By mAT S⊕ =  and Lem- 

ma 1, there exists a matrix X such that ( )X T=  and XAX X= . Now, 
assume that my∈  satisfies x Xy= , we have 

( ) { }0, 0 .x Xy XAXy XAx T N A= = = = =∩  

If b AT∈ , then (2) is satisfied. Therefore, by ([4], Lemma 1.1), the scheme (4) 
converges to the unique solution of (1). 

Since ( )Y T⊆ , 0 0TP Z Z= , and then by (4), we obtain T k kP Z Z= . Since 

0x T∈ , T k kP x x=  by (4b), and therefore 

( ) ( )1 1 1.k k k k k T k kx x Z b Ax Z b P Z A x− − −= + − = + −            (7) 

If TP W W= , then 

( ) ( )1 1 .k T kI Z A W P Z A W− −− = −                   (8) 

By (4) and (8), we obtain 

( ) ( ) ( )
11

1 1 1
1 0

1 ,
t ti ii i

k t k T k k
i i

Z A C Z A P Z A Z A
−

−
− − −

= =

= − = −∑ ∑  

( ) ( ) ( )1 0 .
kt t

T k T k TP Z A W P Z A W P Z A W−− = − = −            (9) 
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By induction on k, it leads to 

( )

( ) ( )

1

1
1

1 2

2
2

1

0 1
0

1 1

0 0

0

2
0 0

,

k

k k

t it
k T k

i
t tt t

T T k
i i

i i

k

Z A P Z A Z A

P Z A P Z

Z

Z A

S A

A

−

− −

−

−
=

− −

−
= =

= −

=

=

− −

∑

∑ ∑             (10) 

where ( )
1

0
0

: .
kt i

k T
i

S P Z A
−

=

= −∑  From b AT∈ , w T∈ , we have b Aw=  and it 

implies that 0 0k k k kZ b Z Aw S Z Aw S Z b= = = . By (9), we have 

( )

( ) ( )

( ) ( )
1 1 1

0 0 1

11

0 0 1 0 0 0
0 0 0

1 10 0 0 0
0

.

k

k j k i

k k i k

t
k k T k

i kk t t
k T k i T

i j i

t t t tk
t tT k i T

i

x S Z b P Z A x

S Z b P Z A S Z b P Z A x

P Z A S Z b P Z A x

− −

+ + − +

−

−−

− −
= = =

− −
− −

−
=

= + −

= + − + −

= − + −

∑∏ ∏

∑

    (11) 

Note that ( ) ( )0 0T k k TP Z A S S P Z A− = − ,  
( ) ( )0 0 .

kt
T k TI P Z A S I P Z A − − = − −   From (11), we obtain 

( )

( ) ( ) ( )
1 1

0

1 10 0 0 0 0.
k k

kT

t t t t
t tT T T

P Z A

I P Z A Z b I P Z

I x

A P Z A x
+ +− −
− −

 − 
 

      

−

= − − + − − −
   (12) 

If ( )0 1TP Z Aρ − < , then ( )0TI P Z A− −  is invertible and it implies that kx  
converges as k →∞ . For convenience, let its limit denote by x∞ . Thus, we have 

( )0 0TI P Z A x Z b∞ − − =  . Since T is closed and kx T∈ , we have x T∞ ∈  and 

TP x x∞ ∞= . Thus, ( )0 0Z Ax b∞ − =  and  
( ) ( ) { }0 0Ax b Z AT Y AT S AT∞ − ∈ = ⊆ =∩ ∩ ∩  . Note that x∞  is the 

unique solution of (1) and ( ) 1
0 0Tx I P Z A Z b

−

∞  = − −  . From (4), it follows that 

( )( ) ( )
( )

( )
1 1

11 1 0 0 0 .
kt

tk T k T

t

x x P Z A x x P Z A x x
+ −

−
+ ∞ + ∞ ∞− −= − −= −     (13) 

From Lemma 4, we have ( )0 1TP Z Aρ − <  and 

( )
( )

( ) ( )( )( )
1

1
10 0 0 0 0 .

kt

tk

t

T Tx x P Z A x Z b I I P Z A Z b
−

−
−

∞− = − − − − − +  

Therefore, 

( )
( )( )

( )

1
1

1 0 0 0

1

1 0 0 0 ,
1

k

k

t t

tk

t t

t

x x q x Z b I I q Z b

q
q x Z b Z b

q

−
−

−
∞

−

−

− ≤ − + − −

 
≤ − +  − 

 

where 0Tq P AZ= − .                                               □ 
Remark If ( )Y S⊆  in Theorem 5 is removed and 2t = , then the result 

degenerates into that given in ([4], Theorem 3.2). However, the sequence { }kx  
given in (4) does not converse to ( )2

