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Abstract 
Flow through a channel bounded by a porous layer is considered when a tran-
sition layer exists between the channel and the medium. The variable permea-
bility in the transition layer is chosen such that Brinkman’s equation govern-
ing the flow reduces to a generalized inhomogeneous Airy’s differential equa-
tion. Solution to the resulting generalized Airy’s equation is obtained in this 
work and solution to the flow through the transition layer, of the same confi-
guration, reported in the literature, is recovered from the current solution. 
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1. Introduction 

In their recent study, Nield and Kuznetsov [1] provided elegant analysis of the 
mechanics of a transition layer between a Darcy porous layer and a Navi-
er-Stokes channel. In the transition layer, they employed Brinkman’s equation 
with variable permeability and provided exact solution of the flow in terms of 
Airy’s functions. Rooted in the work of Nield [2], the concept of the transition 
layer has been implemented and validated in the analysis provided by number of 
other authors over the last two decades (cf. Goyeau et al. [3]; Goharzadeh et al. 
[4]; Parvazinia et al. [5]; Chandesris and Jamet [6]; Hill and Straughan [7]; Du-
man and Shavit [8]), thus illustrating further usefulness of Brinkman’s equation 
in the study of flow over porous layers. Furthermore, the Nield and Kuznetsov 
approach [1] continues to receive attention, and has been implemented by a 
number of authors in their solution of problems involving the transition zone (cf. 
Tao et al. [9] and the references therein). In addition to providing an impetus to 
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the transition zone approach, the work of Nield and Kuznetsov [1] initiated a 
number of firsts that include: 

1) Introducing and reviving the implementation of classical integral functions 
in the porous media literature (as witnessed by their use of Airy’s differential 
equation and the Airy functions in providing an analytical solution to the flow in 
the transition zone); 

2) Introducing a new integral function, Ni(x), to facilitate solution to the in-
homogeneous Airy’s differential equation. This function is better known as the 
Nield-Kuznetsov function, and has been studied extensively by Hamdan and 
Kamel [10], as it proved to possess favorable mathematical properties that in-
clude its serving as a solution to a number of well-known differential equations, 
such as Langer’s comparison differential equation, Hamdan and Kamel [10]. 

3) Initiating non-traditional models of permeability variations in porous me-
dia. While the classical use of elementary mathematical functions has served the 
subject matter well, the use of special functions in advancing the topic represents 
a new generation of models the computations of which is no longer a formidable 
task. 

Many excellent reviews of flow through and over porous layers are available in 
the literature (cf. Nield and Bejan [11]; Nield [12]), and it is not our intention to 
revisit appropriate models and conditions at the interface between a fluid and a 
porous layer. Rather, our intention in this work is to revisit the problem consi-
dered by Nield and Kuznetsov [1] and provide an alternative variable permeabil-
ity model that reduces Brinkman’s equation in the transition zone to a genera-
lized Airy’s differential equation (in the sense introduced by Swanson and 
Headley [13]). We will present an analytical solution in terms of the generalized 
Airy’s functions, and provide computations using Maple’s built-in functions. 
The solution provided by Nield and Kuznetsov [1] is then compared with a spe-
cial case of the current formulation, which shows agreement between solutions 
obtained. It is believed that the current approach will provide extended flexibility 
in modelling permeability variations in the transition zone. 

2. Problem Formulation 

We consider fluid flow through a channel consisting of three layers, as shown in 
Figure 1. The first layer consists of free-space, bounded below be a solid, im-
permeable wall and bounded above by the transition porous layer, and is occu-
pied by a fluid whose flow is governed by Navier-Stokes equations. The second 
(middle) layer is a porous medium with variable permeability taken as the reci-
procal of a polynomial of degree n. This is the transition layer that bounds the 
free-space channel from above, and is saturated with fluid whose flow is go-
verned by Brinkman’s equation. The third layer is a porous medium with con-
stant permeability that is bounded from above by a solid, impermeable wall, and 
bounded from below by the variable permeability transition layer. Flow in the 
third layer is governed by Brinkman’s equation, and the flow through the three  
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Figure 1. Representative sketch of a channel bounded by a transition porous layer. 

 
layers is driven by a common pressure gradient. Permeability distribution in the 
configuration of Figure 1 is given as follows, where we take 0K  as a constant 
reference permeability. 

