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Commons Attribution International . . . . .
License (CC BY 4.0). In 1924, Friedmann and Schouten [1] introduced the idea of a semi-symmetric

http://creativecommons.org/licenses/by/4.0/ connection on a differentiable manifold. A linear connection V on a differen-

tiable manifold A/ is said to be semi-symmetric connection if the torsion tensor

T of the connection V satisfies

T(X.Y)=¢(Y)X-¢(X)Y
where ¢ isa l-form.

In 1932, Hayden [2] introduced the notion of a semi-symmetric metric
connection on a Riemannian manifold (M , g) . A semi-symmetric connection
V is said to be semi-symmetric metric connection if

Vg =0.

Yano [3] studied some properties of a Riemannian manifold endowed with a
semi-symmetric metric connection. Submanifolds of a Riemannian manifold
with a semi-symmetric metric connection were studied by Nakao [4].

After a long gap, the study of semi-symmetric connection V satisfying

Vg #0 (1)
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was initiated by Prvanovic [5] with the name Pseudo-metric semi-symmetric
connection, and was just followed by Smaranda and Andonie [6].

A semi-symmetric connection V is said to be a semi-symmetric non-metric
connection if it satisfies the condition Equation (1).

In 1992, Agashe and Chafle [7] introduced a semi-symmetric non-metric
connection V on a Riemannian manifold (M,g) which is given by

VY =97 4g(X)(Y)
where V' is Riemannian connection on M. They give the relation between the
curvature tensor of the manifold with respect to the semi-symmetric non-metric
connection and the Riemannian connection. They also proved that the pro-
jective curvature tensors of the manifold with respect to these connections are
equal to each other.

In 2000, Sengupta, De, and Binh [8] gave another type of semi-symmetric
non-metric connection. Ozgiir [9] studied properties of submanifolds of a
Reiemannian manifold with the semi-symmetric non-metric connection.

On the other hand, one of the basic problem in submanifold theory is to find
the simple relationship between the intrinsic and extrinsic invariants of a
submanifold. Chen [10] [11] [12], established inequalities in this respect, called
Chen inequalities. And many geometers studied similar problems for different
submanifolds in various ambient space, see [13] [14] [15] [16] [17].

Motivated by [7] [21] and [22], we have studied Chen’s inequalities for
submanifolds in (K, ,u) -contact space form with a semi-symmetric non-metric
connection. The paper is organized as follows. In Section 2, we give a brief
introduction about semi-symmetric non-metric connection, (K, y) -contact
space, Chen invarants. In Section 3, for submanifolds in (K', ,u) -contact space
form with a semi-symmetric non-metric connection we establish the Chen first

inequality and Chen Ricci inequalities by using algebraic lemmas.

2. Preliminaries

Let N™P bean (n + p) -dimensional Riemannian manifold and V is a linear

connection on N"P . If the torsion tensor

T(X.Y)=V,Y -V, X-[X,Y]
for any vector fields X and Y on N™P satisfies
'IT()T,Y_) = ¢(Y_) X —¢(>?)\7 for a 1-form ¢, then the connection V is called
a semi-symmetric connection.

Let gbe a Riemannian metricon N™P.If Vg=0,then V is called a semi-
symmetric metric connection on N"™P.If Vg0, then V is called a semi-
symmetric non-metric connectionon N™P.

Following [7], a semi-symmetric symmetric non-metric connection V on
N™P is given by

VY =07 +9(7)X

for any X,YeX (N"*p), where V' denotes the Levi-civita connection with
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respect to the Riemannian metric gand ¢ isa I-form. Denote by U =®”, ie,
the dual vector field Uis defined by ¢ (U X ) = ¢(>?) , for any vector field X
on N™P.

Let M" be an n-dimensional submanifold of N"" with the semi-
symmetric connection V and the Levi-Civita connection V'. On M" we
consider the induced semi-symmetric connection denoted by V and the induced
Levi-Civita connection denoted by V'. The Gauss formula with respect to V

and V' can be written as

VY =V Y +8(X,Y), VRY =ViY +8(X,Y), VXY eX(M"),

where &' is the second fundamental form of M" and & is a (0,2)-tensor
on M". According to [18], we know §=75".