,T SA b , the unique solution of (1) is given by 
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Proposition 2. Here, it can be tested by the following example: 
Let A and b of the general restricted linear Equation (1) be 

6 5
4

2 2.5 0.2 0.3 0 7
0 1.5 0 0 0 3
0 0 0.2 0.2 0 0.2

, .
0 0 0 0.25 0 0.2
0 0 0 0 0 0
0 0 0 0 0 0

A b×

   
   
   
   

= ∈ =   
   
   
   
      

            (14) 

The matrix Y is 

1.2 2 0.2 2 1 0
0 2 5 2 0 0
0 0 0.25 0.1 0 0
0 0.1 0 1.3 0 0
1 0 0 0 0 0

Y

− 
 − 
 =
 

− 
  

 

Note that ( )R Y T⊂ , but ( )Y S⊆/ . If take 0.16β = , then  
( )0 1TP Z Aρ − < . Here, we choose 2t =  in (4). Thus, it can be seen as the 

method given in [4]. The errors 
2kAx b− , 1 2k kx x −− , and ( )2

, 2k T Sx A b−  of 
(4) with 2t =  and 0.16β =  are presented in Table 1. Numerical results given 
in Table 1 show that 

2
0kAx b− → , but ( )2

, 2
0k T Sx A b−  . Thus, the limit of 

kx  is not the solution of (1) presented by Proposition 2. 
Theorem 6 Under the same conditions as in Theorem 5. The iterative scheme 

(4) is stable for solving (1), where 0 1TP Z A− < . 
Proof. Let k∆  and kδ  be numerical perturbations of kx  and kZ  given in 

(4), respectively. Thus, we can express as ,k k kx x δ= +� , k k kZ Z= + ∆� . If  

T k kP ∆ = ∆ , T k kP δ δ= , then T k kP x x=� � , T k kP Z Z=� � . Here, we formally neglect 
quadratic terms containing k hAδ∆ , k kA∆ ∆ . Since k k k kZ AZ Z AZ=� � , we get 

( ) ( ) ( ) 1,  .t t t
k k k k k k k k kZ A AZ Z A A Z A t A Z A −∆ = ∆ + ∆ = + ∆  

By (4), we derive 

( ) ( )

( ) ( ) ( )

( )

11
1 1 1

2

21
1 1 1

2
1

1 1

1

1 1

.

t ii i
k k t k k k

i
t ii i

t k k k
i

t
k T k k

Z Z C Z A t

i C A Z A Z

Z t P Z A

−−
− − −

=

−−
− − −

=

−
− −

= + − +

+ − −

= +

∆

−

∆ ∆

∆

∑

∑

�

            (15) 

From (9) and (4), we have ( ) 1
0 0

ktk
k Tt P Z A −∆ = − ∆  and 

 
Table 1. Error results of (4) with 2t = , 0.16β = . 

 2kAx b−  1 2k kx x −−  ( )2
, 2k T Sx A b−  

k = 11 3.3871e−10 8.3702e−09 21.8430 

k = 12 6.8861e−16 3.5821e−15 21.8430 
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( ) ( ) ( )1
0 0 1 1.

ktk
k k T k k kx x t P Z A b Ax I Z A δ−

− −∆= + − − + −�  

Therefore, we obtain 

( ) ( ) ( )1
0 0 1 0 1.

kkt t
T k k

k
k Tt P Z A b Ax P Z Aδ δ−

− −∆= − − + −         (16) 

By (4), we have ( )0

kt
kI AZ I AZ− = − . Similarly, we have 

( )( ) ( ) ( )
1

11 0 0 .
kt
tk k k

t
b Ax I AZ b Ax I AZ b Ax

+

−
−

−− = − − = − −        (17) 

By (17) and (16), we derive 

( ) ( ) ( ) ( )1
10 0 0 0 0 1.

k
k kt tt tk tk T T kt P Z A I AZ b Ax P Z Aδ δ

−
−

−
−= − ∆ − − + −    (18) 

Thus, by ( ) ( )0 0 0 0TI AZ P Z A∆ − = − ∆ , we have 

( )( ) ( )

( )

( ) ( ) ( )

1

1

1 1

2 1
1 10 0 0

0 0

1 2 1
1 10 0 0 0 0.