In the lower region, or Region 1 (the fluid zone): 
*

1 for 0 .K y Hη→∞ < <                       (1) 

In the middle region, or Region 2: 

( )
( )

0 *
2 *

; for .
n

n

K H
K H y H

y H

ξ η
η ξ

η

−  = < <
−

              (2) 

In the upper region, or Region 3: 
*

3 0; for .K K H y Hξ= < <                      (3) 

The boundary value problem at hand can be formulated as follows: 
2 *

*1
1 *2

d 0 for 0 .
d

u G y H
y

µ η+ = < <                   (4) 

2 *
*2

2 2*2
2

d 0 for .
de

u u G H y H
Ky
µ

µ η ξ− + = < <              (5) 

2 *
* *3
3*23

3

d
0 for .

de
u u G H y H

Ky
µ

µ ξ− + = < <              (6) 

In the above equations, d
d
pG
x

= −  is the constant pressure gradient. For  

1,2,3i = , with 1i =  referring to layer 1, 2i =  referring to layer 2, and 3i =  
referring to layer 3, the quantities in Equations (4), (5), and (6): *, ,i i iu K µ , and 

eiµ  denote the velocity, permeability, base fluid viscosity, and effective viscosity, 
respectively, in layer i . 
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Following Nield and Kozentsov, [1], we introduce the following dimensionless 

variables, where Da  refers to Darcy number: 
*

*0
2 2; ; i

i i
Kyy Da u u

H H GH
µ

= = =  

for 1,2,3i = ; and ei
i

i

M µ
µ

=  for 2,3i = . 

The permeability distributions, 1 2,K K  and 3K  can be written in the fol-
lowing dimensionless form in terms of Darcy number, Da: 

* 1
1 2

KK
H

= →∞                           (7) 

* 2
2 2

n
KK Da

yH
ξ η

η
 −

= =  − 
                      (8) 

* 3
3 2

KK Da
H

= = .                         (9) 

Equations (4), (5), and (6) take the following forms, respectively: 
2

1
2

d 1 0; 0 .
d

u y
y

η+ = < <                     (10) 

2 2
2

2 22
2

d 1 0; .
d

u HM u y
Ky

η ξ− + = < <                (11) 

2 2
3

3 32
3

d
1 0; 1

d
u HM u y

Ky
ξ− + = < <                 (12) 

and, upon substituting the permeability distributions, (7)-(9), in equations 
(10)-(12), we get 

2
1

2

d 1 0; 0 .
d

u y
y

η+ = < <                      (13) 

( )
( )

2
2

22
22

d 1 1 0; .
d

n
n

u y u y
My M Da

η η ξ
ξ η

− − + = < <
−

        (14) 

2
3

32
3 3

d 1 1 0; for 1.
d

u u y
DaM My

ξ− + = < <               (15) 

Equation (13), (14) and (15) must be solved subject to the following boundary 
and matching conditions 

1 0 at 0u y= =                         (16a) 

1 2 atu u y η= =                        (16b) 

1 2
1

d d at .
d d
u u y
y y

ϑ η= =                      (16c) 

2 3 at .u u y ξ= =                        (16d) 

32
2

dd at .
d d

uu y
y y

ϑ ξ= =                     (16e) 

3 0 at 1u y= = ,                       (16f) 
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where 2
1

1

µ
ϑ

µ
=  and 2

2
3

µ
ϑ

µ
=  are the viscosity ratios. 

Now, letting 

( )2
2

1
n nn M Da
τ

ξ η+
=

−
                      (17) 

3
3

1
M Da

λ =                           (18) 

Equation (14) and Equation (15) become, respectively: 

( ) ( )
2

22
2

2

d 1 0
d

n n
n

u y
My

τ η+− − + =                    (19) 

2
23
3 32

3

d 1 0
d

u u
My

λ− + = .                       (20) 

General solutions for Equation (13) and Equation (20) are given, respectively, 
by 

( )
2

1 1 1 2
yu y c y d= + −                        (21) 

( ) ( ) ( )3 3 3 3 3 2
3 3

1exp expu y c y d y
M

λ λ
λ

= + − + .             (22) 

In order to solve Equation (19), we first use the following transformation 
( )ny yτ η= −  and write ( ) ( )2 2u y U y≡  . Equation (19) then becomes: 

( ) ( ) ( )
( )

2
2

22 2
2

d 1 0
d

n

n

U y
y U y

y M τ
− + =



 



               (23) 

