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Abstract 
The approach proposed in the study is based on the revision of the concept of 
time as a point on the real axis. It uses the concept of fuzzy time as the set of 
real numbers with a finite, but not equal to one, function of membership to 
the time set, i.e. the fuzzy time concept. It is postulated that in fuzzy time t the 
system dynamics follows from the standard variational principle of the least 
action and is ordinary Hamilton-Jacobi mechanics. This validates the passage 
to the limit from fuzzy mechanics to ordinary variational conservative me-
chanics. The Liouville equation is solved by the method of successive ap-
proximations in the time domain of a much larger characteristic scale of fuz-
ziness, using interaction as a small parameter. A standard diagram technique 
is used. It can be shown that the defuzzification of the Liouville equation in-
evitably reduces the reversible part in the description to the irreversible evolu-
tionary equation. The latter leads to the second law of thermodynamics. Ge-
neralization to the quantum case is possible, i.e. the so-called fuzzy Pauli equ-
ation can be drawn. 
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1. Introduction 

Hamiltonian mechanics (the mechanics of conservative systems) is reversible in 
time. The world based on Hamiltonian mechanics is either orbitally stable, or, in 
the presence of hyperbolic points, highly sensitive to initial conditions. 

The system evolution is described in phase space by the Liouville equation as 
the incompressible fluid motion: the phase space element can be deformed in an 
arbitrarily complex manner, however the measure introduced within phase 
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space is preserved. 
At the same time, the second law of thermodynamics is valid, in accordance 

with which the concept of entropy is introduced: entropy in closed systems in-
creases, reaching the maximum in a state of equilibrium. Time (sequence of 
events) acquires a direction: the system evolves from the “past” to the “future” 
from a state with lower entropy to a state with greater entropy. 

The transition to another scale level of description—quantum mechanics— 
does not solve the problem: the Schrödinger equation is reversible in time. 

It can be said that there are two kinds of system distribution functions for the 
phase space: the Gibbs measure ( )tρ , describing “conservative” evolution  
( ) ( ) ( )0t U tρ ρ= , where ( )U t  is some unitary operator  
( ) ( ) ( ) , , 0U t U s U t s t s= + >< , and “dissipative” evolution for the Boltzmann 

distribution in accordance with evolutionary equation ( ) ( ) ( )0t W tρ ρ= , that is 
irreversible in time ( ) ( ) ( )W t W s U t s= + , , 0t s > . 

To connect distributions ( )tρ  and ( )tρ  means to build a microscopic 
theory of irreversible processes, eliminating contradictions of a number of fun-
damental physical laws. 

One of the options to solve this problem has been proposed in the works of I. 
Prigozhin and his school [1] [2]. The essence of the approach involves consider-
ing highly unstable conservative systems (so-called “K-flows”), for which the 
Poincaré section of the total phase space is analyzed. 

Phase space regions are associated with special objects—partitions nγ . In the 
particular case when the system evolution can be transformed to a discrete 
transformation, for example, “baker’s transformation” of phase space unit 
square, partitions are functions that take the value of ±1 on the left and the right 
sides of the square. 

The sequential action of evolution operator 1n nUγ γ+ =  describes the state of 
the system after n cycles of evolution. It can be shown that there is operator T, 
for which functions nγ  are eigenfunctions with infinitely singular eigenvalue n. 

Further, existence of Hermitian operator Λ , which is a nonnegative decreas-
ing function of T, is postulated. It is this operator that determines connection 
( ) ( )t tρ ρ= Λ  [1]. In this case it is possible to show the validity of the second 

law of thermodynamics from microscopic principles. 
Problems and contradictions of this approach are quite obvious: firstly, the 

approach is realized in the phase space Poincaré section, but not in the full phase 
space; secondly, reducibility of all unstable systems to transformations of this 
kind is not obvious; finally, the main thing is that the explicit form of operator 
Λ  is not obtained. This somewhat depreciates the approach. 

In the proposed study, the author assumes a different concept. The approach 
is based on the revision of the concept of time as a point on the real axis to the 
concept of fuzzy time as a set of real numbers with a finite, but not equal to one, 
membership function, i.e. to the fuzzy time concept. 