1

k

k k

k k

t t
k k tk T

t t t
T

k t t t t
t tT T

t t t P Z A b Ax

P Z A

t t P Z A b Ax P Z A
t

δ

δ

δ

+

−

+ +

− +
− −

+ + +

+ − + −
− −

= + + + − ∆ −

+ −

−
− ∆ − + −

−
=

�

�

    (19) 

If 0 1TP Z A− < , then 
11 2 1

10lim 0
1

kk t t
tTk

t t P Z A
t

++ − +
−

→∞

−
− =

−
 and for any k, 

( )( )0 0 0 0 ,k K b Axδ δ≤ ∆ − +  

where 
1 11 2 1

1 10 0 0max , 
1

k kk t t t t
t tT T

t tK P Z A P Z A
t

+ ++ − + −
− −

 − = − − 
−  

. It follows that the 

iterative method (4) is asymptotically stable.                           □ 

4. Numerical Examples 

In the section, we give an example to test the accuracy of our scheme (4), which 
is implemented by our main code given in Appendix, and make a comparison 
with the method given in [4]. We also apply our scheme to solve the restricted 
linear system (1) with taking different t and intial value. 

Example 1 Consider the restricted linear system (1) with a coefficient matrix 
being random ( )randnA n=  of order n n× , where 800n = , 900, 1000, 2000 
of index one and random vectors b AT∈ . Let ( )randnE n=  be a random 
matrix. Take TY AEE= , 0Z Yβ= , and a random vector 0x T∈ . Here, we make 
a comparison the mean CPU time(MCT) and error bounds of our scheme (4) with 
those given by the method of [4]. The stopping criteria used is given as in [4] by 

{ }12 2
max , 5.26e 15.k k kAx b x x −− − ≤ −  

Numerical results given in Table 2 and Figure 1 show that the accuracy of our 
method is similar to those given in [4] and our method cost less time (MCT) 
than the method of [4]. We can see that, to obtain the similar accuracy, the MCT 
of our scheme is similar to those given in [4] from Figure 2. 
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Table 2. The mean CPU time (MCT) and error in Example 1. 

 method of [4] 

n n×  t MCT [4] 2kAx b−  1 2k kx x −−  

800 800×   2.221434 1.4613e−12 3.4439e−12 

900 900×   3.412709 1.5764e−13 2.2203e−12 

1000 1000×   4.249560 9.7132e−13 7.3896e−12 

2000 2000×   14.14631 4.5823e−13 3.3269e−12 

 Our Scheme 

n n×  t MCT 2kAx b−  1 2k kx x −−  

800 800×  6 0.438568 9.2913e−13 8.3698e−13 

900 900×  7 0.742810 1.3444e−12 1.2432e−12 

1000 1000×  8 1.336598 1.4786e−12 6.8270e−13 

2000 2000×  10 13.361577 4.3165e−12 3.0732e−12 

 

 
Figure 1. Error in example 1. 

 
Example 2 Consider the general restricted linear Equation (1), where A and b 

is given as in (14). Here, we use the scheme (4) to solve the example. Let 5T = , 
[ ]{ }Tspan 0 0 0 0 0 1S = . Take 

0

1 1 0 0 0 0 0
1.2 2 0.2 2 1 0

2 0 1 0 0 0 0
0 2 5 2 0 0

1 0 0 1 0 0 0
, , .0 0 0.25 0.1 0 0

0.2 0 0 0 1 0 0
0 0.1 0 1.3 0 0

0 0 0 0 0 1 0
0 0 0 0 0 0

0 0 0 0 0 0 1

TY x P

   
−     

     −     
 = = =   
     −     
             

 

Obviously, 6AT S⊕ =� , ( )Y T⊆ , ( )Y S⊆ , b AT∈ , and 0x T∈ . 
To verify the accuracy of our method, we present the generalized inverse ( )2

,T SA  as 
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Figure 2. The MCT in Example 1. 