Let R and R’ denote the curvature tensor with respect to V and V'
respectively. We also denote the curvature tensor R and R’ associated with
V and V' repectively. From [7].

R(X,Y,ZW)=R'(X,Y,ZW)+S(X,Z)g(YW)-S(Y,Z)g(X.W) (2)

forall X,Y,Z,W e X(M n) , where Sisa (0,2) -tensor field defined by
S(X.Y)=(Vxg)Y —8(X)g(Y),VX.Y,.ZW e X (M").

Denote by A the trace of .

Decomposing the vector field U on A uniquely into its tangent and normal
components U' and U™, respectively, we have U =UT +U". For any vector
field X,Y,Z,W on M, the gauss equation with respect to the semi-symmetric
non-metric connection is (see [18])

R(X.Y,ZW)=R(X,Y,ZW)+g(5(X,Z),5(Y.W))
—g(S(X.W),8(Y,2))+g(U"5(Y.2))g(X.W)  (3)
-g(Uh,5(X,2))g(Y.W).

In N™P we can choose a local orthonormal frame {el, L T NP emp}
such that {e,e,---,e,} aretangentto M". Setting 55 = g(&(ei,ej ),er), then
the squared lenght of ¢ is given by

n n+p n 2
ol = $0(o6)- 515 41

The mean curvature vector of M" associated to V' is

1
H'==Y" 5'(e.¢). The mean curvature vector of M" associated to V is
o i

defined by H =%Z?:15(ei,ei).

Let 7z'CTp|\/|n be a 2-plane section for any peM" and K(ﬂ') the
sectional curvature of M" associated to the semi-symmetric non-metric con-
nection V. The scalar curvature 7 associated to the semi-symmetric non-
metric connection V at pis defined by

w(p)= ¥ K(ane) @

1<i<j<n
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Let L, be a k-plane section of TM" and {ee,,---,e} any orthonormal
basis of L. The scalar curvature z(k) of L, associated to the semi-

symmetric connection V' is given by

7(L)= X x(ene) (5)

I<i< j<k
We denote by (inf K)(p)=inf{K(z)|z<T,M",dimz=2}. In [12] Chen
introduced the first Chen invariant J,, ( p) = 2'( p) —(inf K )( p) , which is cer-
tainly an intrinsic character of M".
Suppose Lis a k-plane section of T,M and Xis a unit vector in Z, we choose
an orthonormal basis {e,€,,---,€,} of L, such that € = X . The Ricci curvature
Ric, of L at X associated to the semi-symmetric metric connection V' is
given by
Ric, (X)) =k, + kg +-+- + Ky (6)
where & =K(ei /\ej). The Ric (X ) is called a K-Ricci curvature. For each

integer &, 2<Kk <n, the Riemannian invariant ¢, on M" is defined by
1. : n
6, ( p):(mjmfu {Ric_(X)}, peM (7)

where Lis a k-plane section in TpM " and Xis a unit vector in Z [19].

Recently, T. Konfogiorgos intoduced the notion of (k, ) -contact space form
[20], which contains the well known class of sasakian space forms for x=1.
Thus it is worthwhile to study relationships between intrinsic and extrinsic
invariants of submanifolds in a (k, y) -contact space form with a semi-sym-
metric non-metric connection V'.

A (2m +1) -dimentional differntiable manifold M is called an almost contact
metric manifold if there is an almost contact metric structure (¢,&,7,9)
consisting of a (1,1) tensor field ¢, a vector field &, a 1-form 7 and a

compatible Riemannian metric g satisfying
9 =-1+7®& n(5)=1 ¢Z=0,no$=0
9(X.0¥)=-g(pX.Y), 9(X.&)=n(X) (8)

vX,YeX (I\7I ) . An almost contact metric structure becomes a contact metric
structure if dr=®, where © ( X ,Y) =g (X , goY) is the fundamental 2-form of
M .

In a contact metric manifold M , the (1,1) -tensor field A defined by
2h=L.p is symmetric and satisfies

hé=0, hp+gph=0, V'é=-p-gh, trace(h)=trace(ph)=0

The (k, ,u) -nullity distribution of a contact metric manifold M is a

distribution
N (k,2): p—> N, (k) ={Z €T, M [R(X,Y)Z =k[g(Y,Z) X —g(X,Z)Y]
+u[g(Y,Z)hX —g(x,z)hY]}

where kand g are constants. If £e N (k,,u) , M s called a (k,y) -contact
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metric manifold. Since in a (k, y) -contact metric manifold one has
h® =(k —1)¢?, therefore k<1 andif k=1 then the structure is Sasakian.