Equation (23) is the generalized inhomogeneous Airy’s differential equation. 
A fundamental pair of linearly independent solutions for the homogeneous part 
are the generalized Airy’s functions ( )nA y  and ( )nB y , (cf. Swanson and 
Headley [13]), defined respectively by 

( ) ( )( ) ( )1 22 sin π
πn p
p pyA y K ζ=                   (24) 

( ) ( ) ( ) ( )( )
1
2n p pB p Iy y Iζ ζ−= +                    (25) 

The terms pI  and pK  are the modified Bessel functions defined as: 

( ) ( ) ( )

2

1

1
! 1 2

m p
p

p p mI i J i
m m p

ζ
ζ ζ

+
∞−
=

 = =  Γ + +  
∑          (26) 

( ) ( )( )
( )

π( )
2 sin π

p p
p

I I
K

p

ζ ζ
ζ − −

=                     (27) 

with 1
2

p
n

=
+

, 
1

22 ppYζ = , and Γ  is the gamma function. 

Solution to the homogeneous part of (23) is thus given by 

( ) ( ) ( )2 2 2h n nU y c A y d B y= +   .                   (28) 
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We find it convenient to introduce the following integral function: 

( ) ( ) ( ) ( ) ( )
0 0

d d .
y

n n n n n
y

Z A B t t B A ty ty y= −∫ ∫
 

                 (29) 

The function ( )nZ y  reduces to the Nield-Kuznetsov function ( )iN y  when 
n = 1. 

The Wronskian of ( )nA Y  and ( )nB Y  is given by: 

( ) ( )( ) ( )
1
22, sin π

πn ny yW A B p p=                    (30) 

and general solution of (23) is expressed, using variation of parameters, as: 

( ) ( ) ( ) ( )2 2 2= n n n nU y c A y d B y Z yσ+ +                    (31) 

where 1
2

p
n

=
+

 and 
( ) ( )2

2

π
2 sin π

n
np p M

σ
τ

= . 

Upon substituting ( )ny yτ η= − , ( ) ( )2 2u y U y≡  , and  

( ) ( )2
2

π
2 sin π

n
np p M

σ
τ

= , in (28) we obtain the following general solution to 

Equation (14): 

( ) ( )( ) ( )( )

( ) ( )
( )( )

2 2 2

2
2

π
2 sin π

n n n n

n n
n

u y c A y d B y

Z y
p p M

τ η τ η

τ η
τ

= − + −

+ −
            (32) 

Derivatives of the functions ( )nA y , ( )nB y  and ( )nZ y  are given by: 

( ) [ ] ( )
1

2
1

2 sin
π

n

n p
pA y py y K ζ

+

−′ = −                    (33) 

( ) ( ) ( )
1 1
2 2

1 1

n

n p pB y p y I Iζ ζ
+

− −′  = +                     (34) 

( ) ( ) ( ) ( ) ( )
0 0

d d .
y

n n n n n
y

yZ A B t t B A t ty y′ ′ ′= −∫ ∫
 

                  (35) 

Shear stress expressions across the layers are obtained from Equations (21), 
(22) and (32), and take the following form: 

1
1

d
d
u c y
y
= −                          (36) 

( )( ) ( )( )

( )
( )( )

2
2 2

2

d
d

π
2 sin π

n n n n n n

n n
n

u c A y d B y
y

Z y
p p M

τ τ η τ τ η

τ η
τ

′ ′= − + −

′+ −
            (37) 

( ) ( )3
3 3 3 3 3 3

d
exp exp

d
u c y d y
y

λ λ λ λ= − − .              (38) 

Upon using boundary and interfacial conditions, (16a)-(16f), in Equations 
(21), (22) and (32), we obtain the following system of linear equations that is to 
be solved for the arbitrary constants 1 1 2 2 3 3, , , , ,c d c d c d : 

1 0d =                              (39) 
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( ) ( )
2

1 1 2 20 0
2n nc d c A d B η

η + − − =                  (40) 

( ) ( )1 2 1 2 10 0n n n nc c A d Bϑτ ϑτ η′ ′− − =                 (41) 

( )( ) ( )( ) ( ) ( )

( ) ( )
( )( )

2 2 3 3 3 3

2 2
3 3 2

exp exp

1 π
2 sin π

n n n n

n n
n

c A d B c d

Z
M p p M

τ ξ η τ ξ η λ ξ λ ξ

τ ξ η
λ τ

− + − − − −

= − −
   (42) 