 
Table 3. Error for (4) in Example 2 with 2,3t = . 

t β k 
2kAx b−  1 2k kx x −−  ( )2

, 2k T Sx A b−  

 0.13 11 2.0035e−08 3.1905e−08 3.1905e−08 

  12 9.9495e−16 6.1815e−16 3.6906e−15 

2 0.14 11 5.1443e−09 8.1923e−09 8.1923e−09 

  12 5.9511e−17 2.2204e−16 1.8243e−15 

 0.15 11 1.3203e−09 2.1026e−09 2.1026e−09 

  12 8.8861e−16 4.5776e−16 3.9315e−15 

t β k 
2kAx b−  1 2k kx x −−  ( )2

, 2k T Sx A b−  

 0.13 11 0 0 4.1466e−15 

  12 0 0 4.1466e−15 

3 0.14 11 0 0 2.0562e−15 

  12 0 0 2.0562e−15 

 0.15 11 0 0 3.9440e−15 

  12 0 0 3.9440e−15 

 

( )2
,

0.5 0.7 0.5 0.6 0 0
0 0.6 0 0 0 0
0 0.6 5 0 0 0
0 0 0 4 0 0
0 0 0 0 0 0

T SA

− − 
 
 
 =
 
 
  

 

To ensure ( )0 1TP AZρ − < , we take parameter 0.13,0.14,0.15β =  in Table 
3 and 0.13,0.15,0.16β =  in Table 4, respectively. We present the errors  

kAx b− , 1k kx x +− , and ( )2
,k T Sx A b−  in 2-norm as 2,3t =  in Table 3 and  

5,8t =  in Table 4, respectively. 
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Table 4. Error for (4) in Example 2 with 5,8t = . 

t β k 
2kAx b−  1 2k kx x −−  ( )2

, 2k T Sx A b−  

 0.13 k = 5 4.5219e−08 7.2011e−08 7.2011e−08 

  k = 6 8.8861e−16 4.5776e−16 3.8357e−15 

5 0.15 k = 5 3.3786e−09 5.3804e−09 5.3804e−09 

  k = 6 0 0 3.8794e−15 

 0.16 k = 5 9.2293e−10 1.4698e−09 1.4698e−09 

  k = 6 2.7756e−17 1.1102e−16 2.6990e−15 

t β k 
2kAx b−  1 2k kx x −−  ( )2

, 2k T Sx A b−  

 0.13 k = 5 8.8818e−16 4.4409e−16 4.4270e−15 

  k = 6 0 0 4.0550e−15 

8 0.15 k = 5 0 0 3.0562e−15 

  k = 6 0 0 3.7659e−15 

 0.16 k = 5 8.8816e−16 4.5776e−16 2.2834e−15 

  k = 6 0 0 2.7240e−15 

 
From the numerical results given in Table 3 and Table 4, we can see that the 

scheme (4) has high order accuracy and these results given with 3,8t =  are 
better than those obtained by 2,5t = , respectively. 

5. Conclusion 

The high order iterative method has been derived for solving the general restric- 
ted linear equation. The convergence and stability of our method also have 
derived. Numerical experiments have presented to demonstrate the efficiency 
and accuracy. 

Acknowledgements 

This work was supported by the National Natural Science Foundation of China 
(No. 11061005, 11701119, 11761024), the Natural Science Foundation of Gua-
ngxi (No. 2017GXNSFBA198053), the Ministry of Education Science and Tech-
nology Key Project (210164), and the open fund of Guangxi Key laboratory of 
hybrid computation and IC design analysis (HCIC201607). 

References 
[1] Ben-Israel, A. and Greville, T.N.E. (2003) Generalized Inverses. Volume 15 of CMS 

Books in Mathematics/Ouvrages de Mathématiques de la SMC, 2nd Edition, Sprin-
ger-Verlag, New York. 

[2] Chen, Y.L. (1993) A Cramer Rule for Solution of the General Restricted Linear Eq-
uation. Linear and Multilinear Algebra, 34, 177-186.  
https://doi.org/10.1080/03081089308818219 

[3] Wei, Y.M. and Wu, H.B. (2001) ( ),T S  Splitting Methods for Computing the Ge-

https://doi.org/10.4236/jamp.2018.62039
https://doi.org/10.1080/03081089308818219


X. J. Liu et al. 
 

 

DOI: 10.4236/jamp.2018.62039 427 Journal of Applied Mathematics and Physics 
 

neralized Inverse ( )2
,T SA  and Rectangular Systems. International Journal of Com-

puter Mathematics, 77, 401-424. https://doi.org/10.1080/00207160108805075 

[4] Srivastava, S. and Gupta, D.K. (2015) An Iterative Method for Solving General Re-
stricted Linear Equations. Applied Mathematics and Computation, 262, 344-353.  
https://doi.org/10.1016/j.amc.2015.04.047 

[5] Song, G.J., Wang, Q.-W. and Chang, H.-X. (2011) Cramer Rule for the Unique So-
lution of Restricted Matrix Equations over the Quaternion Skew field. Computers & 
Mathematics with Applications, 61, 1576-1589.  
https://doi.org/10.1016/j.camwa.2011.01.026 