The sectional curvature K ( X,pX ) of a plane section spanned by a unit
vector orthogonal to & is called a ¢ -sectional curvature. If the (k, ,u) -contact
metric manifold M has constant @ -sectional curvature C, then it is called a
(k, z) -contact space form and it is denoted by M (C) . The curvature tensor of
M (C) is given by [20].
=, c+3 c+3-4k
R(x)Z2=22 (v, 2)x g (x2)y}+ K (x)n(2)y

=n(Y)n(Z)X+9(X.Z)n(Y)s-9(Y.Z)n(X. )}

c-1
+T{29(X,¢Y)(/)Z+g(¢X,(pZ)¢Y—g((pZ)¢X}

+={g(hY,Z)hX —g(hX,Z)hY +g(phX,Z )phY

1
Sl
2
—g(phY,Z)phX }-g(X,Z)hY +g(Y,Z)hX +7(X)n(Z)hY
-n(Y)n(Z)hX —g(hX,Z)Y +g(hY,Z)X —g(hY,Z)n(X)¢
g(hX,Z)n(Y)&+uin(Y)n(Z)hX —n(X)n(Z)hY
+9(hY,Z)n(X)&-g(hX,Z)n(Y)¢&}

vX,Y, ZeX( ) Where c+2k=-1=k-u if k<l1.

For a vector field X on a submanifold A of a (k, z)-contact form M (C),
Let PX be the tangential part of X . Thus, P is an endomorphism of the
tangent bundle of A and satisfies g(X,PY)=-g(PX,Y) for X,Y eX(l\?I).
((/)h)T X and h'X are the tangential parts of @hX and hX, respectively.
Let {e,e,,---,e,} bean orthonormal basis of T M . We set

||19||2 = Z:jzlg (ei,é?ej )2 , e {P,(Bh)T ,hT}. Let 7<T,M be a 2-plane section

&)

+

spanning by an orthonormal basis {e,,e,} . Then S(7z) given by
p(7)=(e, Pe,)’
is a real number in [0,1] , which is independent of the choice of orthonormal
basis {e,.e,} . Put y(7)=(n(e)) +(n(e,))
o(z)=n(e) g(hTezvez)+77(ez)2 9(hTel,el)—ZU(q)n(ez)g(hTel,ez)

Then 7/(7[) and H(ﬁ) are also real numbers and do not depend on the
choice of orthonormal basis {e,,e,}, of course, y(7)e[0,1]

3. Chen’s First Inequality

For submanifold of a (k, ,u) -contact space form endowed with a semi-
symmetric non-matric connection, we establish th following optimal inequality
relating the scalar curvature and the squared mean curvature, which will be
called Chen first inequality. We recall the following lemma.

Lemma 3.1 ([22]) Let f(X,X,,---,X,) for (n>3) be a function in R
defined by
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F (X0 %000 X ):(X1+X2)ZX+ 2 XX

3<i<j<n
If X +X,+--+X =(n-1)&, then we have
f(X1,X2,---,Xn)<(n_l)(n_2) 2

S———¢&

2
with the equality holding if and only if X, +X,=---=X =¢.
Theorem 3.1 Let M ba an n-dimensional (n > 3) submanifold of a (2m +l)

dimensional (K, u) -contact form M (C) endowed with a semi-symmetric
non-metric connection V'

such that £ €TM . Then, for each 2-plane section
rcT,M . We have,

#(p)- K(ﬁ)s%"mr +2n(n-3)(c+3)+(n-1)k

+3(c

2 DH1pr -2(m) ]+ 30+ 3-40) ()
_(y—l)a(ﬁ)—%[Ztrace(m )+det(h|ﬂ)—det((ph|”ﬂ (10)
+(u+n- 2)trace(hT [“ ph)' —"hT"Z—(trace(goh)T )2