A fuzzy set of time ( ){ },T t tµ=  is considered, where ( )tµ  is the mem-
bership function, which in the future is assumed to be smooth or finitely smooth 
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and compact ( ) 0tµ → ∞ →∓ . 
The operation of defuzzification (weighing) with respect to measure ( )tµ   

determines time ( )dT t t tµ
∞

−∞
= ∫ , which is hereinafter referred to as macro- 

time, difference t Tτ = − , which is called micro- or fuzzy time. 
In the limiting case (classical interpretation of time), measure ( )tµ  is pro-

portional to the delta function. 
The characteristic scale of fuzzy time 0τ  can be defined as:  

( )2 2
0 dτ τ µ τ τ

∞

−∞
= ∫ . 

It is postulated that in fuzzy time t the system dynamics follows from the 
standard variational principle of the least action and is ordinary Hamilton-Ja- 
cobi mechanics. This validates the passage to the limit from fuzzy mechanics to 
ordinary variational conservative mechanics at ( ) ( )t tµ δ→ . 

The Liouville equation is solved by the method of successive approximations 
in the time region 0t τ� , using interaction as a small parameter. A standard 
diagram technique is used. It can be shown that defuzzification inevitably re-
duces the Liouville equation that is reversible in macro-time to the irreversible 
evolution equation, wherein operator ( )W t  is expressed in terms of the inte-
raction parameter and the fuzzy measure ( )tµ . 

The latter leads to the second law of thermodynamics. Generalization to the 
quantum case is possible, i.e. the so-called fuzzy Pauli equation can be drawn. 

Thus, time fuzziness + interaction make the world highly irreversible and “de-
rive” the second law of thermodynamics from more general principles.  

The proposed study is devoted to a consistent presentation of this approach. 
Another approach which is associated with the quantum delocalization of the 
time proposed in [3] [4] [5]. 

2. Elements of Theory of Fuzzy Sets 

Let us consider fuzzy set ( ){ }, ,A x x xµ= ∈Ω , where ( )xµ  is the measure of 
membership of element x to set Ω . As defined, the membership measure is 
positive ( ) 0xµ ≥  and ( )( )sup 1xµ = . For two sets A, B the following assertion 
holds: A B∈ , if ( ) ( ), ,x A x Aµ µ≤ . 

Let us confine to the case of even measures ( ) ( )x xµ µ= − , and put  
( ) 0nx xµ →  for measure ( )xµ  for any integer powers n at x →±∞ . 
By the intersection of two odd sets A and B we mean odd set C with member-

ship measure ( ) ( ) ( )( ), min , , ,z A B x A x Bµ µ µ=∩ , by the union of two odd 
sets A and B we assume odd set C with membership measure  
( ) ( ) ( )( ), max , , ,z A B x A x Bµ µ µ=∪ . 
Other generalizations of fuzzy sets’ union or intersection operators are possi-

ble, e.g. Jager et al. (nonparametric t and S norms) [6] [7] [8] [9] [10]. 
Generalization of basic classical arithmetical rules to operations with fuzzy 

numerical sets or fuzzy numbers and introduction of concepts of fuzzy functions 
and fuzzy relations are drawn as follows. 

The sum of fuzzy numbers A and B is called fuzzy numerical set C A B= +  
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with membership measure: ( ) ( ) ( )( ), max min , , ,z x yz A B x A x Bµ µ µ= ++ = . The 
difference of fuzzy numbers A and B is called fuzzy numerical set C A B= −  
with membership measure: ( ) ( ) ( )( ), max min , , ,z x yz A B x A x Bµ µ µ= −− = . The 
product and the ratio of fuzzy numbers are determined in a similar way. 

A fuzzy function is a one-to-one correspondence of two fields of fuzzy num-
bers. Appropriate measures have the following form: when multiplied by a scalar  

(non-fuzzy) value a: ( ) xax
a

µ µ  =  
 

, raised to the power  

( ) ( ) ,n nx x n Nµ µ= ∈ , taking exponential ( ) ( )e lnx xµ µ= , etc. [6]. 

An interesting model in the framework of the theory of uncertainty in other 
fields is presented in [7] [8]. 

If set Ω is a set of casual events, then set ( ){ }, ,A x x xµ= ∈Ω  is its fuzzy ge-
neralization. Let ( )xµ  be measurable according to Brel, then 

( ) ( ) ( )
x

P A x P xµ
∈Ω

= ∑  

is the expected measure of membership of event x to set Ω or, in the continuous 
case, 

( ) ( ) ( )dP A x P xµ= ∫ , 

where ( )P x  is the probability measure. 
It is obvious that always ( ) ( )P x xµ≤ . 
The expected fuzzy event value (the operation of defuzzification) looks like: 

( )
( ) ( )

( )
d

.
d

f x x
f x

x

µ

µ
= ∫

∫
 

Hence an essential remark follows. If some event is likely, then it is possible, 
but if possible, it is not necessarily likely [6]. 