[6] Chen, Y.L. (1997) Iterative Methods for Solving Restricted Linear Equations. Ap-
plied Mathematics and Computation, 86, 171-184.  
https://doi.org/10.1016/S0096-3003(96)00180-4 

[7] Wei, Y.M., Li, X.Z. and Wu, H.B. (2003) Subproper and Regular Splittings for Re-
stricted Rectangular Linear System. Applied Mathematics and Computation, 136, 
535-547. https://doi.org/10.1016/S0096-3003(02)00078-4 

[8] Yu, Y.M. (2008) PCR Algorithm for Parallel Computing the Solution of the General 
Restricted Linear Equations. Journal of Applied Mathematics and Computing, 27, 
125-136. https://doi.org/10.1007/s12190-008-0062-3 

[9] Song, G.-J. and Dong, C.-Z. (2017) New Results on Condensed Cramer’s Rule for 
the General Solution to Some Restricted Quaternion Matrix Equations. Journal of 
Applied Mathematics and Computing, 53, 321-341.  
https://doi.org/10.1007/s12190-015-0970-y 

[10] Cai, J. and Chen, G.L. (2007) On Determinantal Representation for the Generalized 
Inverse ( )2

,T SA  and Its Applications. Numerical Linear Algebra with Applications, 
14, 169-182. https://doi.org/10.1002/nla.513 

[11] Liu, X.J., Zhu, G.Y., Zhou, G.P. and Yu, Y.M. (2012) An Analog of the Adjugate 
Matrix for the Outer Inverse ( )2

,T SA . Mathematical Problems in Engineering, Article 

ID: 591256. 

[12] Roger, A.H. and Johnson, C.R. (2013) Matrix Analysis. 2nd Edition, Cambridge 
University Press, Cambridge. 

[13] Liu, X.J., Jin, H.W. and Yu, Y.M. (2013) Higher-Order Convergent Iterative Method 
for Computing the Generalized Inverse and Its Application to Toeplitz Matrices. 
Linear Algebra and Its Applications, 439, 1635-1650.  
https://doi.org/10.1016/j.laa.2013.05.005 

[14] Srivastava, S., Stanimirović, P.S., Katsikis, V.N. and Gupta, D.K. (2017) A Family of 
Iterative Methods with Accelerated Convergence for Restricted Linear System of 
Equations. Mediterranean Journal of Mathematics, 14, 222.  
https://doi.org/10.1007/s00009-017-1020-9 

 
  

https://doi.org/10.4236/jamp.2018.62039
https://doi.org/10.1080/00207160108805075
https://doi.org/10.1016/j.amc.2015.04.047
https://doi.org/10.1016/j.camwa.2011.01.026
https://doi.org/10.1016/S0096-3003(96)00180-4
https://doi.org/10.1016/S0096-3003(02)00078-4
https://doi.org/10.1007/s12190-008-0062-3
https://doi.org/10.1007/s12190-015-0970-y
https://doi.org/10.1002/nla.513
https://doi.org/10.1016/j.laa.2013.05.005
https://doi.org/10.1007/s00009-017-1020-9


X. J. Liu et al. 
 

 

DOI: 10.4236/jamp.2018.62039 428 Journal of Applied Mathematics and Physics 
 

Appendix 

function hocigrlscm( , , , , ,A X P Z b ktmax ) 
( ),1zn size A= ; ( )nid speye z= ; 

fprintf(' Num. of iterative  
2kAx b−  1 2k kx x+ −  CPU time n′ ) 

fprintf('------------------------BEGING---------------------------- n′ ) 
max 1 2it e= ; 5.26 15tol e= − ; 0;cnvs =  

for 1: maxit it= , 
tic; za A Z= ∗ ; 0X X= ; = 0ZY ; 
for 2 : maxkt kt=  

( )( ) ( )11 max,kt
kzc nchoosek kt t−= − ∗ ; 

( )( )1ktZY ZY zc za −= + ∗ ; % compute 1kZ +  
end 

( )maxZ Z kt id ZY= ∗ ∗ + ; 
( )X X Z b A X= + ∗ − ∗ ; 1% k kX X +− − >  

clear ZY ; 

0 ;ermk X X= −  ;L A X b= ∗ −  
( )( ): ;ermk sqrt ermk ermk′= ∗  

( );erml sqrt L L′= ∗  itm = toc; 
if ermk tol< , 1cnvs cnvs= + ; break, end 
end % END it 
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