+(trace(hT))2}—M¢(H)—nTl/l Q

2
The equality in (10) holdsat peM

if and only if there exits an orthonormal

basis {e,e,,~--,¢,} of T /M and an orthonormal basis {e,,-*,€,,,} of

T; M such that (a) 7 =span {el, ez} and (b) the forms of shape operators
A=A, r=n+l--2m+l1
5ll'|1+1 O 0
A.=| 0 & 0
0 0 (S +opY)l.,

oy O 0
A= 51r2 _51r1 0
0 0 0,

Proof. Let 7 <T M be a 2-plane section. We choose an orthonormal basis

{e,.&,,....€,} for TM and {e &y} for T,M such that

m=8pan{e,e,} . Setting X =W =¢, Y=Z=¢e;, i=j, i,j=1---,n. And
using (2), (3) and (9) we get

c+3 c+3-4k

Ry ==+ {_U(ei)z ~n(e; )2}+CTl{39( )2}
{g(e,,gphej)2 (ei,hej)z+g(ei,hei)g(ej,hej)
(e 0he;) g (e;, phe; )} (e.he,)+2n(e)n(e;)a(e,he;)

(eJ)2 g(he;.e;)n(e) +a(he;.e)
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)
_go(&(ej,ej ))—S(ej,ej —g(ﬁ(ei,ej),&(ej,ei )) (11)

From (11) we get
r:%{n(n—l)(0+3)+3(c—1)|| p||2 _g(n—l)(c+3—4k)}
+%{‘( ) 2 -|n’ ”2 —(trace(¢h)T )2 +(trace(hT ))2}

2m+1

+(y+n—1)trace(hT) > [5.@: (ir)z}

r=n+l1<i< j<n

(12)

where ¢( ) Z _1¢( ( )) (U H ) On the other hand, using (11) we

have
R :%{c+3+3(C—1)ﬂ(ﬂ)—(c+3—4k)y(ﬂ)}

+%{det(h|ﬁ)— det(gth[)} +trace(h|_)-6(x)+uo(x)

+ 2 [5{15;2 _(5;2 )2:| _¢(5(ez,ez)) -S(e,.8,) (13)

r=n+l

:%{c+3+3(c—1),3(7[)—(C+3—4k)7(”)+4(ﬂ_1)9(”)}

+%{det(h|ﬂ)—det(¢h|”)+2trace(h|ﬂ)}+ D [5{152'2 _(51’2)14)

r=n+l
where Q is denoted by ¢(5(e2 e, )) +5(e,8,)=Q.
From (12) and (13). It follows that

e~k (m)=2n(n-3)(c+3) s (n)k+ LD of 2p(x)|
+%(c+3—4k)7/(7z)—(,u—1)(p(7r)—l{2trace(h|”)
+det(h] )~ det(h| )}+(s+n-2)trace(n")
2l T (e (ony" ) +rrace(o) |

+2§1{(611+5;2)25£+ > ooy - % (o)

r=n+l 3<i<n 3<i<j<n 3<j<n

- T @ [0 e " R ea

2<i<j<n

s%n(n—3)(c+3)+(n—1)k+3(08_1)[||P||2—2ﬂ(7z)]

+%(c+3—4k)7(7r)—ﬂ(#—l)e(”)_%{mace<h|n)
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+det(h|_)—det(ph|_ )} (u+n—-2)trace(h")

+%{||((0h)||2—||hT|| —(trace(goh)T) +(trace(hT))2}

(14)
+Y {(6;1%;2) PRI 5..5},}

r=n+l 3<i<n 3<i<j<n

n(n-1) n-1
—T¢(H)—T/1+Q

Let us consider the following problem:

max{fr(@z, )= (04 +0%) T+ fo..af,léfﬁ“'*‘*“:"r}

3<i<n 3<i<j<n

where k' isa real constant.

From lemma 3.1, We know

N—2 / \2
r3—2(”_1)(k) (15)

with the equality holding if and only if

O+, =65 = ,i=3,--,n (16)
From (14) and (15), we have
r—K(;r)z—( ||H|| += n n-3)(c+3)+(n-1)k

2(n-1)
—_|:"P||2—2,3(72’):|+%(C+3_4k)y(”)_(/u_l)9(”)
[Ztrace h|,)+det(h]|_)—det(ph|_ )] (u+n-2)trace(h")

o -F -{rno )]

(” Y 4(H )-T‘lmg

If the equality in (10) holds, then the inequalities given by (14) and (15)
become equalities. In this case we have

> (1) =0, X (o) =0.vr.