As a particular example of defuzzification let us consider a particle moving in 
fuzzy time t and not interacting with other particles. Suppose that at the initial 
macroscopic instant of time 0T =  it had non-fuzzy coordinate 0 0x =  and 
velocity v. Let the measure of fuzzy time membership look like: 

( ) ( )
2

2
0

exp
2

t T τ
µ τ µ

τ
 

= − = − 
 

 

Then, at the macroscopic instant of time T, defuzzified distribution density 
looks like: 

( ) ( )
( ) ( )

( )
( )
( )

2

2
0 0

, d 1, , exp
d 2π 2

f x t x x vT
f x T f x T

x v

µ

µ τ τ

 −
 = = = −
 
 

∫
∫

 

3. Principle of Fuzzy Causality 

Let X be a fuzzy set with measure ( )xµ . Let us call a collective of x for which 
measure ( ) ( )( )1 ,min , 1 0x x X xµ η µ= − ∈ = > , i.e. the set of values of x for 
which the minimal x with measure ( ) 1xµ =  is positive, an almost positive 
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fuzzy interval with level η  [7]-[12]. 
This definition allows us to formulate the principle of fuzzy causality. Let set 

X be time axis t. 
Definition. Events attributed to fuzzy instants of time 1t  and 2t  at one or 

similar spatial points can be connected by an unconditional causal link with level 
η , if the fuzzy interval between them is almost positive. Otherwise they are 
connected by a conditional causal link with level η . 

In ordinary space with non-fuzzy time, this principle goes into the ordinary 
principle of causality at velocities much lower than the light velocity. 

The principle of fuzzy causality leads to an interesting result: for an uncondi-
tional fuzzy causality there is a classical analogue—the regular causality principle 
realized in fuzzy time. 

A conditional causality does not have classical analogues: the “past” in it can 
depend on the “future”, the very concept of the “past” and the “future” has no 
definite meaning. It is possible to talk about the “past” and the “future” only af-
ter the defuzzification process. Schematically, this principle is illustrated in Fig-
ure 1. 

4. The Master Equation in Fuzzy Time 

4.1. Defuzzification of the Liouville Equation 

Let us consider a system consisting of N material points in space Ω of dimension 
of 3d = . Let us assume that the points’ velocities v are much smaller than the 
light velocity, the interaction between them is pairwise ( )j nV x x−  and de-
pends only on the distance between points j and n. If not stated otherwise, the 
mass of the point is assumed to be one, 1m = , the pairwise interaction  

( )j nV x x−  to be small, of the order of 1ε � . 
The system Hamiltonian has the standard form: 

( ) ( )
2

0
1 ,

,
2

N N
j

j j j n
j i j

p
H p x V x x H V

m
ε ε

=

= + − = +∑ ∑  

where ,j jp x  is momentum and coordinate of point j, ε  is small parameter. 
The validity of dynamics equations in fuzzy time is postulated: 

( ),d
d

j jj

j

H p xp
t x

∂
= −

∂
 

( ),d
d

j jj

j

H p xx
t p

∂
=

∂
 

Let ( ), ,j jp x tρ  be the distribution density in 6N-dimensional space at a 
fuzzy instant of time t. 

The equation of evolution for density ( ), ,j jp x tρ  is as follows: 

( ) ( ) ( )0 1

, ,
, , ,j j

j j

p x t
i S S p x t

t

ρ
ε ρ

∂
= +

∂
               (1) 
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(a)                                                          (b) 

Figure 1. Unconditional and conditional causal link with the same level (~0.6): (a) An unconditional causal link—the difference 
between the measure maximums t1 and t2 is positive; (b) A conditional causal link—the difference between the measure max-
imums t1 and t2 is negative. 

 

where 0
0 1,

j j j j

H VS S
p x x p

∂ ∂ ∂ ∂
= = −
∂ ∂ ∂ ∂

. 

Let us seek the solution of this equation by the small parameter expansion 
method ε . 