( )( ) ( )( ) ( ) ( )

( )
( )( )

2 2 2 2 3 3 3 3 3 3

2

2

exp exp

π
2 sin π

n n n n n n

n n
n

c A d B c d

Z
p p M

ϑ τ τ ξ η ϑ τ τ ξ η λ λ ξ λ λ ξ

ϑ
τ ξ η

τ

′ ′− + − − + −

′= − −
(43) 

( ) ( )3 3 3 3 2
3 3

1exp expc d
M

λ λ
λ

−
+ − =                 (44) 

Linear Equations (39)-(44) are cast in the following matrix-vector form 

=Mx c ,                         (45) 

where: 

( ) ( )
( ) ( )

( )( ) ( )( ) ( ) ( )
( )( ) ( )( ) ( ) ( )

( ) ( )

1 1

3 3

2 2 3 3 3 3

3 3

0 1 0 0 0 0
1 0 0 0 0

1 0 0 0 0 0
0 0 exp exp

0 0 exp exp

0 0 0 0 exp exp

n n

n n n n

n n n n

n n n n n n

A B
A B

A B

A B

η
ϑτ ϑτ
τ ξ η τ ξ η λ ξ λ ξ

ϑ τ τ ξ η ϑ τ τ ξ η λ λ ξ λ λ ξ

λ λ

 
 − − 
 ′− −
 = ′ − − − − − 
 ′ ′− − − − 
 − 

M

 
(46) 

1

1

2

2

3

3

c
d
c
d
c
d

 
 
 
 

=  
 
 
 
  

x                            (47) 

( )
( )( )

( )
( )( )

2

2 2
3 3 2

2

2

2
3 3

0

2

1 π
2 sin π ( )

π
2 sin π

1

n n
n

n n
n

Z
M p p M

Z
p p M

M

η

η

τ ξ η
λ τ

ϑ
τ ξ η

τ

λ

 
 
 
 
 
 
 

− − =
 
 
 ′− −
 
 

− 
 
 

c .          (48) 

In solving the above linear system, we make use of the following values of the 
generalized functions nA , nB  and nZ , and their first derivatives at zero (cf. 
[13]), wherein Γ  is the Gamma function: 

https://doi.org/10.4236/jamp.2018.61025


M. S. Abu Zaytoon et al. 
 

 

DOI: 10.4236/jamp.2018.61025 271 Journal of Applied Mathematics and Physics 
 

( ) ( )
1

0
1

p

n
pA

p

−

=
Γ −

                         (49) 

( ) ( )

1
2

0
1

p

n
pB

p

−

=
Γ −

                         (50) 

( ) ( )
0

p

n
pA

p
′ = −

Γ
                         (51) 

( ) ( )

1
2

0
p

n
pB

p

−

′ =
Γ

                          (52) 

( )0 0nZ =                             (53) 

( )0 0nZ ′ = .                           (54) 

3. Results and Analysis 

Results have been obtained for a range of values of n and the range of Da = 1; 0.1; 
0.001; 0.0001; and 0.00001 in order to illustrate the effects of changing n and Da 
on the generalized functions, on the permeability function, on the arbitrary 
constants, and on the velocity profiles. Thick and thin transition layers are 
considered. In particular, we choose 1 3, 2 3η ξ= =  and 1 4, 3 4η ξ= =  for 
thick transition layer, and 0.49, 0.51η ξ= =  for thin layer. 

Values of 1
2

p
n

=
+

, nA , nA′ , nB , nB′ , nZ , nZ ′ , nσ  and nτ  at 0 and at  

other specified points for different values of n and Da, have been computed us-
ing Maple. These values are important in the calculation of the arbitrary 
constants in the matrix-vector Equations (45), and in the determination and 
plotting of permeability functions and velocity profiles. Computational results 
are most accurate when Da = 1; 0.1; and 0.001. 