2<i<n 2<i<j<n

O, +6,, =56 ,3<i<n,Vr.

From [18] we know ¢’ =0 . So choose a suitable orthonormal basis, the shape
operators take the desired forms.

The converse is easy to follow.

For a Sasakian space form M (c), we have x=1 and h=0. So using
Theorem 3.1, we have the following corollary.

Corollary 3.1 Let M be an n-dimensional (n>3) submanifold in a sasakian
space form M (¢) endowed with a semi-symmetric non-metric connection

such that £ €TM . Then, for each point peM and each plane section
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ﬂ'CTpM , we have
r-K (7)< n;((: 12)||H|| +=n(n-3)(c+3)+(n-1)
2D op -2p(x) ]+ () )

(n2—1)¢(l_l)_n;1/1+Q

If Uis a tangent vector field to A4 then the equality in (17) holdsat peM if
and only there exists an orthonormal basis {e,e,, €} of T,M and
orthonormal basis {e,.,,,"-*,€,y,,} of T; M such that

7 =Span{e,e,}
and the forms of shape operators A = A, ,r=n+1---,2m+1, become
oyt 0 0
Aa=| 0 o o |
0 0 (8h+3,),,

51r1 51r2 0
A= 51r2 _51r1 0
0 0 0,

Since in case of non-Sasakian (K,y) -contact space form, we have x<1,
thus c=-2x-1 and g=x+1. Putting these values in (17), we can have a
direct corollary to Theorem 3.1.

Corollary 3.2 Let Let M be an n-dimensional (n>3) submanifold in a
non-Sasakian (K, y) -contact space form M (C) with a semi-symmetric
non-metric connection such that £ €TM . Then, for each point peM and
each plane section = <TM , When ¢=-2k-1, u=k+1 we have

T—K(ﬂ)—z((:—lz

+%[3(k +1) B(7)—(3k —1)y (=) - 2k6(x)]

IHIF ~Zn(n-3)(k-1)+(n-1)k— (k +1)| I

_%[Ztrace(h|ﬂ)+det(h|) det ph|_ )J k+n-1)trace(h") (18)
+%[“(¢h)T 2 [0’ "2 _(trace((ﬂh)T )Z +(trace(hT ))2}

n(n-1) n-1

If Uis a tangent vector field to A4 then the equality in (18) holdsat pe M if
and only there exists an orthonormal basis {e ,e,,---,e,} of T,M and ortho-
normal basis {€,.;,"--,&n.,} of T:M such that

7 =Span{e,e,}

and the forms of shape operators A = Aa, ,r=n+1---,2m+1, become
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S0 0
A=l 0 & 0 ,
0 0 (8h+,)l,,

51r1 51r2 0
A = 51r2 _51r1 0
0 0 0.,

4. Ricci Curvature and K-Ricci Curvatures

In this section, we establish inequality between Ricci curvature and the squared
mean curvature for submanifolds in a (K, y) -contact space form with a
semi-symmetric non-metric connection. This inequality is called Chen-Ricci
inequality [19].
First we give a lemma as following. First we give a lemma as following.
Lemma 4.1 ([22]) Let f(X,X,,-++,X,) bea functionin R" defined by

(%5000 %,)

’_?II<
2

If X, +X,+:--+X, =2¢, then we have
(Xl X2 1T A ) 82!
with the equality holding if and only if X +X, +---+ X, =¢.
Theorem 4.1 Let M be an n-dimensional (n>2) submanifold ofa (2m+1)-
dimensional (K, ,u) -contact space form M (C) endowed with a semi-sym-

metric non-metric connection such that £ €TM . Then for each point peM,

1) For each unit vector Xin T M , we have

Ric(X) ||H|| )4(C+3) 3(04 1)||F’X||2
C+3 4K[ +(n-2)n(X) ]+%U‘(¢)hx)T 2_”(hX)T 2
+g(hX,X)trace(hT)—g((phX,X)trace((goh)T )] (19)

+(y+n—3)g(X,hX)+[1+(/¢—1)77(X)2]trace(hT)
—ng(H)+4(5(X,X))-2+S(X,X).