Operator 0iS  is Hermitian, its own functions are: 

0 2

1, e
Ω

n nni k x
nk nk nk nk NS ϕ λ ϕ ϕ ∑= = , 

where k is the wave vector, n is the particle number, they are orthogonal and can 
be used as the orthonormal basis. 

With zero 0ε =  approximation, solution (1) has the obvious form:  

( ) ( ), , e n n n nn
nn

i x k p k t
j j kn kp x t Cρ +∑=∑ ∑ , where coefficients ( ), ,0

jk j jC p kρ=  are 
Fourier transforms of initial state ( ), ,0j jp xρ . 

As 0ε ≠ , let us assume that ( ) ( ) ( ), , , , e n n n nn

j

i x k p k t
j j j jn kp x t p k tρ ρ +∑=∑ ∑  

is the fuzzy time function satisfying Equation (1). 
After integration over spatial variables jx  (non-fuzzy!) we have: 

( ) ( ) ( ) ( ) ( )( )

( )

, ,
e e

, , , ,

n n j jn n j j i p k q p k q ti p k p k tj j
jnq jn

j j n

p k t
V q iqG

t
p k q k q t

ρ
ε

ρ

− − + ++∂
=

∂
− +×

∑ ∑     (2) 

where ( ) ( )1 e
Ω

j niq x x tV q −
= ∫  is the Fourier transform of the interaction potential, 

factor 2π is included in the volume normalization Ω , jn
j n

G
p p
∂ ∂

= −
∂ ∂

. 

Equation (2) is a fuzzy differential equation. The fuzziness is due to the fuzzi-
ness of time t, while wave vectors and momenta are assumed to be non-fuzzy 
numbers. 
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Density ( ), , ,j j np k q k q tρ − +  satisfies a similar equation: 

( )

( ) ( ) ( )( ) ( ) ( )

, , ,

e e , , ,n n j j n n j j

j j n

i p k q p k q t i p k p k t
jn j j n

p k q tk q t

t

V q iq G p k k t

ρ

ε ρ
− − + + +

− +

∂

= −

 

The latter can be integrated from fuzzy zero [0] to fuzzy t and substituted into 
Equation (2). As a result, we obtain: 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )[ ]

22

1 10
d

, ,
e e

e e , , ,

n n j jn n j j

n n j j n n j j

i p k q p k q ti p k p k tj j
jnjn

t i p k q p k q t i p k p
j

q

k t
jn j n

p k t
V q q qG

t

qG t p k k t

ρ
ε

ρ

− − + ++

− − + + +

∂
= −

∂

∗

∑ ∑

∫
  (3) 

The fuzzy lower limit of integration (fuzzy zero) in this equation is indicated 
as [0]. In the more general case, a symmetric fuzzy number will be denoted as 

[ ]0, a , where a is the set of parameters characterizing the degree of measure 
blurring. 

At that, it should be noted that if b is a non-fuzzy number, then [ ],x a b  is a 
fuzzy number, except for the case of 0b = : [ ], 0x a b = , if [ ]0,a  is a fuzzy zero 
with a measure parametrized by a value, then [ ][ ] [ ]10, 0, 0,a a a=  is also a fuzzy 
zero, but with a different parameterization 1a . 

Value ( )1, , ,j j np k k tρ  differs from ( ), ,j jp k tρ  in order ε , so in (3) t can 
be substituted by 1t . The solution will be sought in the form of a series with re-
spect to small parameter ε , presenting fuzzy time as a sum of macrotime T and 
micro(fuzzy) time τ . Let us use the standard diagram technique. 

4.2. Diagram Technique 

Let us consider the value of ( )e n ni p k t  and present it in the form of a product of 
two prediagrams: 

 
 ( )e n ni p k T   ( )e n ni p k τ   ( )( )e n ni p k T τ+  

 
In this expression, as before, n is the particle number, nk  is the wave vector, 

np  is momentum, T is macro-time and τ  is fuzzy time: t T τ= + . 
To begin with, let us confine to integration of Equation (3) in fuzzy time for 

the homogeneous case, using all 0nk = . 
The first essential term that appears in the integration is of order 2ε  and the 

following diagram corresponds to it: 
 

 

https://doi.org/10.4236/jamp.2018.62034


A. M. Avdeenko 
 

 

DOI: 10.4236/jamp.2018.62034 365 Journal of Applied Mathematics and Physics 
 

or in an explicit form: 