4. Dimensionless Permeability Distributions 

For the sake of graphs we find it more convenient to plot the reciprocal of the 
dimensionless permeability functions (7)-(9), namely 

*
1

1 0 for 0 .y
K

η= < <                          (55) 

( )*
2

1 1 ; for .
n

y y
DaK y

η
η ξ

ξ η
 −

= < < − 
                  (56) 

*
1

1 1 for 1.y
DaK

ξ= < <                        (57) 

Dependence of the permeability distributions on the value of n is illustrated in 
Figure 2, which shows the reciprocal of the dimensionless permeability across  

the three layers for n = 1, 2, 3 and 5, for 1 2,
3 3

η ξ= = , and Da = 1. Figure 2  
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Figure 2. Dimensionless permeability distributions for 1 2,
3 3

η ξ= = , Da = 1, 

and different n. 

 
demonstrates the increase of the reciprocal permeability of the transition layer 
(or decrease of permeability) with increasing n. 

5. Velocity at the Interfaces 

At the lower and upper interfaces, y η=  and y ξ= , respectively, between lay-
ers, velocity expressions are obtained from Equations (21), (22), and (32), and 
take the form 

( )
2

1 1 1 2
u c d η

η η= + −                        (58) 

( ) ( ) ( )2 2 20 0n nu c A d Bη = +                     (59) 

( ) ( )( ) ( )( )

( )
( )( )

2 2 2

2
2

π
2 sin π ( )

n n n n

n n
n

u c A d B

Z
p p M

ξ τ ξ η τ ξ η

τ ξ η
τ

= − + −

+ −
           (60) 

( ) ( ) ( )3 3 3 3 3 2
3 3

1exp expu c d
M

ξ λ ξ λ ξ
λ

= + − + .            (61) 

Velocity at the lower and upper interfaces for different middle layer thickness, 
different values of Da, and for n = 1 and n = 2 are given in Table 1 and Table 2, 
which furnish the following observations: 
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Table 1. Velocity for n = 1 at the upper and lower interface. 

 
Da 

Da = 1 Da = 0.1 Da = 0.01 Da = 0.001 

1 3
2 3

η
ξ
=
=

 
( ) ( )1 2u uη η=  0.1068281 0.08214691 0.03908309 0.01714995 

( ) ( )2 3u uξ ξ=  0.1046975 0.06834714 0.01327264 0.00107072 

4
3 4

η
ξ
=
=

 
( ) ( )1 2u uη η=  0.09037786 0.07064158 0.03455354 0.01513239 

( ) ( )2 3u uξ ξ=  0.0883398 0.0574775 0.0110710 0.00101 

0.49
0.51

η
ξ
=
=

 
( ) ( )1 2u uη η=  0.1189297 0.08497432 0.0308578 0.01043350 

( ) ( )2 3u uξ ξ=  0.1186918 0.0833988 0.02721074 0.00630965 

 
Table 2. Velocity for n = 2 at the upper and lower interface. 

 
Da 

Da = 1 Da = 0.1 Da = 0.01 Da = 0.001 

1 3
2 3

η
ξ
=
=

 
( ) ( )1 2u uη η=  0.1078735 0.08819101 0.04952703 0.02688473 

( ) ( )2 3u uξ ξ=  0.1057217 0.07335809 0.01652092 0.0012043 

4
3 4

η
ξ
=
=

 
( ) ( )1 2u uη η=  0.0915251 0.07740496 0.04608594 0.0252177 

( ) ( )2 3u uξ ξ=  0.0894578 0.0628103 0.0134685 0.00108 

0.49
0.51

η
ξ
=
=

 
( ) ( )1 2u uη η=  0.119023 0.0854829 0.03166939 0.01131475 

( ) ( )2 3u uξ ξ=  0.1187851 0.08390017 0.02796018 0.00694503 

 
1) Computations render reasonable results for Da as low as 0.001 when n = 1. 

Inaccuracies start creeping when Da < 0.001. For n = 2, results are reasonable for 
Da as low as 0.0001 and inaccuracies creep when Da < 0.0001. This behavior 
may be attributed to both round-off errors for small Da and inaccuracies in 
evaluation of Airy’s functions for small Da. This behavior persists for thick lay-
ers, and is less noticeable for thin middle layer calculations. 

2) Computations of velocity at the lower interface using expressions (58) and 
(59) agree up to within seven significant digits. The same is true for computa-
tions of velocity at the upper interface using expressions (60) and (61). This is 
indicative of appropriate matching of the velocity at the interfaces, used in this 
work. 

3) For a given Da, velocity at the lower interface decreases with increasing 
middle layer thickness. Similarly, velocity at the upper interface decreases with 
increasing middle layer thickness. This behavior persists for both n = 1 and n = 
2. 

4) For a given middle layer thickness, velocity at each of the lower and upper 
interfaces increases with increasing Da. This is expected, as Da is defined as a 
dimensionless reference permeability and accompanied with increasing permea-
bility is a velocity increase. 

5) The effect of increasing n on the velocity at the interfaces for a given thick-
ness and Da is that the velocity at each interface increases with increasing n. This 
is true for both thin and thick transition layers, and for the range of Da used. 
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6. Shear Stress at the Interfaces 

At the lower and upper interfaces, y η=  and y ξ= , respectively, between lay-
ers, shear stress expressions are obtained from Equations (36), (37), and (38), 
and take the form 

( )1
1

d
d

u
c

y
η

η= −                             (62) 

( ) ( ) ( )2
2 2

d
0 0

d n n n n
u

c A d B
y
η

τ τ′ ′= +                      (63) 

( ) ( )( ) ( )( )

( )
( )( )

2
2 2

2

d
d

π
2 sin π

n n n n n n

n n
n

u
c A d B

y

Z
p p M

ξ
τ τ ξ η τ τ ξ η

τ ξ η
τ

′ ′= − + −

′+ −
                (64) 

( ) ( ) ( )3
3 3 3 3 3 3

d
exp exp

d
u

c d
y
ξ

λ λ ξ λ λ ξ= − − .                  (65) 

Shear stress at the lower and upper interfaces for different middle layer thick-
ness, different values of Da, and for n = 1 and n = 2 are given in Table 3 and 
Table 4, which furnish the following observations: 

1) Computations render reasonable results for Da as low as 0.001 when n = 1 
and n = 2. Inaccuracies start creeping when Da < 0.001. This behavior may be 
attributed to the inaccuracies reported earlier when computing velocity at the 
interfaces using Maple’s built-in functions. When dealing with a thin transition 
layer, results are accurate for as low as Da = 0.00001. 

2) Computations of shear stress at the lower interface using expressions (62) 
and (63) agree up to within a minimum of five significant digits. The same is 
true for computations of velocity at the upper interface using expressions (64) 
and (65). 

3) For a given Da, the absolute value of the shear stress at the lower interface 
increases with increasing transition layer thickness. Similarly, at the upper inter-
face. This behavior persists for both n = 1 and n = 2. 

 
Table 3. Shear stress at the upper and lower interfaces for n = 1. 

Da Da = 1 Da = 0.1 Da = 0.01 Da = 0.001 

1 3
2 3

η
ξ
=
=

 
( ) ( )1 2d d

d d
u u
y y
η η=  0.1538176 0.07977407 −0.04941739 −0.1152168 

( ) ( )32 dd
d d

uu
y y

ξ ξ=  −0.1604999 −0.1231173 −0.0399533 −0.00225 

1 4
3 4

η
ξ
=
=

 
( ) ( )1 2d d

d d
u u
y y
η η=  0.2365115 0.1575664 0.01321413 −0.06447045 

( ) ( )32 dd
d d

uu
y y

ξ ξ=  −0.2363372 −0.1570521 −0.027384 −0.003 

0.49
0.51

η
ξ
=
=

 
( ) ( )1 2d d

d d
u u
y y
η η=  −0.002286399 −0.071583 −0.1820249 −0.2237071 

( ) ( )32 dd
d d

uu
y y

ξ ξ=  −0.02109832 −0.08318887 −0.1736158 −0.167906 
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Table 4. Shear stress at the upper and lower interfaces for n = 2. 

Da Da = 1 Da = 0.1 Da = 0.01 Da = 0.001 

1 3
2 3

η
ξ
=
=

 
( ) ( )1 2d d

d d
u u
y y
η η=  0.1569537 0.09790637 −0.01808557 −0.08601249 

( ) ( )32 dd
d d

uu
y y

ξ ξ=  −0.1636852 −0.1433454 −0.0725202 −0.00648 

1 4
3 4

η
ξ
=
=

 
( ) ( )1 2d d

d d
u u
y y
η η=  0.2411004 0.1846199 0.05934378 −0.02412919 

( ) ( )32 dd
d d

uu
y y

ξ ξ=  −0.2409034 −0.1826534 −0.051689 −0.0032 

0.49
0.51

η
ξ
=
=

 
( ) ( )1 2d d

d d
u u
y y
η η=  −.002095967 −0.07054511 −0.1803686 −0.2219087 

( ) ( )32 dd
d d

uu
y y

ξ ξ=  −0.02130357 −0.08492409 −0.1811111 −0.1886142 

 
4) For a given transition layer thickness, absolute value of shear stress at each 

of the lower and upper interfaces increases with increasing Da. 
5) The effect of increasing n on the absolute value of shear stress at the inter-

faces for a given thickness and Da is that at each interface, this absolute value 
increases with increasing n. This is true for both thin and thick transition layers, 
and for the range of Da used. 

7. Friction Factor 

A quantity of interest is the negative of the shear stress term at the interface 

between the channel and the transition layer, namely 1d
df
uc
y

= −  at y η= . 

This has been analyzed and defined by Nield and Kuznetsov, [1], as a friction 
factor representing the dimensionless frictional stress in the fluid at the interface. 
From Equation (62) we can see that 

( )1
1

d
df

u
c c

y
η

η= − = − .                       (66) 

Values of fc−  for different Da, layer thickness and n = 1 are listed in Table 
5 and compared with the values obtained by Nield and Koznetsov, [1], for the 
same problem. Agreement between the current results and Nield and Koznetsov 
results, up to the three significant digits they report is clear from Table 5. Values 
of fc−  for different Da, layer thickness and n = 2 are listed in Table 6. 

8. Mean Velocity across the Layers 
The dimensionless mean velocities across the layers are defined as 

2 3
1 1 1 1

0

1 1d
2 6

u u y c d
η

η η η= = + −∫                    (67) 

( )( ) ( )( )

( )
( )( )

2 2 2 2

2
2

d

π d
2 sin π ( )

n n n n

n n
n

u u y c A y d B y

Z y y
p p M

ξ ξ

η η

τ η τ η

τ η
τ

= = − + −

+ −

∫ ∫
            (68) 
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Table 5. Values of fc  for different Da, layer thickness and n = 1. 

 
Da 

1 0.1 0.01 0.001 0.0001 0.00001 

1 3
2 3

η
ξ
=
=  

fc  −0.1538176 
−0.153* 

−0.07977407 
0.04941739 

0.049* 
0.1152168 −0.1436413 −0.1562024 

1 4
3 4

η
ξ
=
=  

fc  −0.2365115 −0.1575664 −0.01321413 0.06447045 0.0981652 0.1129008 

0.49
0.51

η
ξ
=
=  

fc  0.0022864 
0.002* 

0.0715832 
0.1820249 

0.182* 
0.2237071 0.2361822 0.2409651 

*Nield and koznetsov results. 

 
Table 6. Values of fc  for different Da, layer thickness and n = 2. 

Da 
 

1 0.1 0.01 0.001 0.0001 0.00001 

1 3
2 3

η
ξ
=
=

 fc  −0.156954 −0.0979064 0.0180856 0.0860125 0.122236 0.142053 

1 4
3 4

η
ξ
=
=  

fc  −0.241100 −0.184620 −0.0593438 0.0241292 0.0696405 0.0944781 

0.49
0.51

η
ξ
=
=  

fc  0.0020959 0.0705451 0.180369 0.221909 0.234224 0.239089 

 
By letting ( )nt yτ η= −  in (7.61) we get 

( )
( )

( )
( )

( ) ( )
( )

( )

2 2
2

0 0

3
02

d d

π d
2 sin π

n n

n

y y

n n
n n

y

n
n

c du A t t B t t

Z t t
p p M

τ η τ η

τ η

τ τ

τ

− −

−

= +

+

∫ ∫

∫
            (69) 

( ) ( )

( ) ( ){ } ( ) ( ){ }

1 1

3 3 3 3 3 3 2
2 3

3 3 3 3 3 3
3 2 3

1d exp exp d

1 1exp exp exp exp

u u y c y d y y
M

c d
M

ξ ξ

λ λ
λ

ξ
λ λ ξ λ λ ξ

λ λ

 
= = + − + 

 
 −

= − − − − − + 
 

∫ ∫
  (70) 

The dimensionless mean velocity across the configuration (that is, across the 
three layers) is defined as 

1

1 2 3 1 2 3
0

d d du u u u u y u y u y
η ξ

η ξ

= + + = + +∫ ∫ ∫              (71) 

and represents a measure of the overall volume flux through the channel confi-
guration. 

The above expressions are evaluated using Maple and the values are listed in 
for n = 1 and n = 2 in Table 7 and Table 8, respectively, for different transition 
layer thicknesses and different Da. Comparison is made for the case of n = 1 
with the Nield and Koznetsov results [1]. Agreement between the results is evi-
dent from Table 7. It is also evident from Table 7 and Table 8 that increasing n 
results in a higher mean velocity across the channel for thick layers but the in-
crease is minimal for thin layers, for a given Da. 
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Table 7. Mean velocity across the channel for n = 1. 

 
Da 

Da = 1 Da = 0.1 Da = 0.01 Da = 0.001 

1 3
2 3

η
ξ
=
=

 u  
0.079395 
0.0794* 

0.05692682 
0.02071123 

0.0207* 
0.007936325 

1 4
3 4

η
ξ
=
=  

u  0.07938781 0.05659447 0.01881449 0.00553387 

0.49
0.51

η
ξ
=
=  

u  
0.07940428 

0.0794* 
0.05735128 

0.02355505 
0.0236* 

0.01315206 

 
Table 8. Mean velocity across the channel for n = 2. 

 
Da 

Da = 1 Da = 0.1 Da = 0.01 

1 3
2 3

η
ξ
=
=

 u  0.08744141 0.06403606 0.02670879 

1 4
3 4

η
ξ
=
=  

u  0.09902008 0.06954515 0.02749235 

0.49
0.51

η
ξ
=
=  

u  0.07945951 0.05759342 0.0238459 

 
For a given transition layer thickness and a given value of n, the total volume 

flux decreases with decreasing Da. This is due to flow retardation for smaller 
permeability. 

It should be noted that since the velocity computations for thick layers are 
accurate for Da as low as 0.001, so are the computations of the mean velocity. 

9. Velocity Profiles 

Velocity profiles across the three-layered channel have been obtained for the 
various flow parameters and are graphed in Figures 3-9. 

Figure 3 illustrates the velocity profile for a thick transition layer, 
1 2,
3 3

η ξ= = , when Da = 1 and n = 1. This velocity profile is parabolic and is  

close to what one might expect in the case of Poiseuille flow and the solution of 
the Navier-Stokes equations due to the high value of permeability. This parabolic 
shape is lost when Da is reduced, as shown in Figure 4, as the flow in upper part 
of the channel moves slower than in the middle part, which is in turn slower 
than the Navier-Stokes flow in the lower part of the configuration. 

For the case of n = 1, and thick transition layer, Figure 5 illustrates the effect 
of changing Da on the velocity profile. The case of thin layer is shown in Figure 6. 
Both figures demonstrate a velocity profile distortion with decreasing Da as the 
permeability becomes lower in the upper region, resulting in slower flow. The 
same is illustrated in Figure 7, Figure 8 for the case of n = 2. 

The effect of varying n is illustrated in Figure 9, which demonstrates the rela-
tive increase of velocity in the transition layer with increasing n. This may be  
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Figure 3. Velocity Profile u(y), for Da = 1, 1 2,
3 3

η ξ= = , and n = 1. 

 

 

Figure 4. Velocity Profile u(y), for Da = 0.01, 1 2,
3 3

η ξ= = , and n = 1. 
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Figure 5. Velocity profiles in the three layers for n = 1, 
1 2,
3 3

η ξ= =  and 

different Da. 

 

 
Figure 6. Velocity profiles in the three layers for n = 1, 0.49, 0.51η ξ= =  
and different values of Darcy number. 
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Figure 7. Velocity profiles in the three layers for n = 2, 1 2,
3 3

η ξ= =  and 

different Da. 

 

 
Figure 8. Velocity profiles in the three layers for n = 2, 0.49, 0.51η ξ= =  
and different Da. 
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Figure 9. Velocity profiles in the layers for Da = 0.1, 1 2,
3 3

η ξ= =  and dif-

ferent n. 

 
attributed to higher momentum transfer from the adjacent layers that tend to 
increase the flow velocity there. 

10. Conclusion 

In this work, we considered the problem of flow through a porous medium over 
a free-space channel in the presence of a transition layer. This problem was 
treated by Nield and Kuznetsov [1] to illustrate the characteristics of the flow 
when the transition layer is a Brinkman layer of variable permeability described 
as the reciprocal of a linear polynomial. In this work, we considered the permea-
bility to vary as the reciprocal of an nth degree polynomial and to solve the re-
sulting generalized Airy’s differential equation. For the case of n = 1, our results 
agree with those obtained by Nield and Kuznetsov [1]. 
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