2)If H(p)=0, a unit tangent vector X eT,M satisfies the equality case of
(19) if and onlyif X €N(p)={X eT,M[(X,Y)=0,VY T M}.

3) The equality of (19) holds identically for all unit tangent vectors if and only
if

either

1) nz2, 55 =0,i,j=12,---,n;r=n+1---,2m+1,

or

2) N=2, 8),=0y,,06,=0,r=3,--,2m+1.

Proof. (1) Let X eT,M be an unit vector. We choose an orthonormal basis
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€, 1€, 1€y suchthat e,---,e aretangential to Mat pwith e =X.

n

Using (11), we have
(n-1)(c+3) c+3-4«x 3

Ric(X )= 1 7 [1+(n—2)n(x)2}+$||Px”2
<l [ oy
~g(phX, X )trace((¢h)’ )]+(y+ n-3)g(X,hx)

+{1=m(X)"+ (X ) Jtrace(h") ~ng(H)

2
+g(hX, X )trace(h")

“p(o(x X)) =25 (X X)+ 3 3 o0 ()|
<) o - S 1 (n-2)a ]

3 o= g o, x)raceon)

+g(hX, X )trace( hT)} u+n-3)g(X,hX) (20)
+(2-n(X)"+ (X" Jtrace(n") -ng(H)
+¢(3(X,X))=2+S(X X){m%i@ﬁ'

Let us consider the function f,:R" — R, defined by
fo (OO, 03 ) = 25 195
We consider the problem
max{ f 1oL ++0,= kr},

where k' isa real constant. From lemma 4.1, we have

kr

f,<—. 21
2 (21)
With equality holding if and only if
n kf
51r1 = Zé‘ur =5 (22)
i=2 2
From (20) and (21) we get
2 —
Rio(x) < T+ 1HE3) 3D o p

_C+3—4K

2 [1+(n—2)77(X) J+E[“(¢hx)T 2_”(hX)T 2

—g(phX, X )trace(ph)" +g(hX, X )trace(h" )}

+(pn=3)g(X,hX) +[ 1+ (u=1)n(X)" Jtrace(h")
—ng(H)+4(5(X,X))-2+S(X,X).
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2) For a unit vector X €T M, if the equality case of (19) holds, from (20),
(21) and (22) we have

6, =0,i#1,Vr.
Oy + Oy +--+ Oy =28, VT
Since H ( p)zO, we know
o, =0,Vvr.
So we get
51']- =0, Vvr.
ie. XeN(p)

The converse is trivial.

3) For all unit vector X €T M , the equality case of (19) holds if and only if
26, =6+ +5,

nn?

i=1---,nr=n+1---,2m+1.
a‘ijr =0,i#j,r=n+1---,2m+1
Thus we have two cases, namely either n#2 or n=2.
In the first case we
55 =0,i,j=1---,nr=n+L1---,2m+1.
In the second case we have
O =08y,0,=0,r=3---,2m+1.
The converse part is straightforward.
Corollary 4.1 Let M be an n-dimensional (n>2) submanifold in a Sasakian
space form M (c) endowed with a semi-symmetric non-metric connection

such that £e€TM . Then for each point peM , For each unit vector X in
T,M, for k=1, h=0 we have

1D A -1 (n-2pn(x)

—ng(H)+g(5(X,X))=2+S(X,X).

2
Ric(x)< [ +

Corollary 4.2 Let M be an n-dimensional (n>2) submanifold in a non-
Sasakian space form M (c) endowed with a semi-symmetric non-metric
connection such that £ €TM . Then for each point peM , For each unit

vector X €T M, VpeM , we have

Ric(x) < T H[f + (NHEZE) S0 oy
+3K_1[1+(n—2)77(X)1+%[”(¢hx)T o[

—g(phX, X )trace(ph)" +g(hX, X )trace(h" )]
+(zc+n—2)g(hx,X)+[l+m7(x)2}trace(hT)
—ng(H)+4(5(X,X))=2+S(X,X).