[ ] ( ) ( ) ( )( )( )
[ ] ( )

[ ] ( ) ( ) ( )( )( )
[ ]

( )( )( ) ( )

1 1 2

1 1 2

1 2

2
2

1 22 0 0

2
2

1 22 0 0

d e d ,0

d e d

e ,0

n j

n j

n j

t t i p p q t t
jn jn jq jn

T T i p p q T T
jnq jn

i p p q
jn j

t V q q qG t qG p

T V q q qG T

qG p
τ τ

ε
ρ

ε

ρ

− − −

− − −

− − −

Ω

=
Ω

×

∑ ∑ ∫ ∫

∑ ∑ ∫ ∫  

This expression reflects the fact that we are interested in the defuzzified de-
pendence of the distribution density on macro-time ( ),jp Tρ , thus in the in-
ternal lines of the diagrams we can henceforward integrate over macro-time T 
and defuzzify (average with a weight equal to normalized measure ( )2 1 2,µ τ τ  
over microtime τ ). 

Considering further that the measure of the difference of two fuzzy numbers 
( )2 1 2,µ τ τ  is determined through the norm as:  
( ) ( ) ( )( )1 2 1 22 1 2 1 2,, max min ,τ τ τ τµ τ τ µ τ µ τ−=  and, confining to the consideration 

of even measures, we have: ( ) ( )( )1
2 1 2 1 2, 2Zµ τ τ µ τ τ−= − , where Z is the nor- 

ming quantity. 
Thus: 

( )( )( ) ( )( )
( )( )( ) ( )

1 2

1 1 2

2

1
1 2 1 2 2

e

d e , d

n j

n j

i p p q
n j

i p p q

g p p q

Z

τ τ

τ τ τ
τ µ τ τ τ

− − −

∞ − − −−

−∞ −∞

= −

= ∫ ∫
 

Let us introduce discontinuous function ( ) 1θ τ =  for 0τ >  and ( ) 0θ τ =  
for 0τ < . Its Fourier transform can be represented as: 

( ) 1 e d
2π

i

i i

ωτ

θ τ ω
ω γ

∞

−∞
=

−∫  

Then expression ( )( )2 n jg p p q−  can be written in the form: 

( )( ) ( ) ( ) ( )

( )( ) ( )

1
2 1 0

1
1

d e d

d d

n ji p p q
n j

n j

g p p q Z

Z p p q

ττ µ τ θ τ τ

τ µ ω δ ω ω

∞ ∞ − −−

−∞

∞ ∞−
−−∞ −∞

− =

= + −

∫ ∫

∫ ∫
 

where ( ) ( )d 0Z µ τ τ µ ω
∞

−∞
= = =∫ , ( ) ( ) ( )1 1iP

i i
πδ ω πδ ω

ω γ ω−
 = = −  −  

, 

1P
ω
 
 
 

 is a symbol of the principal value, ( ) ( )e diωτµ ω µ τ τ
∞

−∞
= ∫ . 

Strictly speaking, it should be written as ( )2µ ω  and, in general, when de-
fuzzification is carried out over k fuzzy variables ( )kµ ω , where ( )µ ω  is the 
Fourier transform of the fuzzy time measure. This will be assumed in the future. 
Finally we have: 

( )( ) ( )( )
( )

( )
( ) ( )2

1 d
0 0

n j
n j

n j

p p q
g p p q i P

p p q

µ µ ω
π ω

µ µ ω
∞

−∞

 −
 − = −
 + − 

∫  

Integrating over macro-time T gives: 
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( ) ( )

( ) ( )( )
( )( )1 1 2

1 2 20 0

1d e d 1 en j n jT T i p p q T T i p p qT

n j n j

iTT T
p p q p p q

− − − − −
= + −

− −
∫ ∫  

Henceforward we will be interested in behavior for large macro-times T, so 
the second summand in this expression can be neglected: 

( ) ( )

( ) ( )( )1 1 2
1 2 20 0

d e dn jT T i p p q T T
n j

n j

iTT T T p p q
p p q

− − −
≈ = ∆ −

−∫ ∫  

This expression is invariant under replacement of n np p→− , T T→− , i.e. it 
still describes reversible processes. 

Finally we have: 

( ) ( )( ) ( )( ) ( )
2

2
2 22 ,0

Ω jn n j n j jn jq jnT V q qG p p q g p p q qG pε
ρ∆ − −∑ ∑  

It is important that for large Ω, more precisely for Ω→∞ , and simultaneously 

N →∞ , but on retention of const
N
Ω
→ , the summation over q can be 

replaced with integration dq∫ , but then  

( )( ) ( )( ) ( )( ) ( )2
1 .n j n j n j

n j

p p q p p q p p q iP
p p q

δ πδ−

 
 − → − = − −
 − 

∆  

This leads to violation of the diagram invariance with simultaneous replace-
ment of n np p→− , T T→− , i.e. to transition from the reversible Liouville eq-
uation to the irreversible basic kinetic equation. This is the basis for the ap-
proach to describing irreversible behavior in one of the models of [1]. 

In a system of finite dimensions the replacement of summation with integra-
tion is impossible: the approach of Prigozhin does not work, but within the 
framework of the fuzzy time concept irreversibility in (3) arises from factor 

( )( )2 n jg p p q− , which is non-invariant relative of this transformation. 
Let us consider the following orders with respect to ε of perturbation theory.  

Some diagrams and their orders are presented in Table 1. The value of NC =
Ω

  

is the concentration of particles. Since we are interested in behavior for large 
macro-times T, we will keep the terms having the maximal order with respect to 
macro-time T and the minimal order with respect to small parameter ε. If these 
orders are equal, then we leave the terms of minimal order with respect to C. 

In other words, we keep diagram 2, omitting 3 (the same order with respect to 
ε, but different with respect to C). Further, we keep diagram 4, omitting 5, etc. In 
addition, it is necessary to take into account iterations of diagrams 1 - 5, i.e. dia-
gram 6 and those similar to it. 

Taking into account (3), let us write in an explicit form, for example, the con-
tribution due to defuzzification into a diagram of type 2: 

( ) ( )( )
( )
( ) ( )( ) ( )( )

3 1

1

,

, d
0

n j n j

n j n j

g p p q p p q

p p q p p q
µ ω

δ ω δ ω ω
µ

∞

− −−∞

− −

= + − + −∫
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Table 1. Diagrams of integration in fuzzy time of Equation (2). The type of the diagram, 
its order with respect to perturbation parameter ε, number of particles N, concentration 
C and the macro-time T are indicated. 

 Diagram Order 

1 

 

2 NCTε  

2 

 
 3 NCTε  

3 

 
4 NCTε  

4 

 

3 2NC Tε  

5 

 

4 2NC Tε  

6 

 

( )22 NCTε  

 
However it is obvious that the series obtained in Table 1 is a series expansion 

of the exponential function of macro-time T, thus the equation for the defuzzi-
fied distribution density ( ),jp Tρ  takes the following form: 

( ),jp T

T

ρ∂
=

∂
        +               +                     + (4) 

Or in an explicit form, for example, in order 2ε : 

( )
( ) ( )( )

( )( ) ( )

2
2

22

2

,

Ω

,

j
jn n jq jn

n j jn j

p T
V q qG p p q

T

g p p q qG p T

ρ ε

ρ

∂
= − ∆ −

∂

× −

∑ ∑  

This is the basic kinetic equation in fuzzy time after defuzzification. The ma-
jor difference is that non-invariance with respect to replacement of T T→− , 

j jp p→−  (i.e. irreversibility) is a consequence of not an infinite number of de-
grees of freedom, but of the fuzziness of time through the factor  

( )( )2 n jg p p q− . 

https://doi.org/10.4236/jamp.2018.62034


A. M. Avdeenko 
 

 

DOI: 10.4236/jamp.2018.62034 368 Journal of Applied Mathematics and Physics 
 

For heterogeneous systems 0jk ≠  the results are similar. This can be shown 
by simple but cumbersome transformations. 

Operator ( ) ( )1, , , ,k n j kk g p p q qΛ = �  connecting Gibbs and Boltzmann dis-
tribution functions in fuzzy time: Λρ ρ= , henceforward, let us call it the oper-
ator of dissipative projection of order k. 

4.3. Quantum Case. Fuzzy Pauli Equation 

For a quantum mechanical system it is necessary to use a half-set of phase va-
riables and a density operator instead of distribution density ( ), ,j jp k tρ ρ . 

Let us again consider systems of N interacting particles with a pair potential, 
which depends on the distance between them ( )j nV x x−  and assume ε  to be 
a small parameter. Operator ρ  satisfies the evolution equation of the following 
form: 

[ ],i H
t
ρ

ρ
∂

= −
∂ �

 

where ( )
2

2

2 j j nj jnH V x x
m

ε= ∇ + −∑ ∑�  is the Hamiltonian operator, �  is 

the Planck’s constant. 
The transition to the interaction representation is carried out by means of 

transformation 0 0
1 e eiH t iH tρ ρ −= � � , and the equation for operator 1ρ  takes the 

form as follows: 

[ ]1
1

i V
t
ρ

ε ρ
∂

= −
∂ �

 

The only difference is in the fuzziness of time t and, as a consequence, the 
need to defuzzify this expression. 

In momentum space this equation can be written as: 

( )
( ) ( ) ( ) ( ) ( )( )

( ) ( )( )

1

1 1

,
e

, ,

j n j n
i E k E k E k q E k q tj n

q jn

j n j n

k k i V q
t

k k k q k q

ρ
ε

ρ ρ

+ − + − −∂
−

×

=
∂

− + −

∑ ∑ �

�  

In this expression ( )
2

2

2j jE k k
m

=
�  is the energy of a free particle. In the  

quantum case, we will explicitly write out the mass of the particle. Because of  

space homogeneity transformations are possible: 
2n n
qk k→ + , 

2j i
qk k→ − , 

and then, since ( ) ( ) ( ) ( ) ( )
2

2j n j n n jE k E k E k q E k q q k k
m

+ − + − − = −
� , we have: 

( )
( )

( )1 2

1 1

,
e

, ,
2 2 2 2

n ji q k k tj n m
q jn

j n j n

k k i V q
t

q q q qk k k k

ρ
ε

ρ ρ

 − 
 

∂
= −

∂
    × + − − − +    

    

∑ ∑
�

�        (5) 

For matrix element 1 ,
2 2j n
q qk kρ  + − 

 
, by analogy with the results obtained 
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above, the following expression holds: 

( )
( ) ( ) ( )( )

1

2
1 1

,
2 2

e , ,
n j

j n

i q k k t
m

j n j n

q qk k

t
i V q k q k q k k

ρ

ε ρ ρ
 − 
 

 ∂ + − 
 

∂

= − + − −
�

�

 

By integration of this equation with fuzzy time and substitution in (4) we ob-
tain: 

( )
( )

( ) ( )
[ ]

( ) ( )( )

1
2

21 2 2
2 0

1 1 1 1

,
e e

, , , d

n j n ji q k k t i q k k tj n m m
q

t

jn

j n j n

k k
V q

t
k q k q k k t t

ρ ε

ρ ρ

   − −   
   

∂
= −

∂

+ −× −

∑ ∑ ∫
� �

�  

Again we split fuzzy time t into macroscopic T and fuzzy component τ  and, 
by analogy with (3), draw the evolution equation for the defuzzified density op-
erator ( )1 ,jk Tρ : 

( ) ( ) ( ) ( )( )
( ) ( )( )

2
21

2 22

1 1

,
Δ

, , , ,

i
n jq jn

j n j n

k T
V q T g k k q

T

k k T k q k q T

ρ ε

ρ ρ

∂ −
= −

∂

× − + −

∑ ∑�         (6) 

In this expression: 

( ) ( ) ( ) ( ) ( )2
1 ,

j n j n

T
E k E k E k q E k q

∆ =
+ − + − −

 

( )( ) ( )
( ) ( )2 d
0 2n j n jg k k q k k q

m
µ ω

δ ω ω
µ

∞

−−∞

 − = + − 
 ∫

�  

In quantum mechanics momentum is j jp k= � , therefore Equation (6) de-
scribes the momentum distribution density evolution in macro-time. 

Higher-order summands are drawn in a similar way. All considerations con-
cerning orders of diagrams in analyzing the system’s behavior for large T remain 
valid. Let us call defuzzified Equation (6) the fuzzy Pauli equation. It is impor-
tant that in systems of a finite size non-invariance with respect to the replace-
ment of T T→− , j jp p→−  is again a consequence of time fuzziness. 

5. The Second Law of Thermodynamics 

Let us consider the classical model. Let us define entropy for a homogeneous 
system (the distribution density depends only on N momenta jp ) in a standard 
way: 

( ) ( ) 1, ln , d dj j NS p T p T p pρ ρ= −∫ � , 

Its derivative with respect to macro-time is: 

( )( )
( ) ( )( )

2

12

2

d d d 1 ln ,
d Ω

,

N j

jn jn jn jq jn

S p p p T
T

V q qG L qG p T

ε
ρ

ρ

= − +

×

∫ ∫

∑ ∑

� �
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Here we introduce designation ( )( ) ( )( )2 2jn n j n jL p p q g p p q= ∆ − − . 

If it is assumed that when jp → ∞∓ , ( ), 0jp Tρ → , 
( ),

0j

j

p T

p

ρ∂
→

∂
, then 

after integration by parts we have: 

( ) ( )( )
2 22

12

d d d ,
d Ω N jn jn j

q jn

S p p V q L qG p T
T

ε
ρ= ∑∑∫ ∫ ��  

It is obvious that sign 
d
d

S
T

 is determined by parity or oddity jnL  during re-

placement j jp p→− . 

For a system of a finite size, taking into account definition of ( )( )2 n jp p q∆ −  

and ( )( )2 n jg p p q− : 
( ) ( )

1 1~jn
n j n j

L P
p p q p p q

 
 
 − − 

 is even and therefore 

the integral is positive, entropy increases with the system’s evolution in macro-

time: 
d 0
d
S
t
≥ . 

It is essential that there is no requirement to the infinity of system Ω→∞   

provided that constNC = =
Ω

, i.e. the second law of thermodynamics is a 

consequence of just the fuzziness of time in a system with interactions. In the 
quantum case the situation is similar. 

6. Discussion 
Let us consider correction ( )( )2 n jg p p q−  for the model in fuzzy time. Cor-
rections of higher orders and heterogeneity of jk  will not lead to fundamental 
changes. Let us denote ( ) njn j qPω ω− = = , where njP  is the relative momen-
tum of particles n and j. 

In expression ( )2g ω  frequency ω  will inevitably come in combination 
with time dimension value 0τ , which is naturally identified with the characte-
ristic scale of the fuzzification of time and evaluated as: 

( )2 2
0 dτ τ µ τ τ

∞

−∞
= ∫  

It follows from definition ( )2g ω , that when we turn to the classical approach 
(a non-fuzzy model) ( ) ( )t tµ δ→  and because of the oddness of the principal  

value 1P
ω
 
 
 

: ( )2 0 1g ωτ → . 

Hence for small 0τ  it is possible to expand in a series: 

( ) ( )22 0 0 01 0g gωτ ωτ ωτ′= + = +�  

The value of ω  in this expression is of the order of reverse characteristic 

time of the system: 
1~
ct

ω , thus the characteristic scale of macrotime T, where 

experimental fixation of these effects is possible: 
2

0

~ ctT
τ

. 
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Of course, irreversibility effects as a consequence of defuzzification arise in 
systems with interaction of order 2ε . 

A natural question arises about the value scale estimation and, as a conse-
quence, about the possibility of experimental verification of fuzzy time hypothe-
sis. 

At present, a number of fundamental constants is known, the only combina-
tion of which gives a value with time dimension. This is Planck’s constant � , 
gravitational constant γ  and light velocity c. 

Their combination: 43
0 2

1 0.5 s10
cc
γ

τ −= ≈ ×
�  is a possible candidate for 

characteristic scale of time blurring. 

From estimate 
2

0

~ ctT
τ

 we have characteristic time T ~ equal to 1015 - 1017 s  

both for frequencies of the order of 1017 - 1018 s−1 (X-ray radiation) T ~ 2(107 - 
109) s and for optical scales with frequencies of the order of ~1014 s−1. 

In the quantum case, the effect should be observed for high-energy processes: 

( )0 ~
2 n jk k q

m
τ −

�
. 

Finally, it is necessary to note one more aspect that is related to the results ob-
tained. It can be shown that the algebra of non-commuting operators is isomor-
phic to the algebra of fuzzy numbers, so an alternative (or more familiar) ap-
proach is to consider time as the Hermitian operator that does not commute 
with the operator of evolution. The results will be similar. 

7. Conclusions 

1) The principle of fuzzy causality is formulated, generalizing the principle of 
causality to the system evolution in fuzzy time. 

2) The master equation for the fuzzy time model is obtained, both in the clas-
sical and in the quantum cases. 

3) It is shown that the second law of thermodynamics is a consequence of the 
system evolution in fuzzy time. 
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