Theorem 4.2 Let M be an n-dimensional (n > 3) submanifold in a (2m +l)
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-dimensional (K‘, /1) -contact space form M (C) endowed with a semi-sym-

metric non-metric connection such that £ €TM . Then we have

n(n-JH[ 2n(n-1)0, (p)-F{n(n-1)(c+3)+3(c- 1P|
-2(n —1)(c+3—4k)} _%{“(goh)T 2 _||hT ”2 _(trace((oh)T )z

+(trace(hT ))2}—2[,u+(n—1)]trace(hT)+ n(n-1)¢(H)
+(n-1)4.

Proof. Let {e,---,6,} be an orthonormal basis of T /M . We denote by
Ly..i the &-plane section spanned by e,,:-,&, . From (5) and (6), it follows

that
T(Luv”"eik)=1 Y. Ric, (&) (23)
2ie{i1,~-,ik} o
and
1
(P)=07 X2 T(Lil,m,ik)' (24)

Cn,z I<il<--<ik<n

Combining (7), (23) and (24), we obtain

T(p)zn(n2_1)®k(p). (25)

We choose an orthonormal basis {e,,---,€,} of T,M such that e, isin
the direction of the mean curvature vector H ( p) and {el,---,en} diagnolize

the shape operator A, ;. Then the shape operators take the following forms:

0 a2 .. 0
0 o -.- an
traceA =0,r=n+2,---,2m+1. 27)
From (11), we have
Zr:%{n(n—1)(c+3)+3(c—1)||P||2—2(n—1)(c+3—4k)}
+%{“((oh)T i —||hT ||2 —(trace(goh)T )2 + (trace(hT ))2} (28)
+2[,u+(n—1)]trace(hT)—n(n—l)(p(H)—(n—l)/1+n2||H||2—||5||2.
Using (26) and (28), we obtain
) 2 n ) 2m+1l n ; 1 2
n*|HI =20+ 34 +r§2i§1(5” ) =2 in(n-1(c+3)+3(c-1)|P]
1 T2 T2 72
_2(n—1)(c+3—4k)}—E{“((ph) - ||| - (trace(on)') 09)

+(trace(hT))2}—2[/J+(n—1)}trace(hT)

+n(n-1)g(H)+(n-1)4.
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On the other hand from (26) and (27), we have
(n[H]) =(Za) <nYa (30)
i1

From (29) and (30), it follows that
n(n-[H[}

221—%{n(n—1)(c+3)+3(c—1)||P||2—2(n—1)(c+3—4k)}

_%{“((Dh)T 2 _"hT "2 _(trace((Ph)T )2 +(trace(hT ))2}
2l (1) Jrace( ) n(n-Dg(H) +(n-D) 2+ 3 3 (57

> 2r—%{n(n—1)(c+3)+3(c—1)||P||2 ~2(n-1)(c+3-4k)}

_%{”(wh)T i ~[w ||2 —(trace((ph)T )2 +(trace(hT ))2}

—~2[ u+(n-1)]trace(h" ) +n(n-1)¢(H)+(n-1)A
Using (25), we obtain

n(n-1)[H[f

>n(n-10, (p)-3{n(n-1)(c+3)+3(c-1)|Pf
-2(n —1)(c+3—4k)} _%{“(goh)T 2 _||hT "2 _(trace(goh)T )2

Jr(trace(hT ))2}—2[y+(n—1)]trace(hT)

+n(n-1)¢(H)+(n-1)A.

Corollary 4.3 Let M be an n-dimensional (n>3) submanifold in a Sasakian
space form M (c) endowed with a semi-symmetric non-metric connection
such that & € TM . Then for each point p e M , For each unit vector X €T M,
VpeM , we have

n(n-1)[H|"
2n(n—l)@k(p)—%{n(n—1)(c+3)+3(c—1)||P||2 ~2(n-1)(c-1)}
+n(n-1)¢(H)+(n-1)A.
Corollary 4.4 Let M be an n-dimensional (n>3) submanifold in a non-
Sasakian space form M(c) endowed with a semi-symmetric non-metric

connection such that £€TM . Then for each point peM , For each unit
vector X €T M, VpeM , we have

oo

2n(n—l)@k(p)—E{n(n—1)(1—K)—3(K+1)||P||2+2(n—l)(31c—l)}
—%{H(goh)T ” —||hT ||2 —(trace(wh)T) +(trace(hT ))2}
—~2(k+n)trace(h")+n(n-1)g(H)+(n-1)